Arbres binaires, arbres non-croisés, quadrangulations. janvier 2010



Documents pareils
CARTE DE VOEUX À L ASSOCIAEDRE

chapitre 4 Nombres de Catalan

Groupe symétrique. Chapitre II. 1 Définitions et généralités

Eteindre. les. lumières MATH EN JEAN Mme BACHOC. Elèves de seconde, première et terminale scientifiques :

MIS 102 Initiation à l Informatique

Programme de la classe de première année MPSI

Objets Combinatoires élementaires

Chapitre 7 : Intégration sur un intervalle quelconque

La NP-complétude. Johanne Cohen. PRISM/CNRS, Versailles, France.

Introduction à la théorie des graphes. Solutions des exercices

Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands.

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

Maîtriser les fonctionnalités d un traitement de texte (Word OpenOffice)

Proposition. Si G est un groupe simple d ordre 60 alors G est isomorphe à A 5.

Le produit semi-direct

ARBRES BINAIRES DE RECHERCHE

I. Polynômes de Tchebychev

COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE

Programmation linéaire

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Continuité et dérivabilité d une fonction

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

point On obtient ainsi le ou les points d inter- entre deux objets».

Je découvre le diagramme de Venn

CCP PSI Mathématiques 1 : un corrigé

Cours d Analyse. Fonctions de plusieurs variables

Planche n o 22. Fonctions de plusieurs variables. Corrigé

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

Université Paris-Dauphine DUMI2E 1ère année, Applications


STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE

Structures algébriques

Resolution limit in community detection

Exemple 4.4. Continuons l exemple précédent. Maintenant on travaille sur les quaternions et on a alors les décompositions

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Théorème du point fixe - Théorème de l inversion locale

Fondements de l informatique Logique, modèles, et calculs

Chapitre 5 : Flot maximal dans un graphe

par Denis-Charles Cisinski & Georges Maltsiniotis

Théorie des Graphes Cours 3: Forêts et Arbres II / Modélisation

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://

Problèmes de Mathématiques Filtres et ultrafiltres

Calcul différentiel. Chapitre Différentiabilité

Cours de Probabilités et de Statistique

Premiers exercices d Algèbre. Anne-Marie Simon

MAT2027 Activités sur Geogebra

Fonctions de plusieurs variables

6 Equations du première ordre

Quelques Algorithmes simples

Groupoïdes quantiques mesurés : axiomatique, étude, dualité, exemples

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES.

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

BACCALAUREAT GENERAL MATHÉMATIQUES

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Date : Tangram en carré page

Programmes des classes préparatoires aux Grandes Ecoles

Initiation à l algorithmique

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

Adobe Illustrator Logiciel de dessin vectoriel et de Cartographie Assistée par Ordinateur

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé

Problèmes de dénombrement.

Théorie et codage de l information

INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES

1 de 46. Algorithmique. Trouver et Trier. Florent Hivert. Mél : Florent.Hivert@lri.fr Page personnelle : hivert

Dualité dans les espaces de Lebesgue et mesures de Radon finies

Texte Agrégation limitée par diffusion interne

Mesures gaussiennes et espaces de Fock

Intégration et probabilités TD1 Espaces mesurés Corrigé

2.4 Représentation graphique, tableau de Karnaugh

L isomorphisme entre les tours de Lubin-Tate et de Drinfeld et applications cohomologiques par Laurent Fargues

6. Les différents types de démonstrations

par Méthodes topologiques en dynamique des surfaces École d été, Grenoble, Juin 2006

Mesure d angles et trigonométrie

PEUT-ON «VOIR» DANS L ESPACE À N DIMENSIONS?

Ce cours introduit l'électrodynamique classique. Les chapitres principaux sont :

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!»

Corrigé du baccalauréat S Pondichéry 12 avril 2007

Correction du Baccalauréat S Amérique du Nord mai 2007

Calculer avec Sage. Revision : 417 du 1 er juillet 2010

Image d un intervalle par une fonction continue

Calcul différentiel sur R n Première partie

Représentation des Nombres

Cours de tracés de Charpente, Le TRAIT

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Algèbre binaire et Circuits logiques ( )

Cours de mathématiques

RAPHAËL ROUQUIER. 1. Introduction

Chapitre 6. Fonction réelle d une variable réelle

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007

Les algorithmes de base du graphisme

Les Angles. I) Angles complémentaires, angles supplémentaires. 1) Angles complémentaires. 2 Angles supplémentaires. a) Définition.

Section «Maturité fédérale» EXAMENS D'ADMISSION Session de février 2014 RÉCAPITULATIFS DES MATIÈRES EXAMINÉES. Formation visée

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie

Approximations variationelles des EDP Notes du Cours de M2

Chp. 4. Minimisation d une fonction d une variable

1 Définition et premières propriétés des congruences

Transcription:

Arbres binaires, arbres non-croisés, quadrangulations Frédéric Chapoton janvier 2010

Plan 1 Les arbres binaires 2 Les arbres non-croisés 3 La relation entre les deux 4 Dualité et rotation 5 Les intervalles 6 Le contexte algébrique

Définition des arbres binaires On commence avec les arbres binaires (plans), dont on peut donner une définition récursive. Un arbre binaire T est soit l arbre binaire trivial soit une paire (T 1, T 2 ) d arbres binaires. Symboliquement Les premiers arbres binaires sont T = + (T 1, T 2 ). { } { } {, } {,,,, }. Voici un exemple d arbre binaire plus grand :.

Énumération par les nombres de Catalan On note Y n l ensemble des arbres binaires à n + 1 feuilles. Ces arbres binaires ont n sommets internes. Y 0 = { } Y 1 = { } Y 2 = {, } Y 3 = {,,,, } Le cardinal de l ensemble Y n est #Y n = 1 ( ) 2n, n + 1 n qui sont les nombres de Catalan : 1, 1, 2, 5, 14, 42, 132, 429,... Bijection avec les parenthésages, les mots de Dyck, etc, etc.

Le graphe orienté des arbres binaires Les arbres binaires ne forment pas seulement un ensemble, mais aussi un graphe orienté. On a une arête orientée T T si on passe de T à T par un changement local de la forme. On a ainsi dans le cas de Y 3 le graphe suivant :

Remarques Le graphe orienté définit une relation d ordre partiel sur l ensemble Y n, en posant T T si T T. Cet ordre partiel est un treillis, le treillis de Tamari.

Remarques Le graphe orienté définit une relation d ordre partiel sur l ensemble Y n, en posant T T si T T. Cet ordre partiel est un treillis, le treillis de Tamari. On peut aussi considérer le graphe non-orienté associé sur Y n. C est un graphe connexe régulier de valence n 1 : tout arbre binaire a exactement n 1 arêtes incidentes.

Remarques Le graphe orienté définit une relation d ordre partiel sur l ensemble Y n, en posant T T si T T. Cet ordre partiel est un treillis, le treillis de Tamari. On peut aussi considérer le graphe non-orienté associé sur Y n. C est un graphe connexe régulier de valence n 1 : tout arbre binaire a exactement n 1 arêtes incidentes. Il existe une famille de polytopes, dont ces graphes sont les graphes formés par les sommets et les arêtes : ce sont les associaèdres ou polytopes de Stasheff. Pour Y n, c est un polytope de dimension n 1.

Plan 1 Les arbres binaires 2 Les arbres non-croisés 3 La relation entre les deux 4 Dualité et rotation 5 Les intervalles 6 Le contexte algébrique

Définition des arbres non-croisés On passe à d autres objets : les arbres non-croisés. On considère les sommets d un polygone régulier d ordre n + 1. Un arbre non-croisé est un ensemble de segments joignants ces sommets sans se couper, qui relient tous les points entre eux et ne forment pas de cycles. Un tel arbre a nécessairement n segments.

Énumération des arbres non-croisés On note NCT n+1 l ensemble des arbres non-croisés dans le polygone à n + 1 sommets.

Énumération des arbres non-croisés On note NCT n+1 l ensemble des arbres non-croisés dans le polygone à n + 1 sommets. On a alors le résultat suivant (Dulucq-Penaud, 1993) : #NCT n+1 = 1 2n + 1 ( 3n n qui ressemble un peu à la formule pour les nombres de Catalan. ), Cette suite commence par 1, 1, 3, 12, 55, 273, 1428,...

Énumération des arbres non-croisés On note NCT n+1 l ensemble des arbres non-croisés dans le polygone à n + 1 sommets. On a alors le résultat suivant (Dulucq-Penaud, 1993) : #NCT n+1 = 1 2n + 1 ( 3n n qui ressemble un peu à la formule pour les nombres de Catalan. ), Cette suite commence par 1, 1, 3, 12, 55, 273, 1428,... Ces objets sont en bijection avec les arbres ternaires et avec les quadrangulations.

Graphe orienté des arbres non-croisés On peut aussi définir un graphe orienté sur les arbres non-croisés : les arêtes sont des pivots dans le sens trigonométrique.

Graphe orienté des arbres non-croisés On peut aussi définir un graphe orienté sur les arbres non-croisés : les arêtes sont des pivots dans le sens trigonométrique. Par exemple pivot

Graphe orienté des arbres non-croisés On peut aussi définir un graphe orienté sur les arbres non-croisés : les arêtes sont des pivots dans le sens trigonométrique. Par exemple pivot On remplace une arête par une autre arête ayant un point en commun, en tournant autour de ce point dans le sens direct, à l intérieur du polygone. L extrémité qui change doit parcourir un segment appartenant à l arbre non-croisé.

Plan 1 Les arbres binaires 2 Les arbres non-croisés 3 La relation entre les deux 4 Dualité et rotation 5 Les intervalles 6 Le contexte algébrique

Inclusion On va envoyer arbres binaires Y n ϕ NCT n+1 arbres non-croisés

Inclusion On va envoyer arbres binaires Y n ϕ NCT n+1 arbres non-croisés La définition de ϕ est récursive : l arbre binaire trivial est envoyé sur l unique arbre non-croisé (vide) dans le 1-polygone.

Inclusion On va envoyer arbres binaires Y n ϕ NCT n+1 arbres non-croisés La définition de ϕ est récursive : l arbre binaire trivial est envoyé sur l unique arbre non-croisé (vide) dans le 1-polygone. Un arbre binaire T de la forme (T 1, T 2 ) est envoyé sur l arbre non-croisé obtenu en plaçant ϕ(t 1 ) et ϕ(t 2 ) sur les cotés gauche et droit d un quadrilatère. On obtient un arbre non-croisé en prenant l union de ϕ(t 1 ), ϕ(t 2 ) et de la base du quadrilatère. 1 2

Inclusion : exemples Par exemple,,,,,,.

Définition non récursive de ϕ On peut aussi définir ϕ directement. On envoie un arbre binaire sur un ensemble de segments entiers dans [1, n], puis cet ensemble sur un arbre non-croisé. Par exemple, pour 1 2 3 4 5 6 7 3 4 5 2 6 1 7 l ensemble est {[1, 3], [2, 2], [2, 3], [1, 7], [5, 5], [5, 7], [7, 7]}.,

Inclusion de graphes orientés Il est facile de voir que ϕ est une inclusion d ensembles finis.

Inclusion de graphes orientés Il est facile de voir que ϕ est une inclusion d ensembles finis. Proposition L application ϕ est une inclusion de graphes orientés.

Inclusion de graphes orientés Il est facile de voir que ϕ est une inclusion d ensembles finis. Proposition L application ϕ est une inclusion de graphes orientés. Il faut vérifier qu un changement local de la forme dans un arbre binaire se traduit par un pivot dans l arbre non-croisé associé. C est facile avec la description non-récursive de ϕ.

Image de ϕ Question Quelle est l image de ϕ?

Image de ϕ Question Quelle est l image de ϕ? Réponse Ce sont les arbres non-croisés sans coin haut.

Image de ϕ Question Quelle est l image de ϕ? Réponse Ce sont les arbres non-croisés sans coin haut. Un coin dans un arbre non-croisé est un ensemble de deux arêtes ayant un sommet commun, et qui sont adjacentes.

Image de ϕ Question Quelle est l image de ϕ? Réponse Ce sont les arbres non-croisés sans coin haut. Un coin dans un arbre non-croisé est un ensemble de deux arêtes ayant un sommet commun, et qui sont adjacentes.

Les trois types de coins On peut montrer que Lemme Dans tout arbre non-croisé dans le n + 1-polygone, il a n 1 coins. On distingue 3 types de coins : haut, gauche et droit. selon la restriction de l arbre non croisé au triangle associé au coin. On prend comme base du triangle le coté le plus proche de la base du polygone.

Les trois types de coins On peut montrer que Lemme Dans tout arbre non-croisé dans le n + 1-polygone, il a n 1 coins. On distingue 3 types de coins : haut, gauche et droit. selon la restriction de l arbre non croisé au triangle associé au coin. On prend comme base du triangle le coté le plus proche de la base du polygone.

Les trois types de coins On peut montrer que Lemme Dans tout arbre non-croisé dans le n + 1-polygone, il a n 1 coins. On distingue 3 types de coins : haut, gauche et droit. selon la restriction de l arbre non croisé au triangle associé au coin. On prend comme base du triangle le coté le plus proche de la base du polygone.

Symétrie Comme dit plus haut, on a une bijection ϕ arbres binaires arbres non-croisés sans coin haut.

Symétrie Comme dit plus haut, on a une bijection ϕ arbres binaires arbres non-croisés sans coin haut. Mais il y a une surprise!

Symétrie Comme dit plus haut, on a une bijection ϕ arbres binaires arbres non-croisés sans coin haut. Mais il y a une surprise! Symétrie totale de (droit,gauche,haut) La série génératrice finie qui compte les arbres non-croisés selon leurs coins gauches, droits et hauts t NCT n+1 x G(t) y D(t) z H(t) est symétrique en x, y, z.

Symétrie Comme dit plus haut, on a une bijection ϕ arbres binaires arbres non-croisés sans coin haut. Mais il y a une surprise! Symétrie totale de (droit,gauche,haut) La série génératrice finie qui compte les arbres non-croisés selon leurs coins gauches, droits et hauts t NCT n+1 x G(t) y D(t) z H(t) est symétrique en x, y, z. (cf. arbres ternaires) On a en fait aussi des bijections naturelles arbres binaires arbres non-croisés sans coin gauche, arbres binaires arbres non-croisés sans coin droit.

Plan 1 Les arbres binaires 2 Les arbres non-croisés 3 La relation entre les deux 4 Dualité et rotation 5 Les intervalles 6 Le contexte algébrique

Dualité pour les arbres non-croisés On a une dualité sur les arbres non-croisés (essentiellement la dualité des graphes plans). On place un sommet du dual entre chaque paire de sommets consécutifs. Dualité On peut dessiner le graphe dual avec ses sommets dans un polygone «posé sur la pointe». On peut se ramener à un polygone posé sur sa base en pivotant un peu dans le sens horaire. Le carré de la dualité devient alors la rotation d un cran.

Dualité et graphe orienté Proposition Dualité et rotation sont des isomorphismes du graphe orienté des arbres non-croisés. Il suffit de voir que les pivots sont bien transformés en pivots par la dualité.

Dualité et graphe orienté Proposition Dualité et rotation sont des isomorphismes du graphe orienté des arbres non-croisés. Il suffit de voir que les pivots sont bien transformés en pivots par la dualité. Voici un exemple.

Dualité et graphe orienté Proposition Dualité et rotation sont des isomorphismes du graphe orienté des arbres non-croisés. Il suffit de voir que les pivots sont bien transformés en pivots par la dualité. Voici un exemple.

Orbites Remarque Le retournement (symétrie droite-gauche des arbres non-croisés) est un anti-automorphisme du graphe orienté. Il transforme pivot en inverse de pivot. On aimerait comprendre le graphe orienté des arbres non-croisés. On peut se demander par exemple Question Quelles sont les orbites sous le groupe engendré par la dualité et les rotations?

Dualité et quadrangulations On peut commencer par chercher les orbites pour la dualité. Elles sont naturellement en bijection avec des quadrangulations. Un arbre non-croisé (un peu penché).

Dualité et quadrangulations On peut commencer par chercher les orbites pour la dualité. Elles sont naturellement en bijection avec des quadrangulations. Un arbre non-croisé et son dual.

Dualité et quadrangulations On peut commencer par chercher les orbites pour la dualité. Elles sont naturellement en bijection avec des quadrangulations. On rajoute toutes les arêtes possibles sans croisement.

Dualité et quadrangulations On peut commencer par chercher les orbites pour la dualité. Elles sont naturellement en bijection avec des quadrangulations. On obtient une quadrangulation (dissection d un polygone en carrés).

Dualité et quadrangulations On peut commencer par chercher les orbites pour la dualité. Elles sont naturellement en bijection avec des quadrangulations. On obtient une quadrangulation (dissection d un polygone en carrés). En conclusion, les orbites sous le groupe d automorphisme sont en bijection avec les quadrangulations à rotation près.

Plan 1 Les arbres binaires 2 Les arbres non-croisés 3 La relation entre les deux 4 Dualité et rotation 5 Les intervalles 6 Le contexte algébrique

Une fraction par arbre A chaque arbre non-croisé T dans NCT n+1, on associe une fraction ψ(t ) en n variables u 1,..., u n. Par exemple, pour l arbre 3 4 5 2 6 1 1 (u 1 + u 2 + u 3 )(u 2 )(u 2 + u 3 )(u 1 + + u 7 )(u 5 )(u 5 + u 6 + u 7 )(u 7 ). En particulier, on a aussi une fraction ψ(t) pour chaque arbre binaire t, via l inclusion ϕ. 7,

Les arbres non-croisés comme intervalles Rappel : un ordre partiel sur l ensemble Y n, le treillis de Tamari. On a donc un ensemble d intervalles {(x, y) Y n Y n x y}. (1) Théorème [C.-Hivert-Novelli-Thibon] Pour tout arbre non-croisé T dans NCT n+1, il existe un unique intervalle I (T ) dans le treillis de Tamari Y n tel que ψ(t ) = ψ(t). t I (T ) Ceci définit une injection de l ensemble NCT n+1 dans l ensemble des intervalles de Y n.

Les trois inclusions On avait trois inclusions de Y n dans NCT n+1 avec pour images les arbres non-croisés sans coin haut, sans coin gauche sans coin droit. En composant, on obtient trois inclusions de Y n dans les intervalles de Y n. Ca correspond à envoyer t sur les intervalles [t, t], [min, t] et [t, max] respectivement.

Interlude : intervalles et cartes Théorème Le nombre d intervalles dans Y n est 2(4n+1)! (n+1)!(3n+2)!.

Interlude : intervalles et cartes Théorème Le nombre d intervalles dans Y n est 2(4n+1)! (n+1)!(3n+2)!. C est aussi le nombre de triangulations avec n + 3 arêtes. Bernardi et Bonichon ont obtenu une bijection en 2007.

Interlude : intervalles et cartes Théorème Le nombre d intervalles dans Y n est 2(4n+1)! (n+1)!(3n+2)!. C est aussi le nombre de triangulations avec n + 3 arêtes. Bernardi et Bonichon ont obtenu une bijection en 2007. Il y aussi une égalité entre certains intervalles nouveaux et les cartes euleriennes, mais pas encore de bijection à ma connaissance.

Plan 1 Les arbres binaires 2 Les arbres non-croisés 3 La relation entre les deux 4 Dualité et rotation 5 Les intervalles 6 Le contexte algébrique

Carquois, modules, modules basculants Ce qu il y a derrière tout ça. On commence avec le carquois (graphe orienté) ci-dessous, nommé A n : (ici n = 6)

Carquois, modules, modules basculants Ce qu il y a derrière tout ça. On commence avec le carquois (graphe orienté) ci-dessous, nommé A n : (ici n = 6) On a une notion de module sur ce carquois : un espace vectoriel en chaque sommet, une application linéaire pour chaque flèche.

Carquois, modules, modules basculants Ce qu il y a derrière tout ça. On commence avec le carquois (graphe orienté) ci-dessous, nommé A n : (ici n = 6) On a une notion de module sur ce carquois : un espace vectoriel en chaque sommet, une application linéaire pour chaque flèche. On a alors une correspondance modules basculants pour A n arbres binaires dans Y n

Carquois, modules, modules basculants Ce qu il y a derrière tout ça. On commence avec le carquois (graphe orienté) ci-dessous, nommé A n : (ici n = 6) On a une notion de module sur ce carquois : un espace vectoriel en chaque sommet, une application linéaire pour chaque flèche. On a alors une correspondance modules basculants pour A n arbres binaires dans Y n Pour tout carquois, il existe un ordre partiel naturel sur les modules basculants (Riedtmann-Schofield et Happel-Unger). Dans le cas A n, on trouve le treillis de Tamari sur Y n.

Suites exceptionnelles Cette correspondance entre arbres binaires et modules basculants se généralise en une bijection suites exceptionnelles pour A n (à permutation près) arbres non-croisés NCT n+1 Ceci nécessite de passer dans la catégorie dérivée de la catégorie des modules sur A n.

Suites exceptionnelles Cette correspondance entre arbres binaires et modules basculants se généralise en une bijection suites exceptionnelles pour A n (à permutation près) arbres non-croisés NCT n+1 Ceci nécessite de passer dans la catégorie dérivée de la catégorie des modules sur A n. On a (pour tout carquois) une action du groupe de tresses sur l ensemble des suites exceptionnelles. En termes d arbres non-croisés, l action des tresses élémentaires σ i,i+1 se traduit par un pivot.

Catégories On peut maintenant considérer la catégorie C n des modules sur l algèbre d incidence du poset de Tamari Y n. Dans la catégorie C n, on a trois familles d objets en bijection avec Y n : les simples, les projectifs et les injectifs.

Catégories On peut maintenant considérer la catégorie C n des modules sur l algèbre d incidence du poset de Tamari Y n. Dans la catégorie C n, on a trois familles d objets en bijection avec Y n : les simples, les projectifs et les injectifs. On peut aussi considérer les arbres non-croisés de NCT n+1 comme des objets de C n (car les intervalles de Y n sont des objets de C n ). On cherche en fait à comprendre les catégories C n, et leur catégories dérivées.

Catégories On peut maintenant considérer la catégorie C n des modules sur l algèbre d incidence du poset de Tamari Y n. Dans la catégorie C n, on a trois familles d objets en bijection avec Y n : les simples, les projectifs et les injectifs. On peut aussi considérer les arbres non-croisés de NCT n+1 comme des objets de C n (car les intervalles de Y n sont des objets de C n ). On cherche en fait à comprendre les catégories C n, et leur catégories dérivées. Tout ce qui précède est donc fortement lié aux carquois de type A n. Ces catégories existent aussi pour les autres diagrammes de Dynkin, mais elles sont de nature moins combinatoire.

Perspectives Dans une autre direction, tout ceci est motivé par les algèbres dendriformes introduites par Loday, qui donnent un produit associatif sur les arbres binaires.

Perspectives Dans une autre direction, tout ceci est motivé par les algèbres dendriformes introduites par Loday, qui donnent un produit associatif sur les arbres binaires. Il existe aussi un jeu de taquin sur les arbres binaires, défini par Aval et Viennot, qui donne un autre produit associatif #.

Perspectives Dans une autre direction, tout ceci est motivé par les algèbres dendriformes introduites par Loday, qui donnent un produit associatif sur les arbres binaires. Il existe aussi un jeu de taquin sur les arbres binaires, défini par Aval et Viennot, qui donne un autre produit associatif #. On a en fait beaucoup d opérations sur les arbres binaires, certaines se relèvent en opérations sur les arbres non-croisés.

Perspectives Dans une autre direction, tout ceci est motivé par les algèbres dendriformes introduites par Loday, qui donnent un produit associatif sur les arbres binaires. Il existe aussi un jeu de taquin sur les arbres binaires, défini par Aval et Viennot, qui donne un autre produit associatif #. On a en fait beaucoup d opérations sur les arbres binaires, certaines se relèvent en opérations sur les arbres non-croisés. Il reste beaucoup de choses à comprendre dans les relations entre ces diverses opérations et les catégories qui entrent en jeu.