Jean-Claude Augros. Résumé
|
|
|
- Cécile Corriveau
- il y a 10 ans
- Total affichages :
Transcription
1 Evaluation des Bons de Souscription d Actions Ordinaires et des Bons de Souscription d Actions Remboursables Jean-Claude Augros Institut de Science Financière et d Assurances, Université Claude Bernard (Lyon 1), 43 boulevard du 11 Novembre 1918, Villeurbanne, France Résumé L objet de cet article consiste à démontrer que la valeur d un bon de souscription d actions peut toujours être exprimée en termes d options sur la firme émettrice, mais avec un degré de complexité variable selon la nature de l émission. Partant de l analyse de BLACK et SCHOLES selon laquelle un bon autonome ordinaire constitue un CALL simple sur la firme, nous montrons que, de la destination des fonds recueillis lors de l émission des bons, dépend, d une part, le prix d exercice de l option et, d'autre part, la stabilité de la volatilité des actifs de la firme. Poursuivant par l analyse de bons plus complexes, nous démontrons que la valeur de bons autonomes remboursables ainsi que celle de bons ordinaires, mais émis en même temps que des obligations, peuvent être exprimées en termes d options sur options ou, en d autres termes, d options composées de deuxième degré. Il ressort en outre que des bons remboursables, dont l émission est associée à celle d'obligations classiques, sont assimilables à un portefeuille d'options complexes incluant des options composées de deuxième (options sur options) et de troisième degré (options sur options sur options). Enfin, plusieurs propositions sont faites permettant, pour les unes, de simplifier la procédure de calcul de la valeur des bons et, pour les autres, de traiter le problème posé par le détachement de dividendes et/ou de coupons. Summary Valuation of Warrants and Convertible Stocks The purpose of this article is to demonstrate that the value of a warrant can always be expressed in terms of options on the issuing firm, albeit with a degree of complexity which varies according to the nature of the issue. Starting with the Black and Scholes analysis, according to which an ordinary share constitutes a simple CALL on the firm, we show that firstly the exercise price of the option and secondly the stability of the volatility of the assets of the firm are dependent on the destination of the funds received when the warrant is issued. Continuing our analysis via more complex instruments, we show that the value of convertible redeemable stocks or alternatively warrants simultaneously with bonds can be expressed in terms of options on options or, in other words, second-degree composite options. Furthermore, redeemable convertibles, the issuing of which is linked to the issuing of straight bonds, are likened to a portfolio of complex options including second-degree (options on options) and third- degree (options on options on options) composite options. Finally, several proposals are made, some to simplify the procedure for calculating the value of warrants and others to deal with the problem posed by the detaching of dividends and/or coupons. 93
2 SOMMAIRE Introduction. SECTION I : EVALUATION DES BONS AUTONOMES ORDINAIRES. 1. Le produit de l émission est investi dans des actifs risqués. 2. Le produit de l émission est investi dans un actif sans risque. 3. Le produit de l émission est placé sans risque, puis investi dans des actifs risqués. SECTION II : EVALUATION DES BONS AUTONOMES REMBOURSABLES. SECTION III : EVALUATION DES OBLIGATIONS A BONS DE SOUSCRIPTION ORDINAIRES. 1. Les bons et les obligations ont la même échéance. 2. L échéance des bons est antérieure à celle des obligations. SECTION IV : EVALUATION DES OBLIGATIONS A BONS DE SOUSCRIPTION REMBOURSABLES. 1. Les bons et les obligations ont la même échéance. 2. L échéance des bons est antérieure à celle des obligations. SECTION V : EVALUATION EN PRÉSENCE DE DIVIDENDES ET/OU DE COUPONS. Conclusion. 94
3 Depuis la loi du 3 Janvier 1983, les sociétés françaises peuvent émettre des obligations avec bons de souscription d actions (OBSA) qui donnent droit à leurs titulaires de souscrire, à des époques et dans des conditions fixées dès l émission de l emprunt, des actions de la société émettrice. En outre, depuis la loi du 14 Décembre 1985, elles peuvent également émettre des bons de souscription d actions autonomes dont l émission n est pas associée à celle d un emprunt obligataire classique. Les bons de souscription d actions possèdent l essentiel des attributs des CALLS sur actions. Comme le détenteur d un CALL, celui d un bon de souscription a la possibilité de souscrire des actions de la société émettrice dès lors qu à l échéance des bons le prix de ces actions est supérieur au prix d exercice convenu dans le contrat d émission. Les bons diffèrent cependant des options sur plusieurs points. En premier lieu, l émission de bons modifie le bilan de l émetteur. Ses capitaux propres augmentent, une première fois, du montant de l émission et, le cas échéant, une seconde fois, lors de l augmentation de capital consécutive à l exercice des bons. La tréso- rerie ainsi recueillie permet à l émetteur de financer de nouveaux investissements et d accroître progressivement le cash-flow de la firme. En deuxième lieu, contrairement aux actions obtenues par exercice d un CALL, celles obtenues par exercice d un bon n existent pas et doivent donc être créées à ce moment-là par l émetteur (1). Ainsi, l émission de bons peut entraîner, en cas d exercice, une dilution des résultats de la firme, ceux-ci se rapportant aiors à un nombre accru d actions. En troisième lieu enfin, l émission de bons de souscription d actions a pour effet de modifier la volatilité des actions de la firme et de rendre celle-ci non stationnaire. Dans ces conditions, il n est guère envisageable d évaluer des bons en les assimilant totalement à des options sur actions. BLACK et SCHOLES (1972) ont été les premiers à prendre en compte le phénomène de dilution dans l évaluation des bons de souscription et à retenir comme variable d état, dans leur modèle d évaluation, la valeur de la firme plutôt que celle des actions. Leur analyse, reprise plus tard par GALAI et SCHNELLER (1978), nous sert d ailleurs de point 95
4 de départ dans cet article où nous envisageons à la fois l évaluation des bons de souscription ordinaires et celle des bons de souscription remboursables. Depuis l année 1988, en effet, plusieurs sociétés françaises ont émis des bons de souscription avec faculté de rachat au gré du porteur. S ils n exercent pas leurs bons à l échéance, les investisseurs peuvent, dans ce cas, demander leur rachat auprès de l émetteur, à un prix fixé dans le contrat d émission. Hormis cette particularité, les bons remboursables sont identiques aux bons ordinaires. Dans une première section, nous considérons l évaluation des bons autonomes ordinaires lorsque la société émettrice n est financée par ailleurs que par des actions. Dans la section II, nous envisageons la même politique de financement de l émetteur, mais nous supposons toutefois que les bons autonomes émis sont remboursables. Dans les deux sections suivantes, nous admettons que la firme émettrice est financée conjointement par des actions et par des obligations à bons de souscription, ces derniers pouvant être ordinaires (section III) ou remboursables (section IV). Enfin, dans la dernière section, nous proposons quelques solutions pour résoudre le problème posé par l existence de dividendes et/ou de coupons. SECTION I. EVALUATION DES BONS AUTONOMES ORDINAIRES. Une émission de bons de souscription a généralement pour objet de procurer à l émetteur des fonds destinés à financer de nouveaux investissements. Nous envisageons, tout d abord, le cas où ces fonds sont immédiatement investis dans des actifs assimilables à ceux de la firme, puis celui où ils sont investis dans un actif sans risque jusqu à l échéance des bons. Enfin, dans une troisième étape, nous supposons que le produit de l émission des bons est provisoirement investi dans un actif sans risque avant d être investi dans des actifs de mêmes caractéristiques que ceux que la firme possédait avant l émission des bons. 1. Le produit de l'émission est investi dans des actifs risqués. Nous envisageons le cas d une entreprise qui, jusqu à ce jour (t o ), n était financée que par des actions ordinaires. Soit V la 96
5 valeur totale des actifs de la firme, telle que V = NS, S désignant le cours des N actions ordinaires émises. On admet que V suit un processus brownien géométrique caractérisé par un écart type, o V, constant au cours du temps. En t o, l entreprise émet n bons de souscription au prix, W, choisi de telle sorte que l émission des bons laisse inchangé le cours des actions, toutes choses restant égales par ailleurs. Le produit de l émission est immédiatement investi dans des actifs identiques ceux à de la firme. Soit la. valeur totale des actifs, aussitôtaprès l émission, telle que : = V + nw = NS + nw. La volatilité,, de est identique à celle de V. On postule que chaque bon permet de souscrire une action de la firme au prix d exercice, E, à l issue d une période de durée, T. La structure des taux est supposée plate et stable au cours du temps. r désigne le taux sans risque exprimé en taux annuel continu. On admet que les bons sont détenus par un grand nombre d inves- tisseurs (régime de concurrence) plutôt que par un seul (régime de monopole). Or EMANUEL (1983) et CONSTANTINIDES et ROSENTHAL (1984) ont montré que, dans un régime de monopole, en l absence de dividende ou en présence d un dividende continu et en supposant, en outre, que les bons sont exerçables en bloc, il n'est pas dans l'intérèt de l investisseur détenant l ensemble des bons d exercer ceux-ci avant leur échéance. Ces auteurs devaient également démontrer qu en régime de concurrence la valeur d équilibre des bons est identique à celle qui prévaut dans un régime de monopole où les bons sont exerçables en bloc. Dans ces conditions, il est possible d évaluer des bons en faisant comme si ceux-ci ne devaient pas être exercés avant leur échéance. Pour faciliter l analyse, nous supposons, pour l instant, qu il n est prévu aucune distribution de dividende pendant toute la durée de vie des bons. Cette dernière hypothèse sera toutefois relâchée dans la section V. A l ' échéance des bons, leurs titulaires ne choisissent de les exercer que si le cours des actions, S*, est supérieur au prix d exercice, E, des bons. Dans cette hypothèse, les porteurs de bons 97
6 et les actionnaires anciens se répartissent la propriété de la firme dans la proportion n/(n+n), pour les premiers, et N/(N+n), pour les seconds. En cas d'exercice et après paiement du prix d'exercice par les titulaires de bons, on a donc l équivalence suivante : où W* désigne la valeur des bons à l'échéance. Soit, après simplification : Comme la valeur des bons arrivés à échéance est soit positive, soit nulle, la condition d exercice des bons s écrit également de la façon suivante : La valeur des bons peut ainsi être assimilée, à un coefficient multiplicateur près, à un CALL européen sur la firme, de durée de vie T et de prix d exercice NE. Reprenant la présentation de COX et RUBINSTEIN (1985), on peut résumer la valeur des bons et celle des actions, en t et à l échéance des bons, à l aide du tableau ci- o dessous. Tableau n 1 en t o Valeur à l'échéance Expressi ons en termes d'options s Actions NS Bons n W Dés lors, il est possible de fixer le prix d émission des bons à l'aide d'un modèle d'évaluation, celui de BLACK et SCHOLES par exemple. Il suffit de procéder par itération en choisissant initialement un prix d émission des bons proche de zéro, d en déduire la valeur de, puis de calculer à l aide du modèle la valeur théorique des bons et des actions. Il convient, ensuite, de renouveler la 98
7 procédure en augmentant progressivement le prix d'émission des bons jusqu à obtenir le prix d'équilibre des bons qui laisse inchangé le cours des actions. Si, par exemple, V = , N = 1 000, S = 100, σ V = 20 %, n = 250, E = 100, τ = 1 an et r = 10 %, le prix d'émission des bons ressort à 12,491 francs. Si l'on se situe quelques temps après l émission, le modèle ne permet plus véritablement d'évaluer la valeur des bons. Tout au plus permet-il de vérifier si, eu égard à la valeur de marché des actions, la valeur des bons correspond à une situation d équilibre ou bien si, au contraire, les bons apparaissent sur ou sous-évalués par rapport aux actions. Il suffit, pour cela, d observer, c est-à-dire (NS+nW), de mesurer la volatilité de puis d appliquer le modèle pour avoir la valeur théorique des bons que l on peut alors comparer à leur valeur de marché. En cas d égalité des deux valeurs, il y a équili- bre. Si, au contraire, la valeur théorique des bons est supérieure (inférieure) à leur valeur réelle, les bons sont sous-évalués (sur éva- lués) par rapport aux actions. Des arbitrages peuvent être envisagés. Il est possible également de démontrer que l émission de bons réduit la volatilité, σ S, des actions de la firme. Le rendement instantané des bons étant égal à celui de l option C (,τ, NE) la volatilité des bons est donc égale à celle, σ C, de C (,τ, NE) or ou, d après la formule de BLACK et SCHOLES : avec Φ (d 1 ) désignant la fonction intégrale de la loi normale de - à d1. La volatilité, σ W, des bons s'écrit, par conséquent : 99
8 [1] Comme, par ailleurs, Au cours d'un instant dt, la corrélation entre le rendement des actions et celui des bons étant parfaite, il vient : En remplaçant, dans l expression précédente, σ W par sa valeur donnée par [1], la volatilite des actions devient : [2] Dans l exemple numérique précédent, la volatilité des bons à l émission ressort à % et celle des actions à 17,6 %. Pendant toute la durée de vie des bons, la volatilité des actions fluctue au gré des variations de la valeur de la firme, tout en restant a un niveau inférieur à. Au fur et à mesure que l on se rapproche de l échéance des bons, la volatilité des actions tend progressivement vers celle de la firme si les bons sont en dehors ou vers s ils sont en dedans. Au total, la dilution entraînée par l émission de bons a pour effet de réduire provisoirement la volatilité des actions de la firme, tout en lui donnant un caractère stochastique. 2. Le produit de l'émission est placé dans un actif sans risque. Comme précédemment, nous envisageons le cas d une société qui, jusqu à présent, n était financée que par N actions ordinaires. Eile émet alors n bons de souscription au prix, W, choisi, là-aussi, de telle sorte qu il laisse inchangé le cours S des actions de la firme. En revanche, plutôt que d investir le produit de l émission dans des actifs risqués, l émetteur réalise un placement sans risque rémunéré au taux, r, et ce pendant toute la durée de vie des bons. Soit B = nw le montant investi sans risque en t o. On pose à nouveau 100
9 =V+nW=V+B. donc tel que : Le rendement instantané global de la firme est s'écrit : Le rendement de B n'étant pas stochastique, la volatilité de On observe que σ varie avec V. Du fait de la nature stochastique de σ, il est préférable d exprimer la valeur des bons, ainsi que celle des actions, en termes d options sur V plutôt que d'options sur. Les bons sont exercés à l échéance si le cours des actions, S*, à l échéance des bons est supérieur à E. Il est possible de formuler autrement la condition d exercice des bons à l échéance. En effet, en cas d exercice, il vient : Soit, 'après simplification : Il y a donc exercice des bons si V*> NE - Be r τ. On peut exprimer la valeur des bons, ainsi que celle des actions, en termes de CALLS européens sur V de prix d exercice NE - Be r τ. Tableau n. 2 en Valeur à l'échéance Expressions to en termes d options Actions NS Bons nw Les formules [l] et [2] donnant la volatilité des bons et cel 101
10 des actions restent valables après avoir substitué V, σ V et C[V, τ,(ne - Be τ r )] à,σ et C (, τ,ne) respectivement. Reprenant l exemple numérique précédent, le prix d émission des bons s'établit à 12,305 F, soit à un niveau un peu inférieur à celui obtenu lorsque l entreprise envisage des investissements risqués. Si l entreprise souhaite maximiser la valeur de ses actions et émettre des bons à un prix le plus élevé possible, elle a donc tout intérêt à faire connaître son intention de réaliser des investissements risqués dès l émission. 3. Le produit de l'émission est placé sans risque, puis investi dans des actifs risqués. Le schéma ci-dessous illustre la politique suivie par la firme : en t 0, elle investit le produit de l émission dans un actif sans risque et ce jusqu'en t 1, date à partir de laquelle elle investit sa trésorerie disponsible - égale alors à Be r(t 1 -t 0 ) - dans des actifs risqués assimilables à ceux de la firme. Le prix d'émission des bons peut être exprimé en termes d option sur la valeur, V, de la firme ; soit : Toutefois, la volatilité de étant stochastique jusqu'à la date t 1, il n est pas possible ici d évaluer la valeur des bons à l aide 102
11 de la formule de BLACK et SCHOLES. On peut, en revanche, procéder à cette évaluation à l aide de la méthode binomiale définie par COX, ROSS et RUBINSTEIN (1979). Reprenons l exemple numérique précédent et supposons, par exemple, que l on divise la durée de vie des bons, fixée à un an, en 6 périodes (n = 6). Admettons, par ailleurs, que le produit de l émission des bons soit placé sans risque pendant 3 périodes, puis investi dans des actifs risqués de mêmes caractéristiques que ceux de la firme. Si, par exemple, les bons sont émis à 12,42 F, l entreprise peut investir à l'issue de la troisième période. L arbre d'évolution de V (sur les 3 premières périodes), puis de (sur les 3 dernières périodes) se présente de la façon suivante (2) : Sens de construction de l arbre On en déduit la valeur d exercice de C (, τ,ne) à l échéance des bons, puis, en sens inverse, on construit, à l aide de la formule binomiale (3), l arbre d évolution de l option C (, t, NE). 103
12 On vérifie que le prix d émission des bons fixé initialement à 12,42 F est proche du prix d équilibre pour lequel le cours des actions, comme celui des bons, restent inchangés aussitôt après l émission. En effet : En réalité, comme dans les cas précédents, ce prix ne peut être obtenu que par une procédure d itération. Toutefois, ici, le temps de calcul est considérablement plus important car l arbre binomial éclate à la date où la firme réalise des investissements risqués. Par analogie avec la méthode de SCHRODER (1988) permettant de simplifier la procédure binomiale dans le cas où les actions faisant l objet d un contrat d option détachent un dividende fixe, nous proposons, pour réduire le temps de calcul de la valeur d'un bon, une méthode d approximation qui s'avère tout à fait satisfaisante. Celle-ci consiste à construire d abord l arbre d évolution de la valeur, V, de la firme en ignorant l émission des bons et les 104
13 investissements en actifs risqués réalisés plus tard avec le produit de l émission. Dans ces conditions, l arbre de V, représenté cidessous, possède seulement n+1= 7 branches à l échéance. Dans une deuxième étape, on construit l'arbre d'évolution de l option C (V,T,NE)- notée aussi C (V) par commodité - en partant de l échéance des bons jusqu à la date, t, de réalisation des 1 investissements risqués. Dans notre exemple, on obtient ainsi les quatre valeurs possibles de l option à cette date : C (V) uuu, C (V) uud, c (V) et C (V) udd ddd, comme indiquées ci-dessous. valeurs approchées t 1 V - NE après correction De toute évidence, les valeurs de l option en t 1, telles qu elles sont calculées ci-dessus, sont sous-estimées puisqu elles se rapportent à un actif sous-jacent égal à V, alors qu en réalité l actif sur lequel est écrite l option est, total des actifs de la firme incluant les investissements réalisés en t 1. Il convient donc de corriger ces valeurs afin d obtenir me valeur approchée correcte 105
14 de l option C (,=,NE) à cette date. Il suffit pour cela d ajouter aux différentes valeurs de l option C (V, T,NB), obtenues en t, 1 l écart de valeur entre les deux actifs et V (c est-à-dire le T r- montant, Be 2, des investissements en actifs risqués réalisés en t 1 ), multiplié par le coefficient delta de l option. Or ce dernier représente la pente de la tangente à la courbe représentative de la valeur de l option en fonction de celle de la firme. Comme il s agit ici de corriger à la hausse la valeur de l option et comme, par ailleurs, le coefficient delta d un CALL augmente avec le prix de l actif sous-jacent, il est préférable d estimer le coefficient delta par excès plutôt que par défaut. Il vient, par exemple, pour C ddd : où est le coefficient du CALL soit Soit : Enfin, pour la dernière valeur, C uuu, le coefficient delta ne pouvant être calculilé par excès selon le même principe, celui-ci peut être estimé avec un décalage d une période. Il vient : Soit : On observe que cette methode approchée procure une excellente approximation. Dans l exemple, en effet, les valeurs approchées de 106
15 C sont strictement équivalentes celles à obtenues par la méthode binomiale classique. En outre, la qualité de l approximation demeure tout à fait excellente même lorsque le montant de l émission de bons est beaucoup plus importante et que l effet de dilution est encore plus conséquent. SECTION II. EVALUATION DES BONS AUTONOMES REMBOURSABLES. Conservant les mêmes hypothèses que dans la section précédente, nous admettons toutefois que les titulaires des bons peuvent, en cas de non exercice de leurs bons à l échéance, en demander le remboursement à l émetteur au prix F par bon. De plus, pour simplifier la présentation, nous ne retenons qu'une seule hypothèse en ce qui concerne l utilisation du produit de l émission : nous admettons, en effet, que les fonds recueillis sont immédiatement investis dans des actifs risqués assimilables ceux à de la firme. Selon la valeur,, de la firme à l échéance, trois cas sont envisageables (tableau n 3). ler cas : La valeur intrinsèque des bons (ou, en d autres termes, leur valeur lorsque ceux-ci sont exercés) est supérieure à leur valeur de remboursement ; les bons sont alors exercés (colonne IV). On a, dans ce cas : Soit : NE + F (N+n) <. 2ème cas : La valeur intrinsèque des bons est inférieure à leur valeur nf de remboursement, mais cette dernière est inférieure à la valeur,, de la firme : les bons sont remboursés intégralement au prix F convenu. La clause de rachat joue aussi bien lorsque la valeur intrinsèque des bons est inférieure à leur valeur de remboursement, mais positive (colonne III) que lorsque celle-ci est nulle (colonne II). 3ème cas : La valeur intrinsèque des bons est nulle, mais la valeur totale des actifs de la firme,, est inférieure à leur valeur de remboursement nf. Les bons ne peuvent donc être remboursés que partiellement un à prix global égal à. Il y a défaillance de l émetteur. Les actions sont alors sans valeur (colonne I). En fait, il est possible d assimiler des bons autonomes remboursables à un portefeuille d options européennes de durée τ, tel que : 107
16 108
17 les bons remboursable sont ainsi équivalents la à somme :. d une position longue (a) sur la fraction d un CALL sur la firme de prix d exercice égal à NE ;. d une position longue (b) sur une option composée, en l occurrence un PUT, de prix d exercice égal à nf et dont l actif sous-jacent est la fraction du CALL précédent. On vérifie que ce PUT est exercé à l échéance dès lors que son sous-jacent (a) est inférieur à son prix d exercice nf. Soit, d une part, lorsque (a) = 0 (colonne I et II) et, d autre part, lorsque 0 < (a) < nf (colonne III). Dans ce dernier cas : soit, au total : NE < < NE + F (N+n). Si, en revanche, (a) > nf, le PUT est abandonné (colonne IV) ;. et, enfin, d une position courte, - (c), sur un PUT sur la firme de prix d exercice égal à nf. La dernière ligne du tableau n 3 permet de vérifier que, quelle que soit la valeur de la firme à l échéance, la valeur totale des bons est bien égale à la somme des trois positions (a), (b) et (-c). La valeur des bons peut facilement être calculée par la méthode binomiale. Il suffit de construire d abord l arbre d évolution de, ensuite celui de C (, t,ne), puis celui de l option composée et, enfin, celui de P (, t,nf). Il ne reste plus, dès lors, qu à agréger la valeur de ces différentes composantes pour obtenir la valeur totale des bons. Plutôt que de construire successivement l arbre de chacun des éléments des bons, il est possible également de construire directement l arbre d évolution de la valeur des bons. La valeur,, de la firme détermine, en effet, la valeur des bons à l échéance. L arbre est ensuite achevé à l aide de la formule binomiale habituelle (4), jusqu à obtenir la valeur présente des bons. 109
18 SECTION III. EVALUATION DES OBLIGATIONS À BONS DE SOUSCRIPTION ORDINAIRES. On envisage une firme qui, jusqu alors, n était financée que par des actions (V = NS) et qui choisit d émettre n obligations bons à de souscription d actions. Chacune de ces obligations constitue, en fait, la juxtaposition d une obligation classique, notée B, et d un bon de souscription ordinaire, noté W. On suppose qu à chaque obligation est associé un bon de souscription donnant droit à une action. K désigne le prix de remboursement de chaque obligation. On admet que la structure des taux est plate et stable au cours du temps. Seul le risque de défaut des émetteurs crée donc des disparités de taux entre les différentes obligations de mêmes caractéristiques présentes sur le marché. Afin de faciliter l analyse, nous supposons que l entreprise ne verse pas de dividende ni de coupon et que le produit de l émission est immédiatement investi dans des actifs risqués assimilables ceux à de la firme. A l émission, on pose = V+n(B+W). Nous envisageons successivement le cas où les bons et les obligations ont la même échéance, puis celui où l échéance des bons est antérieure à celle des obligations. 1. Les bons et les obligations ont la même échéance. A l échéance, trois cas sont envisageables (tableau o n 4). ler cas : La valeur des actions, S*, est supérieure au prix d exercice, E, des bons. Ces derniers sont exercés et les obligations sont intégralement remboursées. Les anciens actionnaires et les titulaires de bons se partagent alors la propriété des actifs de la firme dans la proportion N/(N+n), pour les premiers, et n/(n+n), pour les seconds. On a donc, pour les bons : Soit, après simplification : Il y a donc exercice des bons si III). > NE + nk (colonne 110
19 111
20 2ème cas : La valeur des actions est inférieure au prix d exercice des bons et la valeur des actifs de la firme est supérieure au prix de remboursement des obligations (colonne II : nk < < NE + nk). Les bons ne sont pas exercés et les obligations sont intégralement remboursées. 3ème cas : La valeur des actifs de la firme est insuffisante pour rembourser en totalité les obligations (colonne I : < nk). Il y a défaillance de l émetteur ; les actions sont alors sans valeur. Avant leur échéance, la valeur des bons peut ainsi être assimilée à la fraction n/(n+n) d un CALL européen portant sur l actif et de prix d exercice égal à NE + nk. De même, les actions de la firme peuvent s interpréter comme un portefeuille de CALLS portant sur l actif, tel que : 2. L'échéance des bona est antérieure à celle des obligations. Habituellement, les bons de souscription arrivent à échéance avant les obligations avec lesquelles ils sont émis. Soit t 1 la durée de vie des bons et t 2 celle des obligations, avec t 1 < t 2. Désignons par t 3 le laps de temps compris entre l échéance des bons et celle des obligations, tel que t 3 = t 2 - t 1. Soit 1, S 1, B 1 et W l les valeurs respectives de la firme, des actions, des obligations et des bons en t l, date d échéance des bons. En cas d exercice des bons et après règlement du prix d exercice, les titulaires de bons possèdent une fraction, égale n/(n+n) à, de l actif net de la firme. Soit : D où, après simplification : [3] Il y a donc exercice des bons en t 1 si 1 > NE + nb 1. Le tableau n 5 ci-après résume la valeur, en t l, des titres 112
21 émis par la firme en fonction de la valeur totale de ses actifs. Tableau n 5 Valeur en t 1 Actions Obligations Bons Considérons successivement le cas où les bons sont exercés en t 1, puis celui où ils sont abandonnés par leurs titulaires. ler cas : Les bons sont exercés en t 1 (NE + nb1 < 1 ). On suppose que les fonds résultant de l exercice des bons sont immédiatement investis dans des actifs risqués assimilables ceux à de la firme. On désigne alors par la valeur totale des actifs de la firme avec en t 1, i = 1 + ne. Soit la valeur des actifs de la firme en t 2, date d échéance des obligations. Le tableau n 6 ci-dessous représente la valeur, en t 2, des actions (anciennes et nouvelles) et des obligations en fonction de la valeur de la firme et leur expression en termes d options à la date t 1. Tableau n 6 en t l Valeur en t 2 Expressions, en t 1, en termes d options Actions (N+n) S 1 Obligations nb 1 En remplaçant dans [3] nb 1 par sa valeur donnée par le tableau n 6, il vient, après simplification : 113
22 La condition d exercice des bons en t1 peut donc s écrire également : 2ème cas : Les bons sont abandonnés en t1 ( 1 NE + nb1 ou. Le tableau n 7 ci-dessous donne la valeur, en t2, des actions et des obligations en fonction de la valeur de la firme ainsi que leur expression, en t1, en termes d options. Tableau n 7 en t1 Valeur en t2 Expressions, en t1, en termes d options Actions Obligations NS1 nb1 Le tableau n 8 ci-dessous permet de récapituler la valeur des actions anciennes, des obligations et des bons à la date t1. en to Tableau n 8 Valeur en t1 Actions NS Obligations nb Bons nw Il convient de souligner que la valeur des actions ainsi que celle des obligations en t1 ne sont pas des fonctions continues de 1 au voisinage du point pour lequel. Le cours des actions, comme celui des obligations, sont donc susceptibles d effectuer un saut en t1 au voisinage de ce point. La valeur des bons en to peut ainsi être exprimée en termes d options européennes. Il vient : 114
23 La valeur des bons est donc égale à la fraction n/(n+n) de celle d une option composée, en l occurrence un CALL sur un CALL, exerçable en t 1 et de prix d exercice égal à E (N+n). L actif sous-jacent de l option composée est un CALL, exerçable en t 2, de prix d exercice nk it portant sur le total des actifs de la firme,, tel qu en t 1 : La valeur des bons peut facilement être calculée par la méthode binomiale. Il suffit de construire, tout d abord, l arbre d évolution de jusqu en t 1, puis d en déduire, à l aide - par exemple - de la formule de BLACK et SCHOLES, la valeur de C On détermine ensuite la valeur intrinsèque des bons en t 1, puis, de proche en proche, on calcule, à l aide de la formule binomiale, la valeur des bons en t 0. SECTION IV. EVALUATION DES OBLIGATIONS À BONS DE SOUSCRIPTION REMBOURSABLES. Nous reprenons les mêmes hypothèses que dans la section précédente, à la seule différence que les bons sont ici remboursables au prix F par bon. On suppose que la valeur de remboursement, K, des obligations est supérieure à celle des bons. Afin de faciliter l analyse, nous distinguons à nouveau le cas où les bons et les obligations ont la même échéance, puis celui, plus conforme à la réalité, où les bons arrivent à échéance avant les obligations. 1. Les bons et les obligations ont la même échéance. Comme pour des bons autonomes remboursables, à 1 échéance des bons et des obligations, trois cas sont envisageables (tableau no 9). ler cas : La valeur intrinsèque des bons est supérieure à leur valeur de remboursement ; les bons sont exercés et les obligations sont intégralement remboursées (colonne V). 115
24 116
25 2ème cas : La valeur intrinsèque des bons est inférieure à leur valeur de remboursement ; les bons sont remboursés intégralement. La clause de rachat joue aussi bien lorsque la valeur intrinsèque des bons est nulle (colonne II et III) que lorsqu'elle est positive (colonne IV). On suppose ici que le remboursement des bons prime sur celui des obligations : les bons sont remboursés intégralement, même s'il y a défaillance de l'émetteur pour le remboursement des obligations (colonne II). 3ème cas : La valeur intrinsèque des bons est nulle et donc néces- sairement inférieure à leur valeur de remboursement, mais la valeur des actifs de la firme ne permet pas de rem- bourser intégralement les bons. Il y a aussi défaillance de l'émetteur pour le remboursement des bons (colonne I). Dans ce cas, les obligations comme les actions sont sans valeur. Au total, la valeur des bons est assimilable à celle d'un porte- feuille d'options européennes, tel que : [4] Ce portefeuille résulte :. d'une position longue sur la fraction n/(n+n) d'un CALL sur la firme de prix d'exercice NE + nk et de durée τ ;. d'une position longue sur une option composée, en l'occurrence un PUT, de durée τ, de prix d'exercice égal à nf et dont l'actif sousjacent est la fraction n/(n+n) du CALL précédent ;. et, enfin, d une position courte sur un PUT sur la firme, de durée τ et de prix d'exercice égal à nf. La valeur des actions comme celle des obligations peuvent aussi être exprimées en termes d'options européennes. Il vient : et nb = - NS - nw où NS et nw sont définis par les expressions [4] et [5]. [5] 117
26 2. L'échéance des bons est antérieure à celle des obligations. En t 1, à l échéance des bons, trois cas sont également envisageables (tableau n 10). ler cas : La valeur intrinsèque des bons est supérieure à leur valeur de remboursement : les bons sont exercés (colonne IV). désigne la valeur des actifs de la firme après le règlement du prix d exercice des bons avec, en t1,. On suppose à nouveau que les fonds recueillis lors de l exercice des bons sont immédiatement investis dans des actifs identiques à ceux de la firme. La valeur des bons en t 1 est telle que : où nb 1 désigne la valeur des obligations en t 1. Après simplification, il vient : [6] Une condition nécessaire, mais non suffisante, pour que les bons soient exercés est donc que : [7] Les actions anciennes et nouvelles représentent en t 1 une option sur la firme de prix d exercice nk et de durée de vie égale à τ 3. Soit : La valeur, nb 1, des obligations en t 1 est telle que : En remplaçant dans [6] nb 1 par sa valeur donnée par l expression ci-dessus, après simplification, on obtient pour la valeur des bons en t 1 : [8] En définitive, il y a exercice des bons lorsque leur valeur intrinsèque en t 1 est supérieure à leur valeur de remboursement, soit lorsque nw 1 > nf. En remplaçant nw 1 par son 118
27 119
28 expression donnée par [8], la condition d exercice des bons en t 1 s'écrit encore : 2ème cas : La valeur intrinsèque des bons en t 1 est inférieure à leur valeur de remboursement ; les bons sont remboursés intégralement. La clause de rachat des bons joue à la fois lorsque leur valeur intrinsèque est nulle (colonne II) et lorsqu elle est positive (colonne III). Dans ce dernier cas, la condition [7] nécessaire à l exercice des bons est bien satisfaite, mais elle ne suffit pas ici à l exercice des bons. On a donc, dans ce cas (colonne III) : Dès lors que les actifs de la firme sont suffisants pour rembourser les titulaires de bons, les actions et les obligations conservent une valeur non nulle : la valeur des actions est égale à celle d'un CALL de durée de vie τ 3, de prix d exercice nk et dont le sous-jacent, ", représente les actifs de la firme après remboursement des bons avec, est donc telle que : La valeur nb 1 des obligations en t 1 3ème cas : La valeur des actifs de la firme est insuffisante pour permettre le remboursement intégral des bons : y a défaillance de l émetteur. Les titulaires de bons se partagent les actifs, 1, de la firme. Les actions comme les obligations sont alors sans valeur (colonne I). Au total, la valeur des bons est équivalente à celle d un portefeuille d'options européennes, tel que : Il [9] 120
29 La relation [9] exprime que ce porte feuille d options résulte :. d une position longue sur la fraction n/(n+n) d un CALL composé, exerçable en t 1, de prix d exercice égal à E (N+n) et dont l actif sous-jacent est lui-même un CALL sur la firme, exerçable en 2 t et de prix d exercice égal à nk, avec en ;. d une position longue sur un PUT composé de 3ème degré, exerçable en t 1, de prix d exercice égal à nf et dont l actif sous-jacent est lui-même la fraction n/(n+n) du CALL composé précédent ;. et, enfin, d une position courte sur un PUT sur la firme exerçable en t 1 et de prix d exercice égal à nf. Si cette formulation peut apparaître complexe de prime abord, le calcul de la valeur d une obligation à bon de souscription rembour- sable est, en fait, simple à réaliser par la méthode binomiale, comme le montre l exemple suivant : Considérons une firme dont la valeur des actifs,, est égale à F ; la volatilité de ces actifs s'élève à 30 % en base annuelle. La firme est financée par actions (NS) et 500 obligations (nb) à bons de souscription (nw) remboursables au prix (F) de 60 F par bon. La durée de vie des bons est de 3 ans ; l exercice de chacun d entre eux donne droit à une action contre le paiement d un prix d exercice (E) égal à 100 F. Les obligations sont remboursables au prix (K) de 100 F dans 5 ans. Il s agit d obligations zéro coupon qui ne détachent donc pas de coupons pendant toute leur durée de vie. Par ailleurs, il n est prévu aucun versement de dividende sur un horizon de 5 ans. La structure des taux est plate et égale à 10 % en taux annuel continu. De plus, elle est stable au cours du temps. Soit à iéterminer le prix d équilibre des actions, des obligations et des bons. Avec un pas semestriel, l arbre d'évolution de la valeur des actifs de la firme peut être représenté, jusqu en t 1, de la façon suivante (5). 121
30 Puisqu il n'est prévu ni coupon ni dividende, on peut ici, pour simplifier la présentation, construire l arbre jusqu en t 1 seulement et appliquer, à cette date et pour les différents états de la nature, la formule de BLACK et SCHOLES afin de calculer (tableau n 11) la valeur du CALL C avec. Tableau n 11 F(N+n) > > < < Lorsque C, il y a exercice des bons : on en déduit leur valeur d exercice égale à : Par ailleurs, si les bons ne sont pas exercés, ils sont rembour- sés globalement au prix nf = dès lors que la valeur des actifs de la firme est supérieure à ce montant. En cas de défaillance de l émetteur, la valeur des bons en t 1 est égale à celle, 1, de la firme. L arbre d évolution de la valeur des bons est ensuite construit, 122
31 de proche en proche, à l'aide de la formule binomiale habituelle. On obtient l'arbre suivant : On construit de même l'arbre d'évolution de la valeur des actions et celui de la valeur des obligations. Il vient, pour les actions :... et pour les obligations : On vérifie bien que = NS + nb + nw = F. Si l'on se situe à l'émission et si le cours des actions, 123
32 juste avant l'émission, est égal à : = 49,048 F, il convient d émettre les obligations avec bons de souscription au prix de 101,904 F par obligation, c est-à-dire au prix de : 500 = 55,202 F pour les obligations zéro coupon et de : 500 = 46,702 F pour les bons remboursables. Dans ces conditions, le cours des actions, toutes choses restant égales par ailleurs, n est pas affecté par 1 émission. Compte tenu du risque de défaillance de l émetteur, le rendement actuariel des obligations zéro coupon s établit à 11,88 % (6), soit sensiblement au-dessus du taux sans risque. SECTION V. EVALUATION EN PRÉSENCE DE DIVIDENDES ET/OU DE COUPONS. Nous avons admis, jusqu ici, l absence de détachement de dividende et/ou de coupon pendant la durée de vie des bons et, le cas échéant, des obligations. Incontestablement, l existence de dividendes et de coupons complique sensiblement l évaluation des bons. Considérons la situation la plus complexe où l émission de bons est associée à celle d obligations. Il convient, dans ce cas, de distinguer deux phases dans la procédure d évaluation. La première concerne la période de vie des bons, la seconde celle qui débute à l échéance des bons et se termine à celle des obligations. L existence de distribution de dividendes et de coupons au cours de cette seconde phase de l évaluation ne perturbe guère la procédure de calcul dans la mesure où le modèle de BLACK et SCHOLES, utilisé pour calculer en t 1 la valeur de différentes options européennes sur la firme, convient également en présence de distributions. Il suffit en effet d introduire dans le modèle le cours du sous-jacent amputé de la valeur actuelle des distributions. En revanche, la présence de distributions ralentit notablement la premiére phase de 1'évaluation. Si en effet, on admet que les dividendes par actions sont fixes et prédéterminés, les dividendes et/ou les coupons étant prélevés sur les actifs de la firme, le processus d évolution binomiale de ceux-ci est perturbé et leur arbre d évolution éclate à chaque date de distribution multipliant le nombre des branches. Certes, la procédure binomiale demeure applicable dans tous les cas de figure, mais le temps de 124
33 calcul est considérablement accru, surtout lorsque le nombre des distributions est important. Si la durée des calculs est jugée par trop excessive, il devient nécessaire de simplifier la procédure. A cet effet, plusieurs méthodes peuvent être préconisées. Une première approche consiste à supposer que les dividendes et les coupons sont prélevés, pendant la durée de vie des bons, sur une réserve de trésorerie constituée lors de 1 émission et spécialement affectée au règlement de ces distributions. Cette réserve de trésorerie peut, bien sûr, être placée au taux sans risque dans l attente de son utilisation. L existence de cette réserve de trésorerie autorise une évolution binomiale classique des autres actifs de la firme, sans explosion multiple de l arbre, de telle sorte que la procédure de calcul demeure aussi rapide qu en l absence de distribution, même si l on admet - par analogie avec les CALLS américains - qu il peut parfois être avantageux au titulaire d un bon d exercer celui-ci avant son échéance limite, à la fin d un exercice comptable, soit juste avant que les actions obtenues par exercice du bon perdent leur droit au prochain dividende. Une seconde solution, celle de SCHRODER (1988), peut également être envisagée. Cette méthode approchée, dont nous nous sommes inspirés dans la première section, a été spécialement conçue par son auteur pour résoudre le problème de 1 évaluation d une option en présence d un ou plusieurs dividendes de montant fixe et prédéterminé. Son application consiste ici à construire l arbre d évolution de la valeur de la firme en négligeant les distributions réalisées. L arbre d évolution de la valeur des options sur la firme est ensuite construit, pas à pas, en prenant soin, à chaque date de distribution de dividendes et/ou de coupons, de corriger les valeurs obtenues par calcul en retranchant le montant distribué multiplié par le coefficient delta des options. L évaluation d une option composée par la méthode de SCHRODER est possible, mais sensiblement plus délicate dans la mesure où elle implique une double correction, celle de l'option sur la firme d abord, puis celle de l option sur l option précédente ensuite. En tout état de cause, lorsqu un bon est équivalent à un portefeuille d options - simples ou composées - sur la firme, la mise en oeuvre de la méthode de SCHRODER implique 1 évaluation séparée de chaque option. 125
34 CONCLUSION Nous avons montré, dans cet article, que la valeur d un bon de souscription d actions peut toujours être exprimée en termes d options sur la firme émettrice, mais avec un degré de complexité variable selon la nature de l émission. Partant de l analyse de BLACK et SCHOLES selon laquelle un bon autonome ordinaire constitue un CALL simple sur la firme, nous avons montré que, de la destination des fonds recueillis lors de l émission des bons, dépend, d une part, le prix d exercice de l option et, d autre part, la stabilité de la volatilité des actifs de la firme. Poursuivant par l analyse de bons plus complexes, nous avons ensuite démontré que la valeur de bons autonomes remboursables ainsi que celle de bons ordinaires, mais émis en même temps que des obligations, peuvent être exprimées en termes d options sur options ou, en d autres termes, d options composées de deuxiéme degré. Par ailleurs, nous avons montré que des bons remboursables, dont l émission est associée à celle d obligations classiques, sont assimilables à un portefeuille d options complexes incluant des options composées de deuxième (options sur options) et de troisième degré (options sur options sur options). Enfin, plusieurs propositions ont été faites permettant, pour les unes, de simplifier la procédure de calcul de la valeur des bons et, pour les autres, de traiter le problème posé par le détachement de dividendes et/au de coupons. 126
35 NOTES (1) Les actions nouvelles obtenues par exercice de bons de souscription donnent droit aux dividendes versés au titre de l exercice comptable au cours duquel elles ont été souscrites. Elles ne sont donc assimilables aux actions anciennes que dans la mesure où elles sont pleine jouissance et, par conséquent, donnent droit au prochain dividende. Dans le cas contraire, elles ne sont assimilables aux actions anciennes qu après le détachement du prochain dividende annuel. (2) A chaque étape du processus binomial défini par COX, ROSS et RUBINSTEIN (1979), la valeur de la firme est affectée par un coefficient multiplicatif u, à la hausse, et d, à la baisse, tels la durée de vie de l option étant divisée en n périodes. Dans l exemple, u = 1,08507 et d = 0, (3) Si C désigne la valeur d une option en début de période et c u et c d les valeurs possibles de l option en fin de période, on démontre que Connaissant la valeur intrinsèque de l option à l échéance, on obtient, de proche en proche, la valeur de l option à la date présente. Dans l exemple, = 1,0168 et p = 0, On trouvera une description détaillée de la formule binomiale dans Finance: options et obligations convertibles (1987). (4) Comme dans le cas d une option, le raisonnement d arbitrage conduit, pour un bon, à la formule d évaluation suivante : où W désigne la valeur du bon en début de période et où w u et w d désignent les valeurs possibles du bon en fin de période. (5) Les caractéistiques du processus binomial sont, ici, les suivantes : u = 1,23631 ; d = 0,80886, = et p = 0, (6) = e -5R R = 11,88 %, R désignant le taux actuariel des obligations zéro coupon exprimé en taux annuel continu. 127
36 REFERENCES J.C. AUGROS. Finance : options et obligations convertibles. 2ème édition. Economica, F. BLACK et M. SCHOLES. The Pricing of options and Corporate Liabilities, Journal of Political Economy, Mai/Juin 1973, p G. CONSTANTINIDES et R. ROSENTHAL. Strategic Analysis of the Competitive Exercice of Certain Financial options", Journal of Economic Theory, 32, Février 1984, p J.C. COX, S.A. ROSS et M. RUBINSTEIN. "Option Pricing : A Simplified Approach, Journal of Financial Economics, 7, Septembre 1979, p J.C. COX et M. RUBINSTEIN. options Markets. Prentice Hall, Inc., Englewood Cliffs, New Jersey, M. CROUHY et D. GALAI. "Warrant Valuation : A Binomial Approach. ler Colloque International AFIR, Paris, Avril D.C. EMANUEL. "Warrant Valuation and Exercice Strategy", Journal of Financial Economics, 12, 1983, p D. GALAI et M.I. SCHNELLER. "Pricing of Warrants and the Value of the Firm", Journal of Finance, Décembre 1978, p M. SCHRODER. "Adapting the Binomial Model to Value options on Assets with Fixed-Cash Payouts", Financial Analysts Journal, Novembre/ Décembre 1988, p C. SPATT et F.P. STERBENZ. "Warrant Exercice, Dividends and Reinvestment Policy, Journal of Finance, Juin 1988, p
Norme comptable internationale 33 Résultat par action
Norme comptable internationale 33 Résultat par action Objectif 1 L objectif de la présente norme est de prescrire les principes de détermination et de présentation du résultat par action de manière à améliorer
Les obligations. S. Chermak infomaths.com
Les obligations S. Chermak Infomaths.com Saïd Chermak infomaths.com 1 Le marché des obligations est un marché moins médiatique mais tout aussi important que celui des actions, en terme de volumes. A cela
Options et Volatilité (introduction)
SECONDE PARTIE Options et Volatilité (introduction) Avril 2013 Licence Paris Dauphine 2013 SECONDE PARTIE Philippe GIORDAN Head of Investment Consulting +377 92 16 55 65 [email protected]
TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options
Université de Lorraine Modélisation Stochastique Master 2 IMOI 2014-2015 TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options 1 Les options Le but de ce
TURBOS WARRANTS CERTIFICATS. Les Turbos Produits à effet de levier avec barrière désactivante. Produits non garantis en capital.
TURBOS WARRANTS CERTIFICATS Les Turbos Produits à effet de levier avec barrière désactivante. Produits non garantis en capital. 2 LES TURBOS 1. Introduction Que sont les Turbos? Les Turbos sont des produits
Exercice du cours Gestion Financière à Court Terme : «Analyse d un reverse convertible»
Exercice du cours Gestion Financière à Court Terme : «Analyse d un reverse convertible» Quand la trésorerie d une entreprise est positive, le trésorier cherche le meilleur placement pour placer les excédents.
Analystes financiers (Mai 2006) 3
Analystes financiers (Mai 2006) 3 Tous les éléments de produits et de charges constatés au cours d'un exercice, notamment la charge d'impôt, les éléments extraordinaires entrent dans la détermination du
Qu est-ce-qu un Warrant?
Qu est-ce-qu un Warrant? L epargne est investi dans une multitude d instruments financiers Comptes d epargne Titres Conditionnel= le detenteur à un droit Inconditionnel= le detenteur a une obligation Obligations
CERTIFICATS TURBOS INFINIS BEST Instruments dérivés au sens du Règlement Européen 809/2004 du 29 avril 2004
CERTIFICATS TURBOS INFINIS BEST Instruments dérivés au sens du Règlement Européen 809/2004 du 29 avril 2004 Emetteur : BNP Paribas Arbitrage Issuance B.V. Garant du remboursement : BNP Paribas S.A. POURQUOI
Les valeurs mobilières. Les actions 3. Les droits et autres titres de capital 5. Les obligations 6. Les SICAV et FCP 8
Les actions 3 Les droits et autres titres de capital 5 Les obligations 6 Les SICAV et FCP 8 2 Les actions Qu est-ce qu une action? Au porteur ou nominative, quelle différence? Quels droits procure-t-elle
Nature et risques des instruments financiers
1) Les risques Nature et risques des instruments financiers Définition 1. Risque d insolvabilité : le risque d insolvabilité du débiteur est la probabilité, dans le chef de l émetteur de la valeur mobilière,
Chapitre 8 L évaluation des obligations. Plan
Chapitre 8 L évaluation des obligations Plan Actualiser un titre à revenus fixes Obligations zéro coupon Obligations ordinaires A échéance identique, rendements identiques? Évolution du cours des obligations
Valorisation d es des options Novembre 2007
Valorisation des options Novembre 2007 Plan Rappels Relations de prix Le modèle binomial Le modèle de Black-Scholes Les grecques Page 2 Rappels (1) Définition Une option est un contrat financier qui confère
IAS 39 ET ÉVALUATION AU COÛT AMORTI : PRINCIPES ET APPLICATIONS
Réflexion IAS 39 ET ÉVALUATION AU COÛT AMORTI : PRINCIPES ET APPLICATIONS 22 Pierre SCHEVIN Professeur à l Université Robert Schuman de Strasbourg et à l IECS Diplômé d expertise comptable La norme IAS
Les Turbos. Guide Pédagogique. Produits à effet de levier avec barrière désactivante. Produits présentant un risque de perte en capital
Les Turbos Guide Pédagogique Produits à effet de levier avec barrière désactivante Produits présentant un risque de perte en capital Les Turbos 2 Sommaire Introduction : Que sont les Turbos? 1. Les caractéristiques
TURBOS JOUR : DES EFFETS DE LEVIER DE x20, x50, x100 jusqu à x300!
TURBOS Jour TURBOS JOUR : DES EFFETS DE LEVIER DE x20, x50, x100 jusqu à x300! PRODUITS À EFFET DE LEVIER PRéSENTANT UN RISQUE DE PERTE DU CAPITAL Société Générale propose une nouvelle génération de Turbos,
CERTIFICATS TURBOS Instruments dérivés au sens du Règlement Européen 809/2004 du 29 avril 2004
CERTIFICATS TURBOS Instruments dérivés au sens du Règlement Européen 809/2004 du 29 avril 2004 Emétteur : BNP Paribas Arbitrage Issuance B.V. Garant du remboursement : BNP Paribas S.A. POURQUOI INVESTIR
MATHS FINANCIERES. [email protected]. Projet OMEGA
MATHS FINANCIERES [email protected] Projet OMEGA Sophia Antipolis, septembre 2004 1. Introduction : la valorisation de contrats optionnels Options d achat et de vente : Call et Put Une option
Son Organisation, son Fonctionnement et ses Risques
La Bourse Son Organisation, son Fonctionnement et ses Risques Le Marché Financier a un double rôle : apporter les capitaux nécessaires au financement des investissements des agents économiques et assurer
Théorie Financière 8 P. rod i u t its dé dérivés
Théorie Financière 8P 8. Produits dit dérivés déié Objectifsdelasession session 1. Définir les produits dérivés (forward, futures et options (calls et puts) 2. Analyser les flux financiers terminaux 3.
Turbos & Turbos infinis
& Turbos infinis L effet de levier en toute simplicité PRODUITS À EFFET DE LEVIER PRESENTANT UN RISQUE DE PERTE DU CAPITAL Avertissement : «PRODUITS A EFFET DE LEVIER PRESENTANT UN RISQUE DE PERTE DU CAPITAL»
Chapitre 2 : l évaluation des obligations
Chapitre 2 : l évaluation des obligations 11.10.2013 Plan du cours Flux monétaires, prix et rentabilité Bibliographie: caractéristiques générales Berk, DeMarzo: ch. 8 obligations zéro-coupon obligations
S informer sur. Les obligations
S informer sur Les obligations Octobre 2012 Autorité des marchés financiers Les obligations Sommaire Qu est-ce qu une obligation? 03 Quel est le rendement? 04 Quels sont les risques? 05 Quels sont les
Ne pas diffuser aux Etats-Unis, au Canada ni au Japon EMISSION D OBLIGATIONS À BONS DE SOUSCRIPTION D ACTIONS REMBOURSABLES
Lyon, le 23 février 2004 Ne pas diffuser aux Etats-Unis, au Canada ni au Japon EMISSION D OBLIGATIONS À BONS DE SOUSCRIPTION D ACTIONS REMBOURSABLES CE COMMUNIQUE NE CONSTITUE PAS ET NE SAURAIT ETRE CONSIDERE
V I E L & C i e Société anonyme au capital de 15 423 348 Siège social : 253 Boulevard Péreire 75017 Paris RCS Paris 622 035 749
V I E L & C i e Société anonyme au capital de 15 423 348 Siège social : 253 Boulevard Péreire 75017 Paris RCS Paris 622 035 749 TEXTE DES RESOLUTIONS PROPOSEES A L ASSEMBLEE GENERALE ORDINAIRE ANNUELLE
PAR_20141217_09543_EUR DATE: 17/12/2014. Suite à l'avis PAR_20141119_08654_EUR
CORPORATE EVENT NOTICE: Emission avec maintien du droit préférentiel de souscription, d obligations convertibles en actions ordinaires nouvelles assorties de bons de souscription d action («OCABSA») -
PRIME D UNE OPTION D ACHAT OU DE VENTE
Université Paris VII - Agrégation de Mathématiques François Delarue) PRIME D UNE OPTION D ACHAT OU DE VENTE Ce texte vise à modéliser de façon simple l évolution d un actif financier à risque, et à introduire,
Note informative aux clients de la BANQUE RAIFFEISEN et des CAISSES RAIFFEISEN affiliées en relation avec les produits financiers offerts
Note informative aux clients de la BANQUE RAIFFEISEN et des CAISSES RAIFFEISEN affiliées en relation avec les produits financiers offerts Cher client, chère cliente, La BANQUE RAIFFEISEN tient à vous informer
Le portefeuille-titres dans les établissements bancaires
NC 25 Le portefeuille-titres dans les établissements bancaires Objectif 01. Dans le cadre de ses activités courantes, la banque peut affecter une partie de ses ressources à la gestion d'un portefeuille-titres.
COMMISSION D ORGANISATION ET DE SURVEILLANCE DES OPÉRATIONS DE BOURSE
COMMISSION D ORGANISATION ET DE SURVEILLANCE DES OPÉRATIONS DE BOURSE INVESTIR EN BOURSE Sommaire 1 Introduction 2 Qu est-ce que la Bourse des valeurs mobilières? 3 Quels sont les droits liés aux valeurs
LISTE D EXERCICES 2 (à la maison)
Université de Lorraine Faculté des Sciences et Technologies MASTER 2 IMOI, parcours AD et MF Année 2013/2014 Ecole des Mines de Nancy LISTE D EXERCICES 2 (à la maison) 2.1 Un particulier place 500 euros
ACTIONS ET OBLIGATIONS Les placements financiers en quelques mots
Aperçu des actions et des obligations Qu est-ce qu une action? Une action est une participation dans une entreprise. Quiconque détient une action est copropriétaire (actionnaire) de l entreprise (plus
Problèmes de crédit et coûts de financement
Chapitre 9 Problèmes de crédit et coûts de financement Ce chapitre aborde un ensemble de préoccupations devenues essentielles sur les marchés dedérivésdecréditdepuislacriseducréditde2007.lapremièredecespréoccupations
RISQUE SOUVERAIN ET INDEMNISATION : LE CAS DES EMPRUNTS RUSSES (1919-1997)
RISQUE SOUVERAIN ET INDEMNISATION : LE CAS DES EMPRUNTS RUSSES (1919-1997) Jean-Claude AUGROS Nicolas LEBOISNE Ayant besoin d argent frais pour se redresser, la Russie vient de faire son retour sur le
Théorie Financière 2. Valeur actuelle Evaluation d obligations
Théorie Financière 2. Valeur actuelle Evaluation d obligations Objectifs de la session. Comprendre les calculs de Valeur Actuelle (VA, Present Value, PV) Formule générale, facteur d actualisation (discount
ING Turbos Infinis. Avantages des Turbos Infinis Potentiel de rendement élevé. Pas d impact de la volatilité. La transparence du prix
ING Turbos Infinis Produit présentant un risque de perte en capital et à effet de levier. Les Turbos sont émis par ING Bank N.V. et sont soumis au risque de défaut de l émetteur. ING Turbos Infinis Les
PRODUITS DE BOURSE GUIDE DES WARRANTS. Donnez du levier à votre portefeuille! Produits non garantis en capital et à effet de levier
GUIDE DES WARRANTS Donnez du levier à votre portefeuille! PRODUITS DE BOURSE www.produitsdebourse.bnpparibas.com Produits non garantis en capital et à effet de levier COMMENT LES WARRANTS FONCTIONNENT-ILS?
LES TURBOS INFINIS. Investir avec un levier adapté à votre stratégie!
LES TURBOS INFINIS Investir avec un levier adapté à votre stratégie! Produits présentant un risque de perte en capital, à destination d investisseurs avertis. Émetteur : BNP Paribas Arbitrage Issuance
Probabilités III Introduction à l évaluation d options
Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un
GUIDE DES WARRANTS. Donnez du levier à votre portefeuille!
GUIDE DES WARRANTS Donnez du levier à votre portefeuille! Instrument dérivé au sens du Règlement Européen 809/2004 du 29 avril 2004 Produits non garantis en capital à effet de levier EN SAVOIR PLUS? www.listedproducts.cib.bnpparibas.be
RISQUES ET NATURE SPECIFIQUES DES PRINCIPAUX INSTRUMENTS FINANCIERS
RISQUES ET NATURE SPECIFIQUES DES PRINCIPAUX INSTRUMENTS FINANCIERS La présente section vise à vous communiquer, conformément à la Directive, une information générale relative aux caractéristiques des
Table des matières Schéma E - Emprunts
Table des matières Schéma E - Emprunts Table des matières Schéma E - Emprunts 1 INDICATIONS RELATIVES À L'ÉMETTEUR... 1 1.1 Indications générales... 1 1.1.1 Raison sociale, siège social et siège administratif...
DIPLOME D'ETUDES APPROFONDIES EN ECONOMIE ET FINANCE THEORIE DES MARCHES FINANCIERS. Semestre d hiver 2001-2002
Département d économie politique DIPLOME D'ETUDES APPROFONDIES EN ECONOMIE ET FINANCE THEORIE DES MARCHES FINANCIERS Semestre d hiver 2001-2002 Professeurs Marc Chesney et François Quittard-Pinon Séance
WARRANTS TURBOS CERTIFICATS. Les Warrants. Découvrir et apprendre à maîtriser l effet de levier
WARRANTS TURBOS CERTIFICATS Les Warrants Découvrir et apprendre à maîtriser l effet de levier 2 WARRANTS Qu est-ce qu un Warrant? Un warrant est une option cotée en Bourse. Emis par des établissements
ERRATA ET AJOUTS. ( t) 2 s2 dt (4.7) Chapitre 2, p. 64, l équation se lit comme suit : Taux effectif = 1+
ERRATA ET AJOUTS Chapitre, p. 64, l équation se lit comme suit : 008, Taux effectif = 1+ 0 0816 =, Chapitre 3, p. 84, l équation se lit comme suit : 0, 075 1 000 C = = 37, 50$ Chapitre 4, p. 108, note
Questions fréquentes Plan de restructuration
Questions fréquentes Plan de restructuration 1. Quel est l objectif du plan de restructuration proposé? 2. D où vient cette dette de 126 millions d euros due le 1 er janvier 2015? 3. Y avait-il d autres
RÉSUMÉ DESCRIPTION GENERALE DES ÉMETTEURS LA BANQUE ET LE GROUPE
RÉSUMÉ Ce résumé a été rédigé conformément à l'article 5(2) de la directive sur les prospectus (directive 2003/71/CE) (la «Directive Prospectus») et doit être considéré comme une introduction au Prospectus
Calcul et gestion de taux
Calcul et gestion de taux Chapitre 1 : la gestion du risque obligataire... 2 1. Caractéristique d une obligation (Bond/ Bund / Gilt)... 2 2. Typologie... 4 3. Cotation d une obligation à taux fixe... 4
Journal officiel de l'union européenne
20.5.2014 L 148/29 RÈGLEMENT DÉLÉGUÉ (UE) N o 528/2014 DE LA COMMISSION du 12 mars 2014 complétant le règlement (UE) n o 575/2013 du Parlement européen et du Conseil en ce qui concerne les normes techniques
Le modèle de Black et Scholes
Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un
CONVOCATIONS BOURSE DIRECT
CONVOCATIONS ASSEMBLÉES D'ACTIONNAIRES ET DE PORTEURS DE PARTS BOURSE DIRECT Société anonyme au capital de 13 988 845,75 uros Siège social : 253, boulevard Pereire, 75017 Paris. 408 790 608 R.C.S. Paris.
Manuel de référence Options sur actions
Manuel de référence Options sur actions Groupe TMX Actions Bourse de Toronto Bourse de croissance TSX Equicom Produits dérivés Bourse de Montréal CDCC Marché climatique de Montréal Titres à revenu fixe
Pratique des options Grecs et stratégies de trading. F. Wellers
Pratique des options Grecs et stratégies de trading F. Wellers Plan de la conférence 0 Philosophie et structure du cours 1 Définitions des grecs 2 Propriétés des grecs 3 Qu est ce que la volatilité? 4
Correction de l exercice 2 du quiz final du cours Gestion financière (2010-2011 T2) : «Augmentation de capital de Carbone Lorraine»
Correction de l exercice 2 du quiz final du cours Gestion financière (2010 2011 T2) : «Augmentation de capital de Carone Lorraine» Question 1 : déterminer formellement la valeur du droit préférentiel de
Recueil des formulaires et des instructions à l'intention des institutions de dépôts
Recueil des formulaires et des instructions à l'intention des institutions de dépôts RELEVÉ DES MODIFICATIONS Risque de taux d'intérêt et de concordance des échéances Numéro de la modification Date d établissement
Les Obligations Convertibles (introduction)
TROISIEME PARTIE Les Obligations Convertibles (introduction) Avril 2011 Licence Paris Dauphine 2011 Sommaire LES OBLIGATIONS CONVERTIBLES Sect 1 Présentation, définitions Sect 2 Eléments d analyse et typologie
Manuel d Utilisateur - Logiciel ModAFi. Jonathan ANJOU - Maud EYZAT - Kévin NAVARRO
Manuel d Utilisateur - Logiciel ModAFi Jonathan ANJOU - Maud EYZAT - Kévin NAVARRO Grenoble, 12 juin 2012 Table des matières 1 Introduction 3 2 Modèles supportés 3 2.1 Les diérents modèles supportés pour
BROCHURE INSTRUMENTS FINANCIERS PROPOSÉS RISQUES ET NATURE SPECIFIQUES DES PRINCIPAUX INSTRUMENTS FINANCIERS
BROCHURE INSTRUMENTS FINANCIERS PROPOSÉS RISQUES ET NATURE SPECIFIQUES DES PRINCIPAUX INSTRUMENTS FINANCIERS La présente vise à vous communiquer, conformément à la Directive MiFID, une information générale
en juste valeur par résultat Placements détenus jusqu à échéance
Normes IAS 32 / Instruments financiers : Présentation Normes IAS 39 / Instruments financiers : Comptabilisation et Evaluation Normes IFRS 7 / Instruments financiers : Informations à fournir Introduction
PLAN DE WARRANTS 2014 EMISSION ET CONDITIONS D EXERCICE
PLAN DE WARRANTS 2014 EMISSION ET CONDITIONS D EXERCICE Offre de maximum 100.000 de droits de souscription ("Warrants") réservés aux Bénéficiaires du Plan de Warrants de la Société Les acceptations dans
Hedging delta et gamma neutre d un option digitale
Hedging delta et gamma neutre d un option digitale Daniel Herlemont 1 Introduction L objectif de ce projet est d examiner la couverture delta-gamma neutre d un portefeuille d options digitales Asset-Or-Nothing
COMMISSION DES NORMES COMPTABLES. Avis CNC 2012/3 Le traitement comptable des plans d'options sur actions. Avis du 11 janvier 2012
COMMISSION DES NORMES COMPTABLES Avis CNC 2012/3 Le traitement comptable des plans d'options sur actions I. Introduction Avis du 11 janvier 2012 1. La loi du 26 mars 1999 relative au plan d action belge
BANQUE NATIONALE DE PARIS
BANQUE NATIONALE DE PARIS Société anonyme au capital de F 1.632.580.000 Siège social : 16, boulevard des Italiens, 75009 PARIS R.C.S. PARIS B 662 042 449 fiche d'information ÉMISSION DE F 2.000.000.000
DISCOUNTED CASH-FLOW
DISCOUNTED CASH-FLOW Principes généraux La méthode des flux futurs de trésorerie, également désignée sous le terme de Discounted Cash Flow (DCF), est très largement admise en matière d évaluation d actif
Principes généraux de l imposition des contrats d assurance-vie au Canada
Principes généraux de l imposition des contrats d assurance-vie au Canada Janvier 2015 L assurance-vie joue un rôle de plus en plus important dans la planification financière en raison du patrimoine croissant
Titres RBC liés à des obligations de sociétés non protégés avec remboursement de capital, série 1F
RBC Marchés des Juin 2014 TITRES LIÉS À DES TITRES D EMPRUNT I SOLUTIONS DE PLACEMENT GLOBALES RBC Titres RBC liés à des obligations de sociétés non protégés avec remboursement de capital, série 1F Durée
Fondements de Finance
Programme Grande Ecole Fondements de Finance Chapitre 5 : L évaluation des actions Cours proposé par Fahmi Ben Abdelkader Version étudiants Mars 2012 Valorisation des actifs financiers 1 Les taux d intérêt
I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème.
I. Introduction. 1. Objectifs. Le but de ces quelques séances est d introduire les outils mathématiques, plus précisément ceux de nature probabiliste, qui interviennent dans les modèles financiers ; nous
Méthodes de la gestion indicielle
Méthodes de la gestion indicielle La gestion répliquante : Ce type de gestion indicielle peut être mis en œuvre par trois manières, soit par une réplication pure, une réplication synthétique, ou une réplication
TREETOP ASSET MANAGEMENT BELGIUM
TREETOP ASSET MANAGEMENT BELGIUM APERÇU DES CARACTERISTIQUES ET RISQUES ESSENTIELS DES INSTRUMENTS FINANCIERS Ce document ne prétend pas décrire tous les risques inhérents aux investissements en instruments
- 03 - TABLEAU DE FINANCEMENT - APPROFONDISSEMENT
- 03 - TABLEAU DE FINANCEMENT - APPROFONDISSEMENT Objectif(s) : o Approfondissement du tableau de financement : Pré-requis : variation du Fonds de Roulement Net Global (F.R.N.G.) ; variation du Besoin
Extrait du Bulletin Officiel des Finances Publiques-Impôts DIRECTION GÉNÉRALE DES FINANCES PUBLIQUES
Extrait du Bulletin Officiel des Finances Publiques-Impôts DIRECTION GÉNÉRALE DES FINANCES PUBLIQUES Identifiant juridique : BOI-BIC-PDSTK-10-20-70-50-20120912 DGFIP BIC - Produits et stocks - Opérations
Formes d investissement: points forts et points faibles
Formes d investissement: points forts et points faibles Ce document est un extrait de la brochure Formes d investissement : points forts et points faibles et comprend les descriptions de produits de différents
TURBOS Votre effet de levier sur mesure
TURBOS Votre effet de levier sur mesure Société Générale attire l attention du public sur le fait que ces produits, de par leur nature optionnelle, sont susceptibles de connaître de fortes fluctuations,
Comment évaluer une banque?
Comment évaluer une banque? L évaluation d une banque est basée sur les mêmes principes généraux que n importe quelle autre entreprise : une banque vaut les flux qu elle est susceptible de rapporter dans
RÉSUMÉ (TRADUCTION) Credit Suisse International
RÉSUMÉ (TRADUCTION) Credit Suisse International Notes zéro coupon, liées à un indice, remboursables automatiquement, d un montant maximum total de EUR 100.000.000, échéance 2011, Série NCSI 2006 469 ISIN
SOMMAIRE. Bulletin de souscription
SOMMAIRE Flash-emprunt subordonné «Tunisie Leasing 2011-2» Chapitre 1 : Responsables de la note d opération 1.1. Responsables de la note d opération 1.2. Attestation des responsables de la note d opération
RENDEMENT ACTION BOUYGUES JUILLET 2015
RENDEMENT ACTION BOUYGUES JUILLET 2015 Titres de créance présentant un risque de perte en capital en cours de vie et à l échéance 1 Durée d investissement conseillée : 8 ans (hors cas de remboursement
Ce communiqué ne peut être distribué aux Etats-Unis d Amérique, en Australie, au Canada ou au Japon
AVANQUEST SOFTWARE Société anonyme à Conseil d administration au capital de 13.883.964 euros Siège social : Immeuble Vision Défense, 89/91 boulevard National, 92257 La Garenne Colombes Cedex 329.764.625
Propriétés des options sur actions
Propriétés des options sur actions Bornes supérieure et inférieure du premium / Parité call put 1 / 1 Taux d intérêt, capitalisation, actualisation Taux d intéret composés Du point de vue de l investisseur,
BANQUE POPULAIRE LOIRE ET LYONNAIS
Rapport Annuel 2011 Rapport du Conseil d Administration BANQUE POPULAIRE LOIRE ET LYONNAIS Assemblée Générale du 26 Juin 2013 BANQUE POPULAIRE LOIRE ET LYONNAIS RAPPORT DU CONSEIL D ADMINISTRATION A L
SUCCÈS DU PLACEMENT DE 287,5 MILLIONS D EUROS D OCEANE ILIAD À ÉCHÉANCE 1 ER JANVIER 2012, SUSCEPTIBLE D ÊTRE PORTÉ À 330,6 MILLIONS D EUROS.
Société anonyme au capital de 12.000.000 euros Siège social : 8, rue de la Ville l Évêque, 75 008 Paris 342 376 332 RCS Paris SUCCÈS DU PLACEMENT DE 287,5 MILLIONS D EUROS D OCEANE ILIAD À ÉCHÉANCE 1 ER
CAISSE REGIONALE DU CREDIT AGRICOLE MUTUEL D AQUITAINE
CAISSE REGIONALE DU CREDIT AGRICOLE MUTUEL D AQUITAINE Eléments d appréciation du prix de rachat des CCI émis par la CRCAM d Aquitaine dans le cadre de l approbation par l'assemblée générale des sociétaires,
Guide de l investisseur BANKING - INSURANCE - LEASING. Let s talk about your future
Guide de l investisseur BANKING - INSURANCE - LEASING Let s talk about your future L objectif de cette brochure est de présenter brièvement les principaux types de produits négociables sur les marchés
SECTION 5 : OPERATIONS SUR PRODUITS DERIVES
SECTION 5 : OPERATIONS SUR PRODUITS DERIVES 1 - DEFINITION DES PRODUITS DERIVES 2 - DEFINITIONS DES MARCHES 3 - USAGE DES CONTRATS 4 - COMPTABILISATION DES OPERATIONS SUR PRODUITS DERIVES 51 SECTION 5
Inside Secure. (Assemblée générale du 26 juin 2014 Résolution n 21)
Rapport des commissaires aux comptes sur l émission et l attribution réservée de bons de souscription d actions avec suppression du droit préférentiel de souscription (Assemblée générale du 26 juin 2014
I. Risques généraux s appliquant à l ensemble des instruments financiers
I. Risques généraux s appliquant à l ensemble des instruments financiers 1. Risque de liquidité Le risque de liquidité est le risque de ne pas pouvoir acheter ou vendre son actif rapidement. La liquidité
Brochure d'information sur les options
Brochure d'information sur les options Introduction La présente brochure explique succinctement le fonctionnement des options et se penche sur les risques éventuels liés au négoce d options. Le glossaire
Qu est-ce que la Bourse?
Qu est-ce que la Bourse? Une bourse est un marché sur lequel se négocient des valeurs mobilières. Les émetteurs y offrent des titres que les investisseurs achètent ; ces derniers financent alors les agents
Mathématiques pour la finance Définition, Evaluation et Couverture des Options vanilles Version 2012
Mathématiques pour la finance Définition, Evaluation et Couverture des Options vanilles Version 2012 Pierre Andreoletti [email protected] Bureau E15 1 / 20 Objectifs du cours Définition
POLITIQUE 4.1 PLACEMENTS PRIVÉS
POLITIQUE 4.1 PLACEMENTS PRIVÉS Champ d application de la politique Il y a placement privé lorsqu un émetteur distribue des titres en contrepartie d espèces aux termes des dispenses de prospectus ou des
PARTIE A STATUTAIRE PRESENTATION SUCCINCTE : INFORMATIONS CONCERNANT LES PLACEMENTS ET LA GESTION : OPCVM conforme aux normes européennes
SG MONETAIRE EURO PROSPECTUS SIMPLIFIE OPCVM conforme aux normes européennes PARTIE A STATUTAIRE PRESENTATION SUCCINCTE : DENOMINATION : SG MONETAIRE EURO FORME JURIDIQUE : SICAV de droit français COMPARTIMENTS/NOURRICIER
4,50 % Obligation Crédit Mutuel Arkéa Mars 2020. par an (1) pendant 8 ans. Un placement rémunérateur sur plusieurs années
Obligation Crédit Mutuel Arkéa Mars 2020 4,50 % par an (1) pendant 8 ans Souscrivez du 30 janvier au 24 février 2012 (2) La durée conseillée de l investissement est de 8 ans. Le capital est garanti à l
Processus et stratégie d investissement
FCP Bryan Garnier Long Short Equity Recherche de performance par le «stock picking» Processus et stratégie d investissement FCP Bryan Garnier Long Short Equity TABLE DES MATIERES Introduction 2 I Méthodologie
Chapitre 2 : Détermination de l'ensemble consolidé
Chapitre 2 : Détermination de l'ensemble consolidé Introduction I - Degrés de dépendance : Critères d'appréciation du contrôle A Droits de vote B Eléments de fait TD1 - Pourcentage de droits de vote II
Certificats TURBO. Bénéficiez d un effet de levier en investissant sur l indice CAC 40! Produits non garantis en capital.
Certificats TURBO Bénéficiez d un effet de levier en investissant sur l indice CAC 40! Produits non garantis en capital. www.produitsdebourse.bnpparibas.com Les Certificats Turbo Le Certificat Turbo est
Guide de l investisseur
Guide de l investisseur Sommaire 2 Les principes d investissement 5 Les différentes formes d investissement 6 Les obligations 16 Les actions 24 Les fonds d investissement 36 Les produits dérivés 42 Les
CONVOCATIONS WEBORAMA
CONVOCATIONS ASSEMBLÉES D'ACTIONNAIRES ET DE PORTEURS DE PARTS WEBORAMA Société anonyme à conseil d administration au capital social de 385.922,79 euros Siège social : 15, rue Clavel - 75019 Paris 418
CA Oblig Immo (Janv. 2014)
CA Oblig Immo (Janv. 2014) Titre obligataire émis par Amundi Finance Emissions, véhicule d émission ad hoc de droit français Souscription du 14 janvier au 17 février 2014 Bénéficier d un rendement fixe
