Feuille 1 : Autour du problème SAT
|
|
|
- Eugénie Bureau
- il y a 10 ans
- Total affichages :
Transcription
1 Master-2 d Informatique Complexit Algorithmique Applique. Feuille 1 : Autour du problème SAT 1 Rappels sur SAT Énoncé du problème. Le problème SAT (ou le problème de Satisfaisabilité) est le suivant : Instance : Une formule booléenne ϕ formée des variables booléennes x 1, x 2,..., x n et des opérations logiques,,,. Question : Existe-t-il un ensemble des valeurs des variables x i qui rend la formule ϕ vraie? Dans le cas où la réponse est positive on dit que la formule ϕ est satisfaisable. La forme suivante de la formule ϕ est le plus souvent utilisée : où chaque clause ϕ j est de la forme ϕ = ϕ 1 ϕ 2... ϕ m (1) ϕ j = u j,1 u j,2... u j,pj (2) où chaque littéral u j,l est soit une variable x i, soit sa négation x i. Pour déterminer si une formule ϕ ayant la forme (1), (2) est satisfaisable (et si oui, trouver une affectation des variables rendant ϕ vraie) on peut utiliser un SAT-solveur tel que minisat que l on peut trouver sur le site htpp://minisat.se Glucose, une optimisation de minisat, que l on trouve sur le site htpp:// On dit que la formule ϕ est sous forme k-sat si pour toute clause ϕ j dans (2) la longueur p j est la même et est égale à k. Exercice 1 Soit la formule booléenne ϕ = ((x 1 x 2 ) ( x 3 x 4 )) x 3. Expliquer en détail comment construire une formule ϕ ayant la forme 3-SAT et telle que ϕ est satisfaisable ϕ est satisfaisable. On ne demande pas d écrire la formule ϕ en totalité car elle serait trop longue, mais il faut expliquer comment estimer la longueur de ϕ en fonction de la longueur de ϕ. 1
2 2 Colorations Le problème de 3-Coloration de graphes est le suivant : Instance : Un graphe non-orienté G. Question : Existe-t-il une coloration des sommets du graphes G en 3 couleurs telle que les sommets adjacents soient toujours coloriés en couleurs différentes? D une manière analogue, on peut définir un problème de k-coloration pour tout entier k 2. Exercice 2 1. Montrer que le problème de 2-Coloration de graphes est polynomial. 2. Réduire le problème de 3-Coloration de graphes au problème SAT. 3 Ramsey Le problème de Triangle monochromatique est le suivant : Instance : Un graphe non-orienté G. Question : Existe-t-il une coloration d arêtes du graphes G en 2 couleurs, disons rouge et bleu, telle qu il n y ait pas de triangle rouge ni de triangle bleu? Exercice 3 1. Colorier les arêtes du graphe K 5 en 2 couleurs de telle sorte qu il n y ait pas de triangle monochromatique. 2. Montrer que, quelle que soit une coloration d arêtes du graphe K 6 en 2 couleurs, il existe toujours un triangle monochromatique. 3. Réduire le problème de Triangle monochromatique au problème SAT. Définition. Soit un graphe orienté G = (V, E) où V est l ensemble des sommets, et E est l ensemble des arcs du graphe. On dit qu un sous-ensemble U V est le noyau du graphe G si : 1. Quels que soient u 1, u 2 U, il n y a pas d arc u 1 u Pour tout v V \ U il existe un u U tel qu il y a un arc u v. 2
3 4 Noyau Le problème de Noyau est le suivant : Instance : Un graphe orienté G. Question : Existe-t-il un noyau dans G? Exercice 4 Réduire le problème de Noyau au problème SAT. Exercice 5 Voici une fausse solution de l exercice précédent. À toute paire de sommets i, j V on associe une variable Booléenne x ij dont la valeur est x ij = { 1 s il y a un arc i j, 0 sinon. Alors la première propriété du noyau s exprime ainsi : ϕ 1 = x ij, et la deuxième ainsi : ϕ 2 = i,j U j V \U x ij. Le noyau dans le graphe G existe si et seulement si la formule Booléenne ϕ = ϕ 1 ϕ 2 est satisfaisable. Critiquer cette solution. 5 Circuit Hamiltonien Définition. Un circuit Hamiltonien dans un graphe G est un circuit fermé qui passe une et une seule fois par chaque sommet du graphe. i U Le problème de Circuit Hamiltonien est le suivant : Instance : Un graphe non-orienté G. Question : Existe-t-il un circuit Hamiltonien dans G? Exercice 6 Réduire le problème Circuit Hamiltonien au problème SAT. Indication. Utiliser les variables x i,j, 1 i, j n. La variable x i,j sera vraie si le sommet i est le j-ème sommet d un circuit Hamiltonien. 3
4 6 2-SAT Exercice 7 (2-SAT) L objectif de cet exercice est de montrer que le problème 2-SAT est polynomial. L idée de la solution est la suivante. À chaque clause ϕ k = u k v k on associe deux implications qui lui sont équivalentes : u k v k et v k u k. On construit un graphe orienté G = (V, E) ayant 2n sommets et 2m arcs : les sommets correspondent aux variables x 1,..., x n et à leurs négations x 1,..., x n, tandis que les arcs correspondent aux implications u k v k et v k u k, k = 1,..., m. On cherche une valuation des sommets du graphe qui rend tous les arcs vrais. 1. Montrer que pour chaque composante fortement connexe du graphe G les valeurs booléenes correspondant aux sommets de cette composante doivent être égales. (Une composante fortement connexe d un graphe orienté est un sous-graphe maximal pour lequel il existe un chemin orienté de tout sommet à tout autre sommet de ce sous-graphe.) 2. Expliquer comment vérifier la satisfaisabilité de ϕ. 3. Appliquer la méthode si-dessus à la formule suivante : ϕ = (x 1 x 2 ) ( x 2 x 3 ) ( x 1 x 4 ) ( x 3 x 4 ) ( x 2 x 4 ). Trouver une valuation qui rend cette formule vraie. 4. Ajouter à la formule ϕ une clause ( x 1 x 3 ). Que c est-il passé? Remarque. Il existe un algorithme de calcul des composantes fortement connexes d un graphe orienté qui est linéaire en fonction du nombre d arcs du graphe. Vous souvenez-vous de cet algorithme? Définition. Soit G = (V, E) un graphe orienté, et soient V 1,..., V p ses composantes fortement connexes, V = V 1... V p. Le graphe des composantes est le graphe H ayant p sommets qui correspondent aux composantes du graphe G, et il existe un arc allant de V i à V j dans H si et seulement si il existe au moins un arc dans G allant d un sommet appartenant à V i à un sommet appartenant à V j. Exercice 8 1. Montrer que le graphe des composantes est une graphe orienté sans cycles. 2. Soit G un graphe correspondant à une formule 2-SAT, et soit H son graphe des composantes. Montrer les propriétés suivantes des composantes du graphe G : 4
5 Pour chaque composante U il existe une composante U qui contient les négations de tous les littéraux appartenant à U (et rien d autre). Un arc V i V j dans H existe si et seulement si il existe un arc V j V i. 3. L algorithme de recherche d une valuation rendant ϕ vraie procède comme suit : Trouver une composante U qui n a pas d arcs entrants dans H. Attribuer la valeur 0 à tous les littéraux de U, et la valeur 1 à tous les littéraux de U. Éliminer U et U, ainsi que tous les arcs incidents, du graphe H, et continuer avec le graphe restant. Expliquer le fonctionnement de cet algorithme. 4. Donner un exemple où la valuation n est pas unique. 7 Clique Le problème de Clique est le suivant : Instance : Un graphe non-orienté G et un entier m. Question : Existe-t-il un sous-graphe complet de G ayant m sommets (une m-clique)? Variante : Trouver une plus grande clique dans G. Exercice 9 Réduire le problème de Clique au problème SAT. Indication. Utiliser les variables x i,j, 1 i n, 1 j m. La variable x i,j sera vraie si le sommet i est le j-ème sommet d une clique. Exercice 10 Voici une fausse réduction du problème de Clique au problème 2-SAT. Soient les variables x i = { 1 si i appartient à la clique, 0 sinon. La proposition (x i x j ) implique que (i, j) est une arête du graphe. Par la contraposée, si (i, j) n est pas une arête, alors on doit avoir (x i x j ) = ( x i x j ). La formule qu il faut rendre vraie est donc ϕ = (i,j)/ E où E est l ensemble d arêtes du graphe. ( x i x j ) 5
6 1. Il est connu que le problème de Clique est NP-complet tandis que le problème 2-SAT est polynomial. Comment expliquer cette contradiction? 2. Quelle conclusion pouvez-vous tirer pour le problème MAX 2-SAT : trouver une valuation pour une formule 2-SAT qui rend la formule vraie et pour laquelle le nombre des variables vraies x i est maximal? 6
La NP-complétude. Johanne Cohen. PRISM/CNRS, Versailles, France.
La NP-complétude Johanne Cohen PRISM/CNRS, Versailles, France. Références 1. Algorithm Design, Jon Kleinberg, Eva Tardos, Addison-Wesley, 2006. 2. Computers and Intractability : A Guide to the Theory of
Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1
Exemples de problèmes et d applications INF6953 Exemples de problèmes Sommaire Quelques domaines d application Quelques problèmes réels Allocation de fréquences dans les réseaux radio-mobiles Affectation
Théorie des Graphes Cours 3: Forêts et Arbres II / Modélisation
IFIPS S7 - informatique Université Paris-Sud 11 1er semestre 2009/2010 Théorie des Graphes Cours 3: Forêts et Arbres II / 1 Forêts et arbres II Théorème 1.1. Les assertions suivantes sont équivalentes
Objectifs du cours d aujourd hui. Informatique II : Cours d introduction à l informatique et à la programmation objet. Complexité d un problème (2)
Objectifs du cours d aujourd hui Informatique II : Cours d introduction à l informatique et à la programmation objet Complexité des problèmes Introduire la notion de complexité d un problème Présenter
Introduction à la théorie des graphes. Solutions des exercices
CAHIERS DE LA CRM Introduction à la théorie des graphes Solutions des exercices Didier Müller CAHIER N O 6 COMMISSION ROMANDE DE MATHÉMATIQUE 1 Graphes non orientés Exercice 1 On obtient le graphe biparti
Resolution limit in community detection
Introduction Plan 2006 Introduction Plan Introduction Introduction Plan Introduction Point de départ : un graphe et des sous-graphes. But : quantifier le fait que les sous-graphes choisis sont des modules.
Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé
Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e
Plus courts chemins, programmation dynamique
1 Plus courts chemins, programmation dynamique 1. Plus courts chemins à partir d un sommet 2. Plus courts chemins entre tous les sommets 3. Semi-anneau 4. Programmation dynamique 5. Applications à la bio-informatique
Chapitre 5 : Flot maximal dans un graphe
Graphes et RO TELECOM Nancy A Chapitre 5 : Flot maximal dans un graphe J.-F. Scheid 1 Plan du chapitre I. Définitions 1 Graphe Graphe valué 3 Représentation d un graphe (matrice d incidence, matrice d
Jean-Philippe Préaux http://www.i2m.univ-amu.fr/~preaux
Colonies de fourmis Comment procèdent les colonies de fourmi pour déterminer un chemin presque géodésique de la fourmilière à un stock de nourriture? Les premières fourmis se déplacent au hasard. Les fourmis
Annexe 6. Notions d ordonnancement.
Annexe 6. Notions d ordonnancement. APP3 Optimisation Combinatoire: problèmes sur-contraints et ordonnancement. Mines-Nantes, option GIPAD, 2011-2012. [email protected] Résumé Ce document
Cercle trigonométrique et mesures d angles
Cercle trigonométrique et mesures d angles I) Le cercle trigonométrique Définition : Le cercle trigonométrique de centre O est un cercle qui a pour rayon 1 et qui est muni d un sens direct : le sens inverse
Eléments de Théorie des Graphes et Programmation Linéaire
INSTITUT NATIONAL POLYTECHNIQUE DE LORRAINE Ecole Nationale Supérieure d Electricité et de Mécanique Eléments de Théorie des Graphes et Programmation Linéaire Didier Maquin Professeur à l INPL Version
Eteindre. les. lumières MATH EN JEAN 2013-2014. Mme BACHOC. Elèves de seconde, première et terminale scientifiques :
MTH EN JEN 2013-2014 Elèves de seconde, première et terminale scientifiques : Lycée Michel Montaigne : HERITEL ôme T S POLLOZE Hélène 1 S SOK Sophie 1 S Eteindre Lycée Sud Médoc : ROSIO Gauthier 2 nd PELGE
Big Data et Graphes : Quelques pistes de recherche
Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université
Programmation linéaire
1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit
RapidMiner. Data Mining. 1 Introduction. 2 Prise en main. Master Maths Finances 2010/2011. 1.1 Présentation. 1.2 Ressources
Master Maths Finances 2010/2011 Data Mining janvier 2011 RapidMiner 1 Introduction 1.1 Présentation RapidMiner est un logiciel open source et gratuit dédié au data mining. Il contient de nombreux outils
Big Data et Graphes : Quelques pistes de recherche
Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci http://liris.cnrs.fr/hamamache.kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de
EVALUATIONS MI-PARCOURS CM2
Les enseignants de CM2 de la circonscription de METZ-SUD proposent EVALUATIONS MI-PARCOURS CM2 Mathématiques Livret enseignant NOMBRES ET CALCUL Circonscription de METZ-SUD Page 1 Séquence 1 : Exercice
Cours 1 : Qu est-ce que la programmation?
1/65 Introduction à la programmation Cours 1 : Qu est-ce que la programmation? Yann Régis-Gianas [email protected] Université Paris Diderot Paris 7 2/65 1. Sortez un appareil qui peut se rendre
Cours Optimisation Partie Optimisation Combinatoire. Année scolaire 2008-2009. Gérard Verfaillie ONERA/DCSD/CD, Toulouse Gerard.Verfaillie@onera.
Cours Optimisation Partie Optimisation Combinatoire 3ième année ISAE Année scolaire 2008-2009 Gérard Verfaillie ONERA/DCSD/CD, Toulouse [email protected] Septembre 2008 Résumé Ce document couvre
Année 2014/15 2. 1 er septembre 2014. 2. Version de Anca Muscholl, issue du poly de Marc Zeitoun. 1/143
Modèles de calcul Année 2014/15 2 M1, Univ. Bordeaux http://www.labri.fr/perso/anca/mc.html 1 er septembre 2014 2. Version de Anca Muscholl, issue du poly de Marc Zeitoun. 1/143 Modalités du cours 12 cours,
Programmation linéaire
Programmation linéaire DIDIER MAQUIN Ecole Nationale Supérieure d Electricité et de Mécanique Institut National Polytechnique de Lorraine Mathématiques discrètes cours de 2ème année Programmation linéaire
Modélisation multi-agents - Agents réactifs
Modélisation multi-agents - Agents réactifs Syma cursus CSI / SCIA Julien Saunier - [email protected] Sources www-lih.univlehavre.fr/~olivier/enseignement/masterrecherche/cours/ support/algofourmis.pdf
Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.
Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. L usage d une calculatrice est autorisé Durée : 3heures Deux annexes sont à rendre avec la copie. Exercice 1 5 points 1_ Soit f la
Théorie des graphes et optimisation dans les graphes
Théorie es graphes et optimisation ans les graphes Christine Solnon Tale es matières 1 Motivations 2 Définitions Représentation es graphes 8.1 Représentation par matrice ajacence......................
Introduction à la théorie des graphes
CAHIERS DE LA CRM Introduction à la théorie des graphes Didier Müller CAHIER N O 6 COMMISSION ROMANDE DE MATHÉMATIQUE Table des matières Avant-propos But de ce fascicule................................
Comparer des surfaces suivant leur aire en utilisant leurs propriétés géométriques Découverte et manipulation
Socle commun - palier 2 : Compétence 3 : les principaux éléments de mathématiques Grandeurs et mesures Compétences : Comparer des surfaces selon leurs aires (par pavage) Mesurer l aire d une surface par
Manuel d utilisation 26 juin 2011. 1 Tâche à effectuer : écrire un algorithme 2
éducalgo Manuel d utilisation 26 juin 2011 Table des matières 1 Tâche à effectuer : écrire un algorithme 2 2 Comment écrire un algorithme? 3 2.1 Avec quoi écrit-on? Avec les boutons d écriture........
Optimisation Combinatoire et Colonies de Fourmis Nicolas Monmarche April 21, 1999 Sommaire Inspiration biologiques Ant Colony Optimization Applications TSP QAP Flow Shop Problemes dynamiques 1 Historique
Problèmes de dénombrement.
Problèmes de dénombrement. 1. On se déplace dans le tableau suivant, pour aller de la case D (départ) à la case (arrivée). Les déplacements utilisés sont exclusivement les suivants : ller d une case vers
Les Angles. I) Angles complémentaires, angles supplémentaires. 1) Angles complémentaires. 2 Angles supplémentaires. a) Définition.
Les Angles I) Angles complémentaires, angles supplémentaires 1) Angles complémentaires Deux angles complémentaires sont deux angles dont la somme des mesures est égale à 90 41 et 49 41 49 90 donc Les angles
Faculté des sciences Département de mathématiques. Théorie des graphes
Faculté des sciences Département de mathématiques Théorie des graphes Deuxièmes bacheliers en sciences mathématiques Année académique 2009 2010 Michel Rigo Table des matières Introduction 1 Chapitre I.
Site internet de la ville de Sautron Tutoriel 1
www.sautron.fr Site internet de la ville de Sautron Tutoriel 1 Comment créer un profil contributeur associatif? 1 Ce tutoriel va vous expliquer en mode «page par page» comment créer un profil contributeur
FaceBook aime les Maths!
FaceBook aime les Maths! Michel Rigo http://www.discmath.ulg.ac.be/ http://orbi.ulg.ac.be/ Réseaux Visualizing my Twitter Network by number of followers. Michael Atkisson http://woknowing.wordpress.com/
LE PROBLEME DU PLUS COURT CHEMIN
LE PROBLEME DU PLUS COURT CHEMIN Dans cette leçon nous définissons le modèle de plus court chemin, présentons des exemples d'application et proposons un algorithme de résolution dans le cas où les longueurs
OLYMPIADES ACADEMIQUES DE MATHEMATIQUES. 15 mars 2006 CLASSE DE PREMIERE ES, GMF
OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 15 mars 2006 CLASSE DE PREMIERE ES, GMF Durée : 4 heures Les quatre exercices sont indépendants Les calculatrices sont autorisées L énoncé comporte trois pages Exercice
1 Position du problème
Licence Science et Technologies - INF245 Examen session 1 - mai 2012 Durée : 2 heures Documents non autorisés Le barème est donné à titre indicatif 1 Position du problème Le Club Universitaire de Vélo
Cours de Master Recherche
Cours de Master Recherche Spécialité CODE : Résolution de problèmes combinatoires Christine Solnon LIRIS, UMR 5205 CNRS / Université Lyon 1 2007 Rappel du plan du cours 16 heures de cours 1 - Introduction
Problème d ordonnancement de véhicules en variables booléennes
Problème d ordonnancement de véhicules en variables booléennes Freddy Hetman 2 juillet 2013 Faculté des sciences Jean Perrin Freddy Hetman () 2 juillet 2013 1 / 22 Sommaire 1 Introduction 2 Le problème
EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)
BAC S 2011 LIBAN http://labolycee.org EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points) Les parties A et B sont indépendantes. A : Étude du fonctionnement d un spectrophotomètre
Fondements de l informatique Logique, modèles, et calculs
Fondements de l informatique Logique, modèles, et calculs Cours INF423 de l Ecole Polytechnique Olivier Bournez Version du 20 septembre 2013 2 Table des matières 1 Introduction 9 1.1 Concepts mathématiques........................
Une nouvelle approche de détection de communautés dans les réseaux sociaux
UNIVERSITÉ DU QUÉBEC EN OUTAOUAIS Département d informatique et d ingénierie Une nouvelle approche de détection de communautés dans les réseaux sociaux Mémoire (INF 6021) pour l obtention du grade de Maîtrise
Cours de Recherche Opérationnelle IUT d Orsay. Nicolas M. THIÉRY. E-mail address: [email protected] URL: http://nicolas.thiery.
Cours de Recherche Opérationnelle IUT d Orsay Nicolas M. THIÉRY E-mail address: [email protected] URL: http://nicolas.thiery.name/ CHAPTER 1 Introduction à l optimisation 1.1. TD: Ordonnancement
Feuille d exercices 2 : Espaces probabilisés
Feuille d exercices 2 : Espaces probabilisés Cours de Licence 2 Année 07/08 1 Espaces de probabilité Exercice 1.1 (Une inégalité). Montrer que P (A B) min(p (A), P (B)) Exercice 1.2 (Alphabet). On a un
Colorations identiantes de graphes
Institut Supérieur d'informatique, de Modélisation et de leurs Applications Campus des Cézeaux avenue des Landais BP 05 7 AUBIERE Cedex Laboratoire d'analyse et d'architecture des Systèmes 7 avenue du
LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN
LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN Les contenues de ce document sont la propriété exclusive de la société REVER. Ils ne sont transmis qu à titre d information et ne peuvent en aucun cas
Indications pour une progression au CM1 et au CM2
Indications pour une progression au CM1 et au CM2 Objectif 1 Construire et utiliser de nouveaux nombres, plus précis que les entiers naturels pour mesurer les grandeurs continues. Introduction : Découvrir
Problèmes autour des graphes
Université de Provence Année 2010-2011 Master I MASS Cours interdisciplinaire Problèmes autour des graphes Modélisation par un graphe Exercice 1 Une ligue de ootball contient 15 clubs. Pour des raisons
CARTE DE VOEUX À L ASSOCIAEDRE
CARTE DE VOEUX À L ASSOCIAEDRE JEAN-LOUIS LODAY Il y a cinq ans le Centre International de Rencontres Mathématiques de Luminy a envoyé ses voeux avec la carte ci-dessus. L illustration choisie par Robert
Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT
Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Ces exercices portent sur les items 2, 3 et 5 du programme d informatique des classes préparatoires,
Correction ex feuille Etoiles-Spectres.
Correction ex feuille Etoiles-Spectres. Exercice n 1 1 )Signification UV et IR UV : Ultraviolet (λ < 400 nm) IR : Infrarouge (λ > 800 nm) 2 )Domaines des longueurs d onde UV : 10 nm < λ < 400 nm IR : 800
Triangle de Pascal dans Z/pZ avec p premier
Triangle de Pascal dans Z/pZ avec p premier Vincent Lefèvre (Lycée P. de Fermat, Toulouse) 1990, 1991 1 Introduction Nous allons étudier des propriétés du triangle de Pascal dans Z/pZ, p étant un nombre
4. Exercices et corrigés
4. Exercices et corrigés. N 28p.304 Dans une classe de 3 élèves, le club théâtre (T) compte 0 élèves et la chorale (C) 2 élèves. Dix-huit élèves ne participent à aucune de ces activités. On interroge au
THÈSE. En vue de l obtention du DOCTORAT DE L UNIVERSITÉ DE TOULOUSE. Touria CHAFQANE BEN RAHHOU
THÈSE En vue de l obtention du DOCTORAT DE L UNIVERSITÉ DE TOULOUSE Délivré par : l Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier) Présentée et soutenue le 24/06/2013 par : Touria CHAFQANE BEN
Une nouvelle technique d'analyse : La spectrophotométrie
Une nouvelle technique d'analyse : La spectrophotométrie Par spectrophotométrie on peut : - déterminer la concentration d'une espèce chimique colorée en solution à partir de l'absorbance. - suivre la cinétique
Comment se connecter au VPN ECE sous vista
Comment se connecter au VPN ECE sous vista Pour commencer, aller dans le Centre de Réseau et partage (qui est aussi accessible via le panneau de configuration onglet internet et réseau), en faisant clic
Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes
Loris MARCHAL Laboratoire de l Informatique du Parallélisme Équipe Graal Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes Thèse réalisée sous la direction
CCI Génie Logiciel UFR - IMA. Objectifs du cours d'aujourd'hui. Génie Logiciel Validation par le test. Qu est-ce que tester un programme?
Validation par le test Objectifs du cours d'aujourd'hui Donner des réponses aux questions suivantes : Lydie du Bousquet 2 Qu est-ce que tester un programme? Exercice 1 : Inscrivez sur une feuille ce que
MIS 102 Initiation à l Informatique
MIS 102 Initiation à l Informatique Responsables et cours : Cyril Gavoille Catherine Pannier Matthias Robine Marc Zeitoun Planning : 6 séances de cours 5 séances de TD (2h40) 4 séances de TP (2h40) + environ
Chapitre 02. La lumière des étoiles. Exercices :
Chapitre 02 La lumière des étoiles. I- Lumière monochromatique et lumière polychromatique. )- Expérience de Newton (642 727). 2)- Expérience avec la lumière émise par un Laser. 3)- Radiation et longueur
Designer d escalier GUIDE DE L UTILISATEUR. Stair Designer-1
Designer d escalier GUIDE DE L UTILISATEUR Stair Designer-1 Stair Designer-2 Designer d escalier Le Designer d escalier rend facile la réalisation et la mise en place d escaliers sur mesure dans votre
1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.
Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur
SPECIFICATIONS TECHNIQUES : Gestion des Médicaments et des commandes de médicaments
SPECIFICATIONS TECHNIQUES : Gestion des Médicaments et des commandes de médicaments Développement d une application en web/ client lourd en C# permettant la gestion des médicaments et des commandes de
Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications
Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au
Modélisation et Simulation
Cours de modélisation et simulation p. 1/64 Modélisation et Simulation G. Bontempi Département d Informatique Boulevard de Triomphe - CP 212 http://www.ulb.ac.be/di Cours de modélisation et simulation
DETERMINATION DE LA CONCENTRATION D UNE SOLUTION COLOREE
P1S2 Chimie ACTIVITE n 5 DETERMINATION DE LA CONCENTRATION D UNE SOLUTION COLOREE Le colorant «bleu brillant FCF», ou E133, est un colorant artificiel (de formule C 37 H 34 N 2 Na 2 O 9 S 3 ) qui a longtemps
Comprendre l Univers grâce aux messages de la lumière
Seconde / P4 Comprendre l Univers grâce aux messages de la lumière 1/ EXPLORATION DE L UNIVERS Dans notre environnement quotidien, les dimensions, les distances sont à l échelle humaine : quelques mètres,
Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?
Exercices Alternatifs Quelqu un aurait-il vu passer un polynôme? c 2004 Frédéric Le Roux, François Béguin (copyleft LDL : Licence pour Documents Libres). Sources et figures: polynome-lagrange/. Version
Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?
Exercices Alternatifs Quelqu un aurait-il vu passer un polynôme? c 2004 Frédéric Le Roux, François Béguin (copyleft LDL : Licence pour Documents Libres). Sources et figures: polynome-lagrange/. Version
Travaux pratiques avec RapidMiner
Travaux pratiques avec RapidMiner Master Informatique de Paris 6 Spécialité IAD Parcours EDOW Module Algorithmes pour la Fouille de Données Janvier 2012 Prise en main Généralités RapidMiner est un logiciel
TD 1 - Structures de Traits et Unification
TD 1 - Structures de Traits et Unification 1 Définitions Un trait (en: feature) est un couple attribut-valeur. Une structure de traits (en: feature structure) est un ensemble de traits. On peut les représenter
Ordonnancement. N: nains de jardin. X: peinture extérieure. E: électricité T: toit. M: murs. F: fondations CHAPTER 1
CHAPTER 1 Ordonnancement 1.1. Étude de cas Ordonnancement de tâches avec contraintes de précédences 1.1.1. Exemple : construction d'une maison. Exercice. On veut construire une maison, ce qui consiste
La spectrophotométrie
Chapitre 2 Document de cours La spectrophotométrie 1 Comment interpréter la couleur d une solution? 1.1 Décomposition de la lumière blanche En 1666, Isaac Newton réalise une expérience cruciale sur la
Systèmes décisionnels et programmation avancée
Systèmes décisionnels et programmation avancée M1 SIR Philippe Muller et Mustapha Mojahid, Matthieu Serrurier, Marie-Christine Scheix 2014-2015 Introduction structure du cours intervenants introduction
Probabilités Loi binomiale Exercices corrigés
Probabilités Loi binomiale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : épreuve de Bernoulli Exercice 2 : loi de Bernoulli de paramètre
www.h-k.fr/publications/objectif-agregation
«Sur C, tout est connexe!» www.h-k.fr/publications/objectif-agregation L idée de cette note est de montrer que, contrairement à ce qui se passe sur R, «sur C, tout est connexe». Cet abus de langage se
5 ème Chapitre 4 Triangles
5 ème Chapitre 4 Triangles 1) Médiatrices Définition : la médiatrice d'un segment est l'ensemble des points équidistants des extrémités du segment (cours de 6 ème ). Si M appartient à la médiatrice du
Service des ressources informatiques - Conseil Scolaire de District Catholique Centre-Sud Page 1
Service des ressources informatiques - Conseil Scolaire de District Catholique Centre-Sud Page 1 Table des matières 1. Accéder au gestionnaire de notes... 3 2. Sélectionner une classe... 4 3. Première
Tâche complexe produite par l académie de Clermont-Ferrand. Mai 2012 LE TIR A L ARC. (d après une idée du collège des Portes du Midi de Maurs)
(d après une idée du collège des Portes du Midi de Maurs) Table des matières Fiche professeur... 2 Fiche élève... 5 1 Fiche professeur Niveaux et objectifs pédagogiques 5 e : introduction ou utilisation
COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre?
Claire FORGACZ Marion GALLART Hasnia GOUDJILI COMPTERENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre? Si l on se pose la question de savoir comment on peut faire
SVE 222 & PCL-442. Fascicule de Travaux Pratiques
SVE 222 & PCL-442 Fascicule de Travaux Pratiques 2014-2015 Institut Supérieur de l Education et de la Formation Continue Bassem Jamoussi & Radhouane Chakroun 1 Sommaire PCL 442/SVE222 - TP N 1 : Etude
10.3.1.10 Travaux pratiques Configuration d un pare-feu sous Windows XP
5.0 10.3.1.10 Travaux pratiques Configuration d un pare-feu sous Windows XP Imprimez et faites ces travaux pratiques. Au cours de ce TP, vous allez explorer le pare-feu Windows XP et configurer quelques
ils entretiennent entre eux des flux, ils partagent des perceptions sur l environnement
Les modèles de Flux Introduction L analyse systémique fournie une modélisation de l organisation échangeant et transformant des flux Cette modélisation du S.I. reste trop générale Il faut découper l organisation
Séquence 9. Étudiez le chapitre 11 de physique des «Notions fondamentales» : Physique : Dispersion de la lumière
Séquence 9 Consignes de travail Étudiez le chapitre 11 de physique des «Notions fondamentales» : Physique : Dispersion de la lumière Travaillez les cours d application de physique. Travaillez les exercices
point On obtient ainsi le ou les points d inter- entre deux objets».
Déplacer un objet Cliquer sur le bouton «Déplacer». On peut ainsi rendre la figure dynamique. Attraper l objet à déplacer avec la souris. Ici, on veut déplacer le point A du triangle point ABC. A du triangle
Projet L1, S2, 2015: Simulation de fourmis, Soutenance la semaine du 4 mai.
Projet L1, S2, 2015: Simulation de fourmis, Soutenance la semaine du 4 mai. 1 Introduction On considère une grille de 20 lignes 20 colonnes. Une case de la grille peut être vide, ou contenir une et une
Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme
Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet
LES TYPES DE DONNÉES DU LANGAGE PASCAL
LES TYPES DE DONNÉES DU LANGAGE PASCAL 75 LES TYPES DE DONNÉES DU LANGAGE PASCAL CHAPITRE 4 OBJECTIFS PRÉSENTER LES NOTIONS D ÉTIQUETTE, DE CONS- TANTE ET DE IABLE DANS LE CONTEXTE DU LAN- GAGE PASCAL.
Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN
Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN Table des matières. Introduction....3 Mesures et incertitudes en sciences physiques
Chapitre 2 Le problème de l unicité des solutions
Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)
Chapitre. Conquérant est une toile de 1930 qui se trouve au Centre Paul Klee à Berne (Suisse). Paul Klee (1879-
Chapitre 9 REVOIR > les notions de points, droites, segments ; > le milieu d un segment ; > l utilisation du compas. DÉCOUVRIR > la notion de demi-droite ; > de nouvelles notations ; > le codage d une
FAIRE UN PAIEMENT TIPI
FAIRE UN PAIEMENT TIPI I. Accès au site II. Je n ai pas de compte sur ce site 1. Indiquer une adresse email valide a. J ai une adresse email b. Je n ai pas d adresse email 2. Indiquer les informations
Réservation de matériel
Manuel Utilisateur Réservation de matériel Auteur : Logica Version : 3.1 Droit d auteur Ce texte est disponible sous contrat Creative Commons Paternité - Pas d'utilisation Commerciale - Partage des Conditions
ALGORITHMIQUE II NOTION DE COMPLEXITE. SMI AlgoII
ALGORITHMIQUE II NOTION DE COMPLEXITE 1 2 Comment choisir entre différents algorithmes pour résoudre un même problème? Plusieurs critères de choix : Exactitude Simplicité Efficacité (but de ce chapitre)
Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire
CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image
Microsoft Excel : tables de données
UNIVERSITE DE LA SORBONNE NOUVELLE - PARIS 3 Année universitaire 2000-2001 2ème SESSION SLMD2 Informatique Les explications sur la réalisation des exercices seront fournies sous forme de fichiers informatiques.
Rapport de stage de première année de Master Optimisation de cache d instructions
Rapport de stage de première année de Master Optimisation de cache d instructions Benoit Boissinot [email protected] Université Lyon 1 sous la direction de Fabrice Rastello [email protected]
Définitions. Numéro à préciser. (Durée : )
Numéro à préciser (Durée : ) On étudie dans ce problème l ordre lexicographique pour les mots sur un alphabet fini et plusieurs constructions des cycles de De Bruijn. Les trois parties sont largement indépendantes.
