TD 1 - Structures de Traits et Unification

Dimension: px
Commencer à balayer dès la page:

Download "TD 1 - Structures de Traits et Unification"

Transcription

1 TD 1 - Structures de Traits et Unification 1 Définitions Un trait (en: feature) est un couple attribut-valeur. Une structure de traits (en: feature structure) est un ensemble de traits. On peut les représenter sous formes de matrices (en: attribute-value matrices (AVM)). Une structure de traits est mal formée si elle contient deux fois le même attribut (au même niveau d enchâssement) avec une valeur différente. genre masculin singulier personne troisième genre masculin genre féminin singulier personne troisième Dans les structures de traits ci-dessus, la valeur des traits est atomique. En HPSG, la valeur d un trait peut être atomique, être une structure de trait, une liste de valeurs ou un ensemble de valeurs. indice indices indices genre masculin singulier personne 3eme genre masculin genre féminin singulier, nombre singulier personne 3eme personne 3eme genre masculin genre féminin singulier, singulier personne 3eme personne 3eme Les structures de traits peuvent être représentées par des graphes acycliques orientés (en: directed acyclic graphs (DAG)) dont les arcs réprésentent les noms des différents traits et les noeuds les valeurs des différents traits. 2 Extension, subsomption et unification Une structure de traits A est une extension d une structure de traits B (ce qui se note A B) si et seulement si: Tous les traits à valeur atomique présents dans B sont présents dans A avec la même valeur, Pour tout trait t ayant une valeur non atomique, la valeur de t dans A est une extension de la valeur de t dans B. La relation inverse de l extension s appelle la subsomption. L unification de deux structures de traits A et B (notée A B) est la structure de trait minimale qui est à la fois une extension de A et de B. Si une telle structure n existe pas, l unification échoue (ce qui est noté ). L unification de deux structures de traits A et B typées (respectivement t et t ) a pour résultat, si elle existe, la structure de trait minimale qui est à la fois une extension de A et de B de type t où t est le plus grand type qui soit à la fois un sous-type de t et un sous-type de t. 1

2 L unification de listes n est définie que sur des listes de longueur identique. Le résultat de l unification de deux listes A et B est la liste C dont chaque élément de rang x où x varie de 1 à L (L = longueur des listes A et B) est le résultat de l unification de l élément de rang x des listes A et B. Le résultat de l unification de deux ensembles A et B est l ensemble C qui est construit de manière à ce que tout élément de C est soit un élément de A ou de B, soit le résultat de l unification d un élément de A et de B. Chaque élément de A et de B ne peut être utilisé qu une seule fois dans la construction de l ensemble C. 3 Exercices 3.1 Unification de structures de traits non-typées Soit la liste de structures de traits non-typées ci-dessous: 1. Pour chaque paire de structures de traits (x,y) dites si x est une extension y ou inversement? 2. Pour chaque paire de structures de traits (x,y) dites si elles sont unifiables et donnez le résultat le cas échéant. A. B. GENRE masculin NOMBRE singulier PERSONNE 3eme GENRE masculin D. E. GENRE feminin GENRE masculin C. PERSONNE 3eme F. PERSONNE 2eme 3.2 Exercice 2: Unification de structures de traits typées Soit la hiérarchie de types donnée dans le tableau ci-dessous: 2

3 type hérite de contrainte indice structure-de-trait genre genre nombre personne personne genre valeur-atomique feminin genre masculin genre nombre valeur-atomique singulier nombre pluriel nombre personne valeur-atomique 2eme personne 3eme personne indice-masculin indice genre masculin indice-feminin indice genre feminin indice-singulier indice nombre singulier indice-pluriel indice nombre pluriel indice-1ere indice personne 1ere indice-2eme indice personne 2eme indice-3eme indice personne 3eme indice-0 indice-1 indice-2 indice-3 indice-masculin indice-singulier indice-0 indice-3eme indice-2eme indice-pluriel indice-2 indice-feminin 1. Pour chaque paire de structure de traits (x,y), donnez le résultat de l unification entre x et y. A. B. C. indice-0 indice-2 indice-3eme singulier personne 2eme personne 3eme genre masculin nombre pluriel D. E. F. indice-feminin indice-masculin indice-2eme genre feminin genre masculin personne 2eme 3.3 Exercice 2: Unification de structures de traits non-typées avec valeur non-atomiques et réentrance 1. Pour chaque paire de structure de traits (x,y), donnez le résultat de l unification entre x et y. 3

4 A. SYNTAXE ACCORD SEMANTIQUE NOMBRE singulier TEMPS present B. SYNTAXE ACCORD PERSONNE 3eme C. ACCORD 1 SYNTAXE SUJET ACCORD 1 D. SYNTAXE SUJET NOMBRE pluriel E. SUJET NOMBRE pluriel SYNTAXE ACCORD NOMBRE pluriel 3.4 Unification de listes (avec structures de traits typées) Soit la hiérachie de types représentée par l arbre ci-dessous: synsem canonique non-canonique gap affixe-pronominal nul-pronominal 1. Pour chaque paire de structure de traits (x,y), donnez le résultat de l unification entre x et y. 4

5 A. COMPS canonique gap, LOC CAT TETE nom LOC CAT TETE prep B. canonique COMPS LOC CAT VAL SPR synsem synsem, LOC CAT C. synsem COMPS synsem, LOC CAT VAL SPR synsem MARQUE de D. COMPS gap synsem, LOC CAT TETE nom LOC CAT TETE prep 3.5 Unification d ensembles 1. Donnez tous les résultats possibles de l unification entre les structures de traits A et B. 2. Dites si l unification de deux ensembles peut échouer. A. B. OBJETS{ FORME rond OBJETS{ COULEUR rouge }, FORME carré }, COULEUR bleu 1. Pour chaque paire de structure de traits (x,y), donnez tous les résultats possibles de l unification entre x et y. A. B. C. OBJETS{ FORME rond OBJETS{ COULEUR rouge OBJETS{ COULEUR rouge }, FORME carré, COULEUR bleu }, FORME carré, COULEUR bleu }, COULEUR bleu 5

6 4 Structure du signe en HPSG signe mot syntagme signe PHON liste(forme) SYNSEM canonique mot signe SYNSEM CATEGORIE ST-ARG liste(synsem) syntagme signe BRANCHES liste(signe) synsem canonique non-canonique gap affixe-pronominal nul-pronominal synsem LOCAL local NON-LOCAL non-local local CATEGORIE categorie CONTENU contenu CONTEXTE contexte categorie TETE tete VALENCE valence MARQUE marque contenu INDICE indice RELATIONS ensemble(relation) indice NOMBRE nombre GENRE genre PERSONNE personne valence SUJ liste(synsem) SPR liste(synsem) COMPS liste(synsem) 6

Grammaires d unification

Grammaires d unification Cours sur le traitement automatique des langues (IV) Violaine Prince Université de Montpellier 2 LIRMM-CNRS Grammaires d unification Grammaire catégorielle Grammaire syntagmatique généralisée (GPSG) Les

Plus en détail

Traitement de Langages et Dialogues Naturels par Ordinateur

Traitement de Langages et Dialogues Naturels par Ordinateur Traitement de Langages et Dialogues Naturels par Ordinateur Une introduction Philippe Muller muller@irit.fr Institut de Recherche en Informatique de Toulouse CNRS-Université Paul Sabatier http://www.irit.fr/

Plus en détail

Structures de données non linéaires

Structures de données non linéaires Structures de données non linéaires I. Graphes Définition Un graphe (simple) orienté G est un couple (S, A), où : S est un ensemble dont les éléments sont appelés les sommets. A est un ensemble de couples

Plus en détail

LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN

LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN Les contenues de ce document sont la propriété exclusive de la société REVER. Ils ne sont transmis qu à titre d information et ne peuvent en aucun cas

Plus en détail

TES Spécialité Maths Eléments de correction du DNS n 8 du Jeudi 2 Mai 2013. Graphe et codage binaire ( d après Déclic TES)

TES Spécialité Maths Eléments de correction du DNS n 8 du Jeudi 2 Mai 2013. Graphe et codage binaire ( d après Déclic TES) TES Spécialité Maths Eléments de correction du DNS n 8 du Jeudi 2 Mai 2013 Objectifs : donner du sens à un calcul matriciel graphe étiqueté chercher de nouveaux problèmes Un codage binaire peut se faire

Plus en détail

fiche D AUTOCORRECTION Frimousse, une petite chienne qu'on a adoptée le mois dernier, est intelligente et docile.

fiche D AUTOCORRECTION Frimousse, une petite chienne qu'on a adoptée le mois dernier, est intelligente et docile. fiche D AUTOCORRECTION 3.4 Les accords sont corrects dans chaque groupe du nom. On met souvent sur le dos de l inattention les erreurs d orthographe grammaticale. Bien accorder les mots exige de l observation

Plus en détail

Modélisation Conceptuelle. Partie 3: Validation et transformations

Modélisation Conceptuelle. Partie 3: Validation et transformations Modélisation Conceptuelle Partie 3: Validation et transformations Méthode de modélisation 1. Etude des besoins de l'entreprise interviews analyse des documents existants 2. Construction du diagramme EA

Plus en détail

SEO Camp'us -4 et 5 février 2009. Directeur du pôle métiers Aposition

SEO Camp'us -4 et 5 février 2009. Directeur du pôle métiers Aposition L'apport de la sémantique et de la linguistique statistique pour le SEO SEO Camp'us -4 et 5 février 2009 Philippe YONNET Directeur du pôle métiers Aposition Président de l association SEOCamp Comment classer

Plus en détail

Théorie des Graphes Cours 3: Forêts et Arbres II / Modélisation

Théorie des Graphes Cours 3: Forêts et Arbres II / Modélisation IFIPS S7 - informatique Université Paris-Sud 11 1er semestre 2009/2010 Théorie des Graphes Cours 3: Forêts et Arbres II / 1 Forêts et arbres II Théorème 1.1. Les assertions suivantes sont équivalentes

Plus en détail

Théorie des graphes pour l analyse de réseaux réels

Théorie des graphes pour l analyse de réseaux réels Théorie des graphes pour l analyse de réseaux réels Bertrand Jouve Laboratoire ERIC - IXXI - Université Lyon 2 Plan 1 Entre théorie des graphes et réseaux réels 2 Partitionnement métrique Exemple d étude

Plus en détail

Fiche de TD-TP no. 4

Fiche de TD-TP no. 4 Master 1 Informatique Programmation Fonctionnelle, p. 1 Fiche de TD-TP no. 4 Exercice 1. Voici trois façons différentes de définir le type Image : type Image = [[ Int ]] data Image = Image [[ Int ]] newtype

Plus en détail

Arbres binaires de recherche

Arbres binaires de recherche Chapitre 1 Arbres binaires de recherche 1 Les arbre sont très utilisés en informatique, d une part parce que les informations sont souvent hiérarchisées, et peuvent être représentées naturellement sous

Plus en détail

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e

Plus en détail

Projet de Programmation Fonctionnelle

Projet de Programmation Fonctionnelle Projet de Programmation Fonctionnelle L objectif de ce projet est de concevoir, en Objective Caml, un évaluateur pour le langage mini-ml (un sous ensemble du langage Objective Caml). Votre programme devra

Plus en détail

À propos des matrices échelonnées

À propos des matrices échelonnées À propos des matrices échelonnées Antoine Ducros appendice au cours de Géométrie affine et euclidienne dispensé à l Université Paris 6 Année universitaire 2011-2012 Introduction Soit k un corps, soit E

Plus en détail

Exercice : la frontière des portefeuilles optimaux sans actif certain

Exercice : la frontière des portefeuilles optimaux sans actif certain Exercice : la frontière des portefeuilles optimaux sans actif certain Philippe Bernard Ingénierie Economique & Financière Université Paris-Dauphine Février 0 On considère un univers de titres constitué

Plus en détail

UML Diagramme de classes (class diagram) pour le recueil et l analyse des besoins. Emmanuel Pichon 2013 V1.1

UML Diagramme de classes (class diagram) pour le recueil et l analyse des besoins. Emmanuel Pichon 2013 V1.1 UML Diagramme de classes (class diagram) pour le recueil et l analyse des besoins 2013 V1.1 Objectif Diagramme de classes (class diagram) pour le recueil des besoins et l analyse Présenter un ensemble

Plus en détail

Recherche d information textuelle

Recherche d information textuelle Recherche d information textuelle Pré-traitements & indexation B. Piwowarski CNRS / LIP6 Université Paris 6 benjamin@bpiwowar.net http://www.bpiwowar.net Master IP - 2014-15 Cours et travaux pratiques

Plus en détail

Chapitre 3. Les distributions à deux variables

Chapitre 3. Les distributions à deux variables Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles

Plus en détail

Langages de spécification cours 4

Langages de spécification cours 4 Langages de spécification cours 4 Diagrammes de décision binaire(bdd) Catalin Dima Arbres de décision binaire Étant donnée une formule logique, on peut lui associer un arbre qui permet d évaluer la valeur

Plus en détail

LE PROBLEME DU PLUS COURT CHEMIN

LE PROBLEME DU PLUS COURT CHEMIN LE PROBLEME DU PLUS COURT CHEMIN Dans cette leçon nous définissons le modèle de plus court chemin, présentons des exemples d'application et proposons un algorithme de résolution dans le cas où les longueurs

Plus en détail

Il y a 24 individus en ligne (les modèles de voitures) et 6 variables en colonnes (paramètres mécaniques). Valeurs propres

Il y a 24 individus en ligne (les modèles de voitures) et 6 variables en colonnes (paramètres mécaniques). Valeurs propres VOITURE: On étudie 6 différents paramètres mécaniques (les variables), exprimées dans des unités différentes, de 24 modèles de voitures (les individus). Modèle Cylindre Puissance Vitesse Poids Longueur

Plus en détail

Activités à faire à la maison pour renforcer le concept de formes géométriques

Activités à faire à la maison pour renforcer le concept de formes géométriques pour renforcer le concept de formes géométriques Une œuvre en figures planes Crée une œuvre qui comprend toutes les figures planes décrites ci-dessous. Un cercle jaune Deux triangles isocèles rouges non

Plus en détail

MIS 102 Initiation à l Informatique

MIS 102 Initiation à l Informatique MIS 102 Initiation à l Informatique Responsables et cours : Cyril Gavoille Catherine Pannier Matthias Robine Marc Zeitoun Planning : 6 séances de cours 5 séances de TD (2h40) 4 séances de TP (2h40) + environ

Plus en détail

Prénom : Matricule : Sigle et titre du cours Groupe Trimestre INF1101 Algorithmes et structures de données Tous H2004. Loc Jeudi 29/4/2004

Prénom : Matricule : Sigle et titre du cours Groupe Trimestre INF1101 Algorithmes et structures de données Tous H2004. Loc Jeudi 29/4/2004 Questionnaire d'examen final INF1101 Sigle du cours Nom : Signature : Prénom : Matricule : Sigle et titre du cours Groupe Trimestre INF1101 Algorithmes et structures de données Tous H2004 Professeur(s)

Plus en détail

Utilisation des tableaux sémantiques dans les logiques de description

Utilisation des tableaux sémantiques dans les logiques de description Utilisation des tableaux sémantiques dans les logiques de description IFT6281 Web Sémantique Jacques Bergeron Département d informatique et de recherche opérationnelle Université de Montréal bergerja@iro.umontreal.ca

Plus en détail

! Text Encoding Initiative

! Text Encoding Initiative Format XML: suite! le contenu d un élément est la concaténation de! texte! et d éléments (imbrication)! => structure arborescente! pas de chevauchement de balises! => exemple : une analyse syntagmatique

Plus en détail

F411 - Courbes Paramétrées, Polaires

F411 - Courbes Paramétrées, Polaires 1/43 Courbes Paramétrées Courbes polaires Longueur d un arc, Courbure F411 - Courbes Paramétrées, Polaires Michel Fournié michel.fournie@iut-tlse3.fr http://www.math.univ-toulouse.fr/ fournie/ Année 2012/2013

Plus en détail

Introduction à la théorie des graphes. Solutions des exercices

Introduction à la théorie des graphes. Solutions des exercices CAHIERS DE LA CRM Introduction à la théorie des graphes Solutions des exercices Didier Müller CAHIER N O 6 COMMISSION ROMANDE DE MATHÉMATIQUE 1 Graphes non orientés Exercice 1 On obtient le graphe biparti

Plus en détail

1ère partie Nadine Cullot. Bases de données déductives. Bases de données déductives Introduction et Motivation

1ère partie Nadine Cullot. Bases de données déductives. Bases de données déductives Introduction et Motivation Master STIC «Image Informatique et Ingénierie» Module Informatique Modèles de représentation - 10h CM Nadine Cullot Kokou Yétongnon nadine.cullot@u-bourgogne.fr kokou.yetongnon@u-bourgogne.fr 1ère partie

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

Marketing territorial Cités de l énergie. Nicolas Babey, docteur en sciences humaines Professeur à la Haute école Arc

Marketing territorial Cités de l énergie. Nicolas Babey, docteur en sciences humaines Professeur à la Haute école Arc Marketing territorial Cités de l énergie Nicolas Babey, docteur en sciences humaines Professeur à la Haute école Arc Contexte Les régions dites périphériques subissent de plein fouet les effets de la mondialisation.

Plus en détail

Ricco Rakotomalala http://eric.univ-lyon2.fr/~ricco/cours/cours_programmation_r.html. R.R. Université Lyon 2

Ricco Rakotomalala http://eric.univ-lyon2.fr/~ricco/cours/cours_programmation_r.html. R.R. Université Lyon 2 Ricco Rakotomalala http://eric.univ-lyon2.fr/~ricco/cours/cours_programmation_r.html 1 R est un langage de programmation. L objet de base est un vecteur de données. C est un «vrai» langage c.-à-d. types

Plus en détail

Mathématiques pour l Informatique Relations binaires Jérôme Gensel

Mathématiques pour l Informatique Relations binaires Jérôme Gensel Master ICA Spécialité IHS Année 2007/2008 Mathématiques pour l Informatique Relations binaires Jérôme Gensel I) Relations binaires 1. Généralités Définition 1 : Une relation binaire d un ensemble E vers

Plus en détail

LA PHYSIQUE DES MATERIAUX. Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE

LA PHYSIQUE DES MATERIAUX. Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE LA PHYSIQUE DES MATERIAUX Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE Pr. A. Belayachi Université Mohammed V Agdal Faculté des Sciences Rabat Département de Physique - L.P.M belayach@fsr.ac.ma 1 1.Le réseau

Plus en détail

ENVIRONNEMENT DE WORKFLOW SCIENTIFIQUE

ENVIRONNEMENT DE WORKFLOW SCIENTIFIQUE ENVIRONNEMENT DE WORKFLOW SCIENTIFIQUE VALIDATION ET CONFORMITÉS Yuan LIN, Isabelle MOUGENOT, Thérèse LIBOUREL, LIRMM, 161 rue Ada, Montpellier Espace DEV, 500 rue JF Breton - Université de Montpellier

Plus en détail

Classification sectorielle des fonctions. Manuel pour les entreprises du secteur de l assurance

Classification sectorielle des fonctions. Manuel pour les entreprises du secteur de l assurance Classification sectorielle des fonctions Manuel pour les entreprises du secteur de l assurance Classification sectorielle des fonctions Table des matières du manuel pour les entreprises du secteur de l

Plus en détail

Déterminants possessifs

Déterminants possessifs POSSESSIFS MATÉRIEL POUR ALLOPHONES 1 Déterminants Déterminants référents Déterminants possessifs Le déterminant possessif indique une relation d appartenance, de possession, de parenté, d origine, etc.,

Plus en détail

Bail commercial. Entre, société par actions dont le siège social est situé

Bail commercial. Entre, société par actions dont le siège social est situé Bail commercial Entre, société par actions dont le siège social est situé au, ici représentée par son/sa président(e),, autorisé(e) à cet effet, tel qu'il (elle) le déclare;(ci-après désigné le "Locateur")

Plus en détail

Règles Aménagées Tournoi à 3

Règles Aménagées Tournoi à 3 Aménagées Tournoi à 3 Moins 9 ans mixtes 2004 et après Temps de jeu 2 x 9' 5' 5+1 (sur les 2 mi-temps) Jeu sur terrain MINI HAND Taille des ballons Taille 0 (48/50) 1 ère et le 2 ème mi-temps : 1 GB différent

Plus en détail

Cours 7 : fonctions recursives, arithmétique binaire, flottants 1

Cours 7 : fonctions recursives, arithmétique binaire, flottants 1 Cours 7 : fonctions recursives, arithmétique binaire, flottants 1 Les types énumérés On peut aussi définir des types qui ont un nombre fini de valeurs (ex: jours de la semaine, couleurs primaires, etc.)

Plus en détail

TD Réseau Les codes correcteurs et les codes détecteurs. Claude Duvallet

TD Réseau Les codes correcteurs et les codes détecteurs. Claude Duvallet TD Réseau Les codes correcteurs et les codes détecteurs Claude Duvallet Matrise Informatique Année 2003-2004 Année 2003-2004 p.1/22 Présentation (1) Pourquoi? Des canaux de transmission imparfait entraînant

Plus en détail

Introduction. II. Aire de répartition des requins

Introduction. II. Aire de répartition des requins Premiers résultats des observations acoustiques effectuées sur les requins bouledogue et tigre entre le 2 décembre 2011 et le 2 décembre 2012 sur la côte ouest de la Réunion Introduction Ces premiers résultats

Plus en détail

Informatique CM5 Synthèse :

Informatique CM5 Synthèse : Informatique CM5 Synthèse : 1. Tuples et enregistrements : Un enregistrement a une étiquette, des champs et des noms de champs - L étiquette et les noms des champs sont des atomes ou des entiers - L opération

Plus en détail

Tutoriel Mathematica Les graphiques

Tutoriel Mathematica Les graphiques Tutoriel Mathematica Les graphiques Adaptation du tutoriel gratuit sur le Web par Éric Gaul, Dominic Boire et Issa Lizon (voir Médiagraphie). Modifié pour Mathematica 7 par Jean-Philippe Samson. Maintenant

Plus en détail

CST-RT021-part 3:2013

CST-RT021-part 3:2013 CST-RT021-part 3:2013 Annexe sur les transformations couleur Groupe de travail CST-RT-021-MFFW Nom Version Auteur Date de publication CST-RT021-part3:2013 1 François Helt 24 mars 2014 CST-RT021-MFFW 1.1

Plus en détail

Partie 3. Gilles Lebrun (gilles.lebrun@unicaen.fr)

Partie 3. Gilles Lebrun (gilles.lebrun@unicaen.fr) Partie 3 Gilles Lebrun (gilles.lebrun@unicaen.fr) Les arbres binaires Définition : C est une structure arborescente ou hiérarchique ou récursive Chaque élément (nœud) constituant la structure de l arbre

Plus en détail

Recherche dans un tableau

Recherche dans un tableau Chapitre 3 Recherche dans un tableau 3.1 Introduction 3.1.1 Tranche On appelle tranche de tableau, la donnée d'un tableau t et de deux indices a et b. On note cette tranche t.(a..b). Exemple 3.1 : 3 6

Plus en détail

Théorie des Langages

Théorie des Langages Théorie des Langages AntLR - Générateur d analyseurs Claude Moulin Université de Technologie de Compiègne Printemps 2015 Sommaire 1 Introduction 2 AntLR ANTLR : ANother Tool for Language Recognition URL

Plus en détail

Sujet 4: Programmation stochastique propriétés de fonction de recours

Sujet 4: Programmation stochastique propriétés de fonction de recours Sujet 4: Programmation stochastique propriétés de fonction de recours MSE3313: Optimisation Stochastiqe Andrew J. Miller Dernière mise au jour: October 19, 2011 Dans ce sujet... 1 Propriétés de la fonction

Plus en détail

VOS PREMIERS PAS AVEC TRACENPOCHE

VOS PREMIERS PAS AVEC TRACENPOCHE Vos premiers pas avec TracenPoche page 1/16 VOS PREMIERS PAS AVEC TRACENPOCHE Un coup d'oeil sur l'interface de TracenPoche : La zone de travail comporte un script, une figure, un énoncé, une zone d analyse,

Plus en détail

Ecran : Processeur : OS : Caméra : Communication : Mémoire : Connectique : Audio : Batterie : Autonomie : Dimensions : Poids : DAS :

Ecran : Processeur : OS : Caméra : Communication : Mémoire : Connectique : Audio : Batterie : Autonomie : Dimensions : Poids : DAS : SMARTPHONE - DUAL-CORE - NOIR 3483072425242 SMARTPHONE - DUAL-CORE - BLEU XXXX SMARTPHONE - DUAL-CORE - BLANC 3483072485246 SMARTPHONE - DUAL-CORE - ROSE 3483073704131 SMARTPHONE - DUAL-CORE - ROUGE XXXX

Plus en détail

Fouille de données orientée motifs, méthodes et usages.

Fouille de données orientée motifs, méthodes et usages. Fouille de données orientée motifs, méthodes et usages. François RIOULT GREYC - Équipe Données-Documents-Langues CNRS UMR 6072 Université de Caen Basse-Normandie France Résumé La fouille de données orientée

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007 Vision industrielle et télédétection - Détection d ellipses Guillaume Martinez 17 décembre 2007 1 Table des matières 1 Le projet 3 1.1 Objectif................................ 3 1.2 Les choix techniques.........................

Plus en détail

RÈGLEMENT NUMÉRO 328 RÈGLEMENT RELATIF AUX AVERTISSEURS DE FUMÉE =====================================================================

RÈGLEMENT NUMÉRO 328 RÈGLEMENT RELATIF AUX AVERTISSEURS DE FUMÉE ===================================================================== PROVINCE DE QUÉBEC MUNICIPALITÉ DE SAINTE-JUSTINE-DE-NEWTON RÈGLEMENT NUMÉRO 328 ===================================================================== RÈGLEMENT RELATIF AUX AVERTISSEURS DE FUMÉE =====================================================================

Plus en détail

Objectif du groupe GT1.1 Fusion de Données

Objectif du groupe GT1.1 Fusion de Données Objectif du groupe GT1.1 Fusion de Données Le groupe travaille dans trois directions Le vocabulaire (piloté par ADVITAM et l aide de SITE) L état de l art (piloté par SYROKKO) Deux applications illustratives

Plus en détail

TRAVAIL ET GESTION DE L EMPLOI?

TRAVAIL ET GESTION DE L EMPLOI? INDICATIONS COMPLÉMENTAIRES E n s e l i m i t a n t à u n e présentation graphique simple et en insistant sur les déterminants de l'offre et de la demande, on expliquera l'analyse néoclassique du fonctionnement

Plus en détail

Rapport de statistiques de consultations citoyennes Centre de Justice de Proximité de Québec

Rapport de statistiques de consultations citoyennes Centre de Justice de Proximité de Québec Rapport de statistiques de consultations citoyennes Centre de Justice de Proximité de Québec Date du rapport: 13 avril 2015 Couverture du rapport: Avril 2015 Mois Nombre de consultation Avril 2015 13 Total

Plus en détail

Théorie des langages. compilation. Elise Bonzon http://web.mi.parisdescartes.fr/ bonzon/ elise.bonzon@parisdescartes.fr 1 / 59

Théorie des langages. compilation. Elise Bonzon http://web.mi.parisdescartes.fr/ bonzon/ elise.bonzon@parisdescartes.fr 1 / 59 et compilation Elise Bonzon http://web.mi.parisdescartes.fr/ bonzon/ elise.bonzon@parisdescartes.fr 1 / 59 et compilation et compilation Structure d un compilateur Analyse lexicale Analyse syntaxique Analyse

Plus en détail

Initiation à la Programmation en Logique avec SISCtus Prolog

Initiation à la Programmation en Logique avec SISCtus Prolog Initiation à la Programmation en Logique avec SISCtus Prolog Identificateurs Ils sont représentés par une suite de caractères alphanumériques commençant par une lettre minuscule (les lettres accentuées

Plus en détail

Linked Open Data. Le Web de données Réseau, usages, perspectives. Eric Charton. Eric Charton

Linked Open Data. Le Web de données Réseau, usages, perspectives. Eric Charton. Eric Charton Linked Open Data Le Web de données Réseau, usages, perspectives Sommaire Histoire du Linked Open Data Structure et évolution du réseau Utilisations du Linked Open Data Présence sur le réseau LOD Futurs

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci http://liris.cnrs.fr/hamamache.kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de

Plus en détail

VIII. Interrogation de documents avec XQuery

VIII. Interrogation de documents avec XQuery VIII. Interrogation de documents avec XQuery 350 XQUERY? Est un langage d interrogation de données XML N est pas un dialecte XML Est un sur-ensemble de XPath 2.0 Utilise le même modèle de données (XDM)

Plus en détail

PhimecaSoft Présentation du logiciel (non libre) 28 Mars 2008 Présentation de PhimecaSoft

PhimecaSoft Présentation du logiciel (non libre) 28 Mars 2008 Présentation de PhimecaSoft PhimecaSoft Présentation du logiciel (non libre) 1 PhimecaSoft - Généralités 1) Une volonté : un outil «facile» d'utilisation => la difficulté est dans les méthodes, pas dans la mise en données! 2) Compatibilité

Plus en détail

Principes de Paquetage. Packaging et Marketing

Principes de Paquetage. Packaging et Marketing Génie Logiciel Conception Principes de Paquetage Packaging et Marketing La conception Définition Générale : Activité créatrice qui consiste à élaborer un projet, ou une partie des éléments le constituant,

Plus en détail

LES RESISTANCES. Caractéristiques, rôle et utilisation de la résistance

LES RESISTANCES. Caractéristiques, rôle et utilisation de la résistance LES RESISTANCES Caractéristiques, rôle et utilisation de la résistance Le rôle de la résistance est de limiter le courant dans un circuit. Elle possède plusieurs caractéristiques technique : La valeur

Plus en détail

BANQUE DEGROOF SA POLITIQUE DE RÉMUNÉRATION

BANQUE DEGROOF SA POLITIQUE DE RÉMUNÉRATION BANQUE DEGROOF SA POLITIQUE DE RÉMUNÉRATION 1 1. INTRODUCTION Le présent document constitue la politique générale de rémunération de Banque Degroof SA (la Politique de Rémunération). 1.1 Champ d application

Plus en détail

UTILISER SA CALCULATRICE GRAPHIQUE TI NSPIRE CX CAS

UTILISER SA CALCULATRICE GRAPHIQUE TI NSPIRE CX CAS UTILISER SA CALCULATRICE GRAPHIQUE TI NSPIRE CX CAS Table des matières I ) Bon à savoir 2 I.1. L écran d Accueil (Home), le Bloc-Note (Scratchpad) et les classeurs............................ 2 I.2. Le

Plus en détail

Structures de données, IMA S6

Structures de données, IMA S6 Structures de données, IMA S6 Arbres Binaires d après un cours de N. Devésa, Polytech Lille. Laure Gonnord http://laure.gonnord.org/pro/teaching/ Laure.Gonnord@polytech-lille.fr Université Lille 1 - Polytech

Plus en détail

1171 Notre-Dame Ouest, # 100 Victoriaville, Qc G6P 7L1. Téléphone: (819) 751-0095 Télécopieur: (819) 751-1292

1171 Notre-Dame Ouest, # 100 Victoriaville, Qc G6P 7L1. Téléphone: (819) 751-0095 Télécopieur: (819) 751-1292 1171 Notre-Dame Ouest, # 100 Victoriaville, Qc G6P 7L1 Téléphone: (819) 751-0095 Télécopieur: (819) 751-1292 DESCRIPTION DES CONNECTEURS DU LBC-WG et RECOMMENDATIONS IMPORTANTES POUR L INSTALLATION Documentation

Plus en détail

C12. Les structures arborescentes. Août 2006

C12. Les structures arborescentes. Août 2006 Les structures arborescentes Août 2006 Objectifs du C12 Connaître le principe de la structure d arbre binaire Connaître les détails d implémentation de la structure d arbre binaire de recherche Les structures

Plus en détail

Matrice d accès. Master SEMS, 2013-2014. Pierre Paradinas. October 16, 2013

Matrice d accès. Master SEMS, 2013-2014. Pierre Paradinas. October 16, 2013 Matrice d accès Master SEMS, 2013-2014 Pierre Paradinas October 16, 2013 Le Concept de Matrice d Accès ntroduit en 1971 par Butler Lampson Definition On note O, l ensemble des entités objet qui sont impliquées

Plus en détail

Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1

Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1 Exemples de problèmes et d applications INF6953 Exemples de problèmes Sommaire Quelques domaines d application Quelques problèmes réels Allocation de fréquences dans les réseaux radio-mobiles Affectation

Plus en détail

Les arbres binaires. Terminologie avancée (1) TAD arbre binaire. Terminologie avancée (2) Terminologie avancée (3)

Les arbres binaires. Terminologie avancée (1) TAD arbre binaire. Terminologie avancée (2) Terminologie avancée (3) Les arbres Structures les plus importantes et les plus utilisées en informatique Liste = cas dégénéré d arbre Eemples: Arbres généalogiques Arbres de classification Arbres d epression / - Traduction de

Plus en détail

Une application de méthodes inverses en astrophysique : l'analyse de l'histoire de la formation d'étoiles dans les galaxies

Une application de méthodes inverses en astrophysique : l'analyse de l'histoire de la formation d'étoiles dans les galaxies Une application de méthodes inverses en astrophysique : l'analyse de l'histoire de la formation d'étoiles dans les galaxies Ariane Lançon (Observatoire de Strasbourg) en collaboration avec: Jean-Luc Vergely,

Plus en détail

Cours Algorithmique, 2ème partie AS IUT

Cours Algorithmique, 2ème partie AS IUT Cours Algorithmique, 2ème partie AS IUT Cours 2 : Arbres Binaires Anne Vilnat http://www.limsi.fr/individu/anne/coursalgo Plan 1 Représentations arborescentes 2 Définition d un arbre binaire récursive

Plus en détail

SOFI Gestion+ Version 5.4. Echanges de données informatiques Spicers Sofi gestion+ Groupements. SOFI Informatique. Actualisé le 10.09.

SOFI Gestion+ Version 5.4. Echanges de données informatiques Spicers Sofi gestion+ Groupements. SOFI Informatique. Actualisé le 10.09. SOFI Gestion+ SOFI Informatique Version 5.4 Echanges de données informatiques Spicers Sofi gestion+ Groupements Actualisé le 10.09.2004 Table des matières 1. Catalogue et tarifs... 4 1.1 Définition EDI...

Plus en détail

Théorie et Codage de l Information (IF01) exercices 2013-2014. Paul Honeine Université de technologie de Troyes France

Théorie et Codage de l Information (IF01) exercices 2013-2014. Paul Honeine Université de technologie de Troyes France Théorie et Codage de l Information (IF01) exercices 2013-2014 Paul Honeine Université de technologie de Troyes France TD-1 Rappels de calculs de probabilités Exercice 1. On dispose d un jeu de 52 cartes

Plus en détail

son sont SON HOMOPHONES LES EXERCICES DE FRANÇAIS DU CCDMD www.ccdmd.qc.ca Homophones grammaticaux de catégories différentes

son sont SON HOMOPHONES LES EXERCICES DE FRANÇAIS DU CCDMD www.ccdmd.qc.ca Homophones grammaticaux de catégories différentes GRAMMATICAUX DE CATÉGORIES DIFFÉRENTES SON HOMOPHONES SONT 1 Homophones grammaticaux de catégories différentes son sont son : sont : déterminant possessif singulier à la 3 e personne. Il fait partie d

Plus en détail

Cours de compilation

Cours de compilation Cours de compilation 1 Introduction Un compilateur est un logiciel de traduction d un langage source vers un langage cible. D ordinaire le langage source est un langage de programmation évolué, comme C++

Plus en détail

(Introduction à l ) Introduction aux diagrammes causaux (Directed Acyclic Graphs) Loïc Desquilbet

(Introduction à l ) Introduction aux diagrammes causaux (Directed Acyclic Graphs) Loïc Desquilbet (Introduction à l ) Introduction aux diagrammes causaux (Directed Acyclic Graphs) Loïc Desquilbet Contexte et représentation des diagrammes causaux Contexte Recherche de facteurs de risque d une maladie

Plus en détail

Algorithmes probabilistes. Références: Fundamentals of Algortihms de Gilles Brassard et Paul Bratley Note de cours de Pierre McKenzie

Algorithmes probabilistes. Références: Fundamentals of Algortihms de Gilles Brassard et Paul Bratley Note de cours de Pierre McKenzie Algorithmes probabilistes Références: Fundamentals of Algortihms de Gilles Brassard et Paul Bratley Note de cours de Pierre McKenzie Mise en contexte: Indices: Vous êtes à la recherche d un trésor légendaire

Plus en détail

Club langue française Quiz. Par Julien COUDERC et Maxence CORDIEZ

Club langue française Quiz. Par Julien COUDERC et Maxence CORDIEZ Club langue française Quiz Par Julien COUDERC et Maxence CORDIEZ Question 1 Quelle est l'orthographe correcte? 1. J'ai vécu des amours passionnés. 2. J'ai vécu des amoures passionés. 3. J'ai vécu des amours

Plus en détail

RAPPORT AUDIT SEO. Élaboré à l'attention de : Monsieur Greber Élaboré par : Cédric Peinado

RAPPORT AUDIT SEO. Élaboré à l'attention de : Monsieur Greber Élaboré par : Cédric Peinado - RAPPORT AUDIT SEO Élaboré à l'attention de : Monsieur Greber Élaboré par : Cédric Peinado 17 septembre 2013 Table des matières Optimisation structurelle 2 Optimisation des standards, performances et

Plus en détail

TD 2 - Les codes correcteurset les codes détecteurs d erreurs

TD 2 - Les codes correcteurset les codes détecteurs d erreurs TD 2 - Les codes correcteurs et les codes détecteurs d erreurs Claude Duvallet Université du Havre UFR Sciences et Techniques 25 rue Philippe Lebon - BP 540 76058 LE HAVRE CEDEX Claude.Duvallet@gmail.com

Plus en détail

Compilateurs : Analyse lexicale. Vous êtes ici 2. Analyse lexicale 4. Matthieu Amiguet. En entrée d un compilateur, on a généralement un fichier

Compilateurs : Analyse lexicale. Vous êtes ici 2. Analyse lexicale 4. Matthieu Amiguet. En entrée d un compilateur, on a généralement un fichier Compilateurs : Matthieu Amiguet 2009 2010 Vous êtes ici 2 Partie Avant Analyse syntaxique Analyse sémantique Arbre syntaxique abstrait (AST) Partie Arrière Optimisation de l AST Génération de code Optimisation

Plus en détail

Thomas, le plus petit,... sur la luge et Jérôme... Il dira : "Tu... bien ton bonnet sur la tête!"

Thomas, le plus petit,... sur la luge et Jérôme... Il dira : Tu... bien ton bonnet sur la tête! conjugaison conj06a J'utilise le futur. 1 Attention : futur = infinitif + ai, as, a, ons, ez, ont Complète avec les verbes de la liste : regarder-observer-crier-préparer-installer-monter-pousser-garder

Plus en détail

CHAPITRE I Modélisation d un panneau solaire 2012

CHAPITRE I Modélisation d un panneau solaire 2012 1 I.Généralités sur les cellules photovoltaïques I.1.Introduction : Les énergies renouvelables sont des énergies à ressource illimitée. Les énergies renouvelables regroupent un certain nombre de filières

Plus en détail

MANUEL D UTILISATION

MANUEL D UTILISATION MANUEL D UTILISATION Document mis à jour le 9 juillet 2015 B.B.S. Développement : 04.73.34.96.69 Fax : 04.73.34.10.03 info@bbs-developpement.com 1 SOMMAIRE 1. Installation 4 2. Configuration minimale 7

Plus en détail

SemWeb : Interrogation sémantique du web avec XQuery. Les membres du projet SemWeb

SemWeb : Interrogation sémantique du web avec XQuery. Les membres du projet SemWeb SemWeb : Interrogation sémantique du web avec XQuery Les membres du projet SemWeb Contexte et objectifs Le projet SemWeb s inscrit dans les efforts de recherche et de développement actuels pour construire

Plus en détail

Manuel électronique Selection Professional

Manuel électronique Selection Professional Manuel électronique Selection Professional Version: 1.1 Nom: FR_Designer_Information_constructions_V1-1.PDF Thèmes: 1 Construction de cuisine...2 1.1 Types de construction...2 1.2 Dimensions de construction...2

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

Chapitre 5. Calculs financiers. 5.1 Introduction - notations

Chapitre 5. Calculs financiers. 5.1 Introduction - notations Chapitre 5 Calculs financiers 5.1 Introduction - notations Sur un marché économique, des acteurs peuvent prêter ou emprunter un capital (une somme d argent) en contrepartie de quoi ils perçoivent ou respectivement

Plus en détail

Le langage SQL Rappels

Le langage SQL Rappels Le langage SQL Rappels Description du thème : Présentation des principales notions nécessaires pour réaliser des requêtes SQL Mots-clés : Niveau : Bases de données relationnelles, Open Office, champs,

Plus en détail

LABORATOIRE 4 OSCILLOSCOPE ET CIRCUIT DE REDRESSEMENT INTRODUCTION À L OSCILLOSCOPE

LABORATOIRE 4 OSCILLOSCOPE ET CIRCUIT DE REDRESSEMENT INTRODUCTION À L OSCILLOSCOPE LABORATOIRE 4 OSCILLOSCOPE ET CIRCUIT DE REDRESSEMENT INTRODUCTION À L OSCILLOSCOPE QU EST-CE QU UN OSCILLOSCOPE... Un oscilloscope est un appareil permettant d analyser avec une grande précision le comportement

Plus en détail

Une introduction aux codes correcteurs quantiques

Une introduction aux codes correcteurs quantiques Une introduction aux codes correcteurs quantiques Jean-Pierre Tillich INRIA Rocquencourt, équipe-projet SECRET 20 mars 2008 1/38 De quoi est-il question ici? Code quantique : il est possible de corriger

Plus en détail

Chapitre-4 Logique du 1er ordre - Syntaxe -

Chapitre-4 Logique du 1er ordre - Syntaxe - Chapitre-4 Logique du 1er ordre - Syntaxe - Plan 1- Introduction 2- Alphabet 3-Termes d'un langage 4- Formule de la logique du 1er ordre 5-Sous-formule d'une formule du 1er ordre 6- Arbre de décomposition

Plus en détail

LA PUISSANCE DES MOTEURS. Avez-vous déjà feuilleté le catalogue d un grand constructeur automobile?

LA PUISSANCE DES MOTEURS. Avez-vous déjà feuilleté le catalogue d un grand constructeur automobile? LA PUISSANCE DES MOTEURS Avez-vous déjà feuilleté le catalogue d un grand constructeur automobile? Chaque modèle y est décliné en plusieurs versions, les différences portant essentiellement sur la puissance

Plus en détail