Analyse multivariée approfondie

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Analyse multivariée approfondie"

Transcription

1 Analyse multivariée approfondie Enseignants: NIANG N. et RUSSOLILLIO G. Maître de conférences Statistique Appliquée Laboratoire CEDRIC CNAM et d autres intervenants extérieurs au Cnam 1 STA 201 Analyse Multivariée Approfondie Inscriptions et agréments (master actuariat, MR085) prérequis STA101 STA102 Programme Modalités de contrôle SAS Informations: 2 1

2 Bibliographie M.BARDOS : Analyse discriminante (Dunod, 2001) T.HASTIE, J.FRIEDMAN, R.TIBSHIRANI : The Elements of Statistical Learning, 2 ème édition (Springer, 2009) L.LEBART, M.PIRON, A.MORINEAU : Statistique exploratoire multidimensionnelle, 4 ème édition (Dunod, 2006) J.P.NAKACHE, J.CONFAIS : Statistique explicative appliquée (Technip, 2003) G.SAPORTA : Probabilités, analyse des données, statistique, 3 ème édition (Technip, 2011) S.TUFFÉRY : Data mining et statistique décisionnelle, 3 ème édition (Technip, 2010) Le Livre de James, Witten, Hastie, & Tibshirani (2013). An Introduction to Statistical Learning with Applications in R. (Téléchargeable à partir de la page des auteurs). 3 STA 201 Analyse Multivariée Approfondie Objectifs pédagogiques Approfondir les méthodes statistiques à plusieurs variables, qu'elles soient descriptives ou décisionnelles Compétences visées Maitriser les principales méthodes récentes d'analyse multivariée 4 2

3 STA 201 Analyse Multivariée Approfondie PARTIE 1 Rappels de base Rappels sur les méthodes d analyse multivariée Eléments de statistique multivariée (lois, tests ) Echantillonnage, simulation, bootstrap PARTIE 2 Approfondissement des méthodes exploratoires ACP non linéaire, de données mixtes, multiblocs, distances-mds modèles de mélanges en classification, classification de variables PARTIE 3 Approfondissement des méthodes explicatives Régression Ridge, PLS, logistique, robuste, non paramétrique Equations structurelles PARTIE 4 Méthodes récentes 5 théorie de l apprentissage, SVM, méthodes sparse, méta modèles Introduction Rappels d analyse des données multivariée L analyse multivariée désigne un ensemble de méthodes et de techniques pour l étude de tableaux de plusieurs variables décrivant plusieurs individus. Plusieurs de ces techniques sont récentes leur développement étant lié en partie à l augmentation de performances des ordinateurs. Le but de ce cours est de donner un panorama des méthodes pour aider au choix de méthodes adéquates en fonction du type de données ou de la problématique à étudier. 6 3

4 I. Généralités Statistique ensemble de données recueil, traitement, interprétation des données Aspect descriptif, exploratoire : tableaux, graphiques, résumés numériques Aspect explicatif, inférentiel, décisionnel : échantillon issu d une population, estimations, tests hypothèses probabilistes. Statistique classique étude d un nombre restreint de variables sur un petit ensemble d individus 7 Analyse des données * traitement de données en masse : grand nombre de variables et d individus * vision globale multidimensionnelle des individus et des variables * représentations géométriques, création de nouvelles variables *Outils informatiques indispensables mais pas que! 8 4

5 Data mining Big data * Explosion du volume des données : très grand nombre de variables et d individus, multiples sources, natures, vitesse (flux, temps réel ) Données opérationnelles, analyse secondaire Possibilités de valorisation (valeur), succès, effet de mode? * Besoins de méthodes et d outils informatiques spécifiques: renouveau de l analyse des données 9 Deux points de vue : Individus : - ressemblances ou différences - recherche de groupes homogènes Variables : - liaisons entre variables - recherche d une explication d une variable par les autres importance de la prise en compte des liaisons entre variables Plusieurs méthodes 10 5

6 Quelques définitions Population : ensemble d objets Individus, unités statistiques : objets de base Échantillon : partie observée Variables : grandeurs mesurées sur les individus numériques discrètes ou continues qualitatives nominales ou ordinales 11 Un exemple Individus = voitures, variables : grandeurs mesurées sur les individus numériques discrètes ou continues qualitatives nominales ou ordinales 12 6

7 II- Les différents types de tableaux de données Tableaux individus variables n lignes : les individus et p colonnes : les variables - numériques : matrice X nxp - qualitatives : modalités codées (arbitraires) ou tableau disjonctif (indicatrices) Tableau de contingence croisement de 2 variables qualitatives 13 Exemple: n= 4 individus, p=3 variables qualitatives à 3, 3 et 2 modalités Tableau brut de données codées arbitraires Transformation tableau disjonctif p p X = p p np X = (X 1 X 2 X p ) indicatrices des modalités X 1 X 2 X Tableau de contingence X 1 *X

8 Les différents types de tableaux de données (suite) Tableaux de préférence (ou de rangs) entre objets : les variables sont les objets et chaque individu range ces objets par ordre de préférence décroissante. Tableaux de distances: tableaux des nxn distances entre individus Tableaux de présence absence Autres types de tableaux: tableaux de notes, de pourcentage 15 III- Les différentes méthodes Classement selon l objectif poursuivi: * description : but est de comprendre au mieux les données grâce à une description simplifiée aussi proche que possible de la réalité. (On étudie le tableau entier) * explication et prévision : but est d expliquer et de prévoir une ou plusieurs variables du tableau en fonction d autres variables. (tableau partitionné en 2) Remarque: Il existe aussi les cas de plusieurs tableaux a décrire ou à expliquer Deux familles de méthodes. 16 8

9 Les différentes méthodes exploratoires (1) Méthodes factorielles ( faire la différence entre réduction et sélection) réduction du nombre de variables en les résumant par un petit nombre de composantes synthétiques appelés facteurs : ACP pour les variables quantitatives (analyse en composantes principales) AFC pour 2 variables qualitatives (analyse factorielle des correspondances simples) ACM pour plusieurs variables qualitatives (analyse des correspondances multiples) Extension: non linéaire, MDS, données mixtes, évolutives, tableaux Les différentes méthodes exploratoires (2) Méthodes de classification réduction du nombre d individus par la formation de groupes homogènes : méthodes de partitionnement en un nombre fixé de classes a priori: méthode des centres mobiles, nuées dynamiques méthodes hiérarchiques: suite de partitions emboîtées: méthodes de classification ascendante hiérarchique (CAH) Extension: classification de variables (méthodes divisives), méthodes probabilistes modèles de mélanges (non géométriques) 18 9

10 Méthodes explicatives, décisionnelles ou inférentielles Modèle linéaire général : recherche d une relation entre une variable numérique et plusieurs autres : Numériques : régression Qualitatives : analyse de la variance Mixtes : analyse de la covariance Analyse discriminante: prédiction d une variable qualitative à l aide de plusieurs prédicteurs en général numériques Extension : Disqual, PLS, ridge, régression logistique, arbre de décision, non linéaire, réseaux de neurones 19 Le but de l analyse multidimensionnelle exploratoire est de décrire ce tableau de données. Pas d hypothèses probabilistes ou de modèle. La démarche classique en deux étapes: 1) analyses préalables unidimensionnelle et bidimensionnelle 2) Réaliser une étude multidimensionnelle 20 10

11 ANALYSE EN COMPOSANTES PRINCIPALES 21 EXEMPLE: LES DONNEES Feuille de calcul Microsoft Excel 22 11

12 EXEMPLE 23 EXEMPLE 24 12

13 EXEMPLE 25 EXEMPLE 26 13

14 EXEMPLE 27 EXEMPLE 28 14

15 EXEMPLE 29 EXEMPLE 30 15

Analyse multivariée approfondie

Analyse multivariée approfondie Analyse multivariée approfondie Enseignants: NIANG N. et RUSSOLILLIO G. Maître de conférences Statistique Appliquée Laboratoire CEDRIC CNAM http://www.cnam.fr et d autres intervenants extérieurs au Cnam

Plus en détail

Outils Statistiques du Data Mining

Outils Statistiques du Data Mining Outils Statistiques du Data Mining Pr Roch Giorgi roch.giorgi@univ-amu.fr SESSTIM, Faculté de Médecine, Aix-Marseille Université, Marseille, France http://sesstim-orspaca.org http://optim-sesstim.univ-amu.fr

Plus en détail

de la classification Approche pragmatique t Editions TECHNIP 27 rue Cinoux, 75737 PARIS Cedex 15, FRANCE Arbres hiérarchiques Partitionnements

de la classification Approche pragmatique t Editions TECHNIP 27 rue Cinoux, 75737 PARIS Cedex 15, FRANCE Arbres hiérarchiques Partitionnements Jean-Pierre NAKACHE Ingénieur de recherche CNRS détaché à l'inserm Chargé de cours à l'isup Josiane CONFAIS Ingénieur d'études chargée des enseignements pratiques à l'isup Approche pragmatique de la classification

Plus en détail

STAGE. «Offre modulaire - Recueillir et analyser les besoins et attentes des usagers - Module 4 - L'analyse experte des données statistiques»

STAGE. «Offre modulaire - Recueillir et analyser les besoins et attentes des usagers - Module 4 - L'analyse experte des données statistiques» STAGE «Offre modulaire - Recueillir et analyser les besoins et attentes des usagers - Module 4 - L'analyse experte des données statistiques» PROGRAMME DETAILLE Intervenant : PARIS nicolas Cabinet : OPTIMA

Plus en détail

L analyse des données statistiques

L analyse des données statistiques L analyse des données statistiques Public : Les cadres devant analyser des données quantitatives et qualitatives Objectif : Apprendre, en utilisant principalement Excel : - à traiter des données provenant

Plus en détail

TABLE DES MATIÈRES CHAPITRE 1 LA CONSTRUCTION D UN INSTRUMENT DE MESURE... 9. Avant-propos... 5 Sommaire... 7

TABLE DES MATIÈRES CHAPITRE 1 LA CONSTRUCTION D UN INSTRUMENT DE MESURE... 9. Avant-propos... 5 Sommaire... 7 TABLE DES MATIÈRES Avant-propos... 5 Sommaire... 7 CHAPITRE 1 LA CONSTRUCTION D UN INSTRUMENT DE MESURE... 9 1. Le processus de construction d un test... 9 2. La construction d un test d acquis scolaires...

Plus en détail

M2, spécialité Ingénierie Mathématique Laboratoire de Mathématiques Jean Leray Département de Mathématiques Université de Nantes. Programme 2013-2014

M2, spécialité Ingénierie Mathématique Laboratoire de Mathématiques Jean Leray Département de Mathématiques Université de Nantes. Programme 2013-2014 M2, spécialité Ingénierie Mathématique Laboratoire de Mathématiques Jean Leray Département de Mathématiques Université de Nantes Programme 2013-2014 Contact : master-pro@math.univ-nantes.fr Option : CS

Plus en détail

Apprentissage statistique Stratégie du Data-Mining

Apprentissage statistique Stratégie du Data-Mining Apprentissage statistique Stratégie du Data-Mining Hélène Milhem Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 H. Milhem (IMT, INSA Toulouse) Apprentissage statistique

Plus en détail

L analyse en composantes principales en pratique

L analyse en composantes principales en pratique L analyse en composantes principales en pratique Après avoir vu sa formalisation mathématique dans le module précédent, on s intéresse ici à l utilisation pratique de l ACP. 1 Objectifs L objectif de l

Plus en détail

Introduction à l analyse des données. Olivier Godechot

Introduction à l analyse des données. Olivier Godechot Introduction à l analyse des données Olivier Godechot Introduction. Les données statistiques : de très nombreuses variables. Aucune n est parfaite La perception d un phénomène appréhendée comme la combinaison

Plus en détail

Anne-lise HUYET- Jean-Luc PARIS LIMOS équipe Recherche en Systèmes de Production IFMA Mail: huyet@ifma.fr, paris@ifma.fr

Anne-lise HUYET- Jean-Luc PARIS LIMOS équipe Recherche en Systèmes de Production IFMA Mail: huyet@ifma.fr, paris@ifma.fr Extraction de Connaissances pertinentes sur le comportement des systèmes de production: une approche conjointe par Optimisation Évolutionniste via Simulation et Apprentissage Anne-lise HUYET- Jean-Luc

Plus en détail

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation Programme des épreuves des concours externes de recrutement des personnels D1 RECRUTEMENT DES ASSISTANTS INGÉNIEURS...2 D1.1 Assistant cartographe (nouveau programme)...2 D1.2 Assistant en production et

Plus en détail

COURS DE DATA MINING 6 : MODELISATION NON-SUPERVISEE LES ANALYSES FACTORIELLES

COURS DE DATA MINING 6 : MODELISATION NON-SUPERVISEE LES ANALYSES FACTORIELLES COURS DE DATA MINING 6 : MODELISATION NON-SUPERVISEE LES ANALYSES FACTORIELLES EPF 4/ 5 ème année - Option Ingénierie d Affaires et de Projets - Finance Bertrand LIAUDET 6 : Modélisation non-supervisée

Plus en détail

Scénario: Exploration, classification des encours boursiers parisiens

Scénario: Exploration, classification des encours boursiers parisiens Scénario: Exploration, classification des encours boursiers parisiens Résumé Scénario d analyse d un jeu de données : l ensemble des séries des encours boursier à Paris. Description, lissage et classification

Plus en détail

COURS DE STATISTIQUES (24h)

COURS DE STATISTIQUES (24h) COURS DE STATISTIQUES (24h) Introduction Statistiques descriptives (4 h) Rappels de Probabilités (4 h) Echantillonnage(4 h) Estimation ponctuelle (6 h) Introduction aux tests (6 h) Qu est-ce que la statistique?

Plus en détail

LEHALLIER Benoît YGUEL Benjamin. Tutorial : Utilisation de R pour une modélisation optimale de phénomènes expérimentaux.

LEHALLIER Benoît YGUEL Benjamin. Tutorial : Utilisation de R pour une modélisation optimale de phénomènes expérimentaux. LEHALLIER Benoît YGUEL Benjamin Tutorial : Utilisation de R pour une modélisation optimale de phénomènes expérimentaux. ECIM Comportement et socialisation Mars 2006 La modélisation est utilisée pour comprendre

Plus en détail

Atelier N 6 : Analyse en composantes principales (ACP) Présentation des méthodes d analyses multivariées

Atelier N 6 : Analyse en composantes principales (ACP) Présentation des méthodes d analyses multivariées Atelier N 6 : Analyse en composantes principales (ACP) Contenu : Présentation des méthodes d analyses multivariées Présentation des méthodes d analyses multivariées Classification des méthodes : Les méthodes

Plus en détail

Les Réseaux de Neurones avec

Les Réseaux de Neurones avec Les Réseaux de Neurones avec Au cours des deux dernières décennies, l intérêt pour les réseaux de neurones s est accentué. Cela a commencé par les succès rencontrés par cette puissante technique dans beaucoup

Plus en détail

HUITIEME PARTIE ANALYSE EN COMPSANTES PRINCIPALES

HUITIEME PARTIE ANALYSE EN COMPSANTES PRINCIPALES 105 HUITIEME PARTIE ANALYSE EN COMPSANTES PRINCIPALES 1. Introduction En statistiques il arrive fréquemment que les individus soient décrits par un grand nombre de caractères. : voitures décrites par leur

Plus en détail

Semestre 1. Volume horaire hebdomadaire. Cours TD TP T.Perso. Total. Calcul de Probabilité 3 1,5 1,5 6 84 2. Introduction à l Economie 1,5 1,5 3 42 2

Semestre 1. Volume horaire hebdomadaire. Cours TD TP T.Perso. Total. Calcul de Probabilité 3 1,5 1,5 6 84 2. Introduction à l Economie 1,5 1,5 3 42 2 3ème Année Semestre 1 N MODULES MATIERES Volume horaire hebdomadaire Cours TD TP T.Perso. Total Volume horaire semestriel (14 semaines) Coefficients Régime d'examen 1 Modèle Probabiliste 1,5 1,5 1,5 4,5

Plus en détail

La classification 2012-2013. Fabien Chevalier Jérôme Le Bellac

La classification 2012-2013. Fabien Chevalier Jérôme Le Bellac La classification 2012-2013 Fabien Chevalier Jérôme Le Bellac Introduction : Classification : méthode d analyse de données Objectif : Obtenir une représentation schématique simple d'un tableau de données

Plus en détail

Prof.É.D.Taillard. Classification automatique @Prof. E. Taillard 1 EIVD, Informatique logiciel, 4 e semestre

Prof.É.D.Taillard. Classification automatique @Prof. E. Taillard 1 EIVD, Informatique logiciel, 4 e semestre INFORMATIQUE ORIENTATION LOGICIELS CLASSIFICATION AUTOMATIQUE Prof.É.D.Taillard Classification automatique @Prof. E. Taillard EIVD, Informatique logiciel, 4 e semestre CLASSIFICATION AUTOMATIQUE But :

Plus en détail

GOUTTE. Analyse Statistique des Données Cours 4. Master 2 EID. LUISS, Libera Università Internazionale degli Studi Sociali

GOUTTE. Analyse Statistique des Données Cours 4. Master 2 EID. LUISS, Libera Università Internazionale degli Studi Sociali LUISS, Libera Università Internazionale degli Studi Sociali Université Paris 13 Laboratoire Analyse, Géométrie et Applications UMR 7539 GOUTTE Analyse Statistique des Données Cours 4 Master 2 EID goutte@math.univ-paris13.fr

Plus en détail

MODELISATION DE DONNÉES QUALITATIVES PREMIÈRE PARTIE

MODELISATION DE DONNÉES QUALITATIVES PREMIÈRE PARTIE MODELISATION DE DONNÉES QUALITATIVES PREMIÈRE PARTIE Pierre-Louis Gonzalez 1 I INTRODUCTION 1 variable qualitative. Tri à plat. Représentations graphiques. Modélisation : loi binomiale loi multinomiale

Plus en détail

Pour un socle de la licence de MATHEMATIQUES

Pour un socle de la licence de MATHEMATIQUES Pour un socle de la licence de MATHEMATIQUES Société Mathématique de France Société de Mathématiques Appliquées et Industrielles Société Française de Statistique Contexte général Afin d éviter de trop

Plus en détail

LA PROFESSIONNALISATION DES CURSUS

LA PROFESSIONNALISATION DES CURSUS LA PROFESSIONNALISATION DES CURSUS EN MASTER 1 Les étudiants de M1 devront faire au plus tard pour le 15 novembre le choix d une inscription en alternance ou en formation initiale. L alternance est une

Plus en détail

Statistiques descriptives (1/2)

Statistiques descriptives (1/2) Statistiques descriptives (1/2) Anita Burgun 2011-2012 http://www.med.univ-rennes1.fr Introduction! Statistique: méthode scientifique qui consiste à réunir des données chiffrées sur des ensembles d individus

Plus en détail

LES TYPOLOGIES DE PARCOURS METHODES ET USAGES. Yvette Grelet, Patrick Rousset CEREQ grelet@mrsh.unicaen.fr rousset@cereq.fr

LES TYPOLOGIES DE PARCOURS METHODES ET USAGES. Yvette Grelet, Patrick Rousset CEREQ grelet@mrsh.unicaen.fr rousset@cereq.fr LES TYPOLOGIES DE PARCOURS METHODES ET USAGES Yvette Grelet, Patrick Rousset CEREQ grelet@mrsh.unicaen.fr rousset@cereq.fr 1 PLAN Première partie : un exemple traité «en vraie grandeur» : les 26500 jeunes

Plus en détail

PSY C3 Eléments de statistique

PSY C3 Eléments de statistique PSY C3 Eléments de statistique Responsables : Amandine Penel & Fabrice Guillaume Maîtres de conférence en Psychologie Cognitive penel@up.univ-mrs.fr guillaume@isc.cnrs.fr semaine du 4 Sept semaine du oct

Plus en détail

DOSSIER PEDAGOGIQUE LABORATOIRE D ETUDES DE MARCHES ET STATISTIQUE APPLIQUEE

DOSSIER PEDAGOGIQUE LABORATOIRE D ETUDES DE MARCHES ET STATISTIQUE APPLIQUEE MINISTERE DE LA COMMUNAUTE FRANCAISE ADMINISTRATION GENERALE DE L ENSEIGNEMENT ENSEIGNEMENT DE PROMOTION SOCIALE DE REGIME 1 DOSSIER PEDAGOGIQUE UNITE D ENSEIGNEMENT LABORATOIRE D ETUDES DE MARCHES ET

Plus en détail

Classification Exemple : Enquête d opinion sur les OGM. Pauline Le Badezet Alexandra Lepage

Classification Exemple : Enquête d opinion sur les OGM. Pauline Le Badezet Alexandra Lepage Classification Exemple : Enquête d opinion sur les OGM Pauline Le Badezet Alexandra Lepage SOMMAIRE Introduction Méthodologie Méthode de partitionnement Classification Ascendante Hiérarchique Interprétation

Plus en détail

Analyse de spectres d absorbance pour la prédiction des taux de moisissure, de matières grasses et de protéines d échantillons de viande

Analyse de spectres d absorbance pour la prédiction des taux de moisissure, de matières grasses et de protéines d échantillons de viande Université de Nantes M2 Ingénierie Mathématiques Rapport de chimiométrie Analyse de spectres d absorbance pour la prédiction des taux de moisissure, de matières grasses et de protéines d échantillons de

Plus en détail

Statistiques I. Alexandre Caboussat alexandre.caboussat@hesge.ch Classe : Mercredi 8h15-10h00 Salle : C114 http://campus.hesge.

Statistiques I. Alexandre Caboussat alexandre.caboussat@hesge.ch Classe : Mercredi 8h15-10h00 Salle : C114 http://campus.hesge. Statistiques I Alexandre Caboussat alexandre.caboussat@hesge.ch Classe : Mercredi 8h15-10h00 Salle : C114 http://campus.hesge.ch/caboussata A. Caboussat, HEG STAT I, 2010 1 / 54 Rappel Représentations

Plus en détail

GUIDE DU DATA MINER. Classification - Typologies. Data Management, Data Mining, Text Mining

GUIDE DU DATA MINER. Classification - Typologies. Data Management, Data Mining, Text Mining GUIDE DU DATA MINER Classification - Typologies Data Management, Data Mining, Text Mining 1 Guide du Data Miner Classification - Typologies Le logiciel décrit dans le manuel est diffusé dans le cadre d

Plus en détail

Classification. Pr Roch Giorgi. roch.giorgi@univ-amu.fr

Classification. Pr Roch Giorgi. roch.giorgi@univ-amu.fr Classification Pr Roch Giorgi roch.giorgi@univ-amu.fr SESSTIM, Faculté de Médecine, Aix-Marseille Université, Marseille, France http://sesstim-orspaca.org http://optim-sesstim.univ-amu.fr Objectif Rechercher

Plus en détail

Plan de cours. Programme : Sciences de la nature 200.B0 2-2-2. 2 2/3 unités. Automne 2010

Plan de cours. Programme : Sciences de la nature 200.B0 2-2-2. 2 2/3 unités. Automne 2010 Plan de cours Programme : Sciences de la nature 00.B0 Département : Titre du cours : Code du cours : Mathématiques Probabilités et Statistiques 01-GHC-04 -- /3 unités Automne 010 Éric Brunelle A-10 450-347-5301

Plus en détail

ECOLE SUPERIEURE DE COMMERCE D ALGER

ECOLE SUPERIEURE DE COMMERCE D ALGER MINISTERE DE L ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE ECOLE SUPERIEURE DE COMMERCE D ALGER PROGRAMME DE LICENCE EN SCIENCES COMMERCIALES ET FINANCIERES OPTION : GESTION ( applicable à partir

Plus en détail

SEMIN. Analyses factorielles avec R. Elisabeth MORAND INED

SEMIN. Analyses factorielles avec R. Elisabeth MORAND INED SEMIN Analyses factorielles avec R Elisabeth MORAND INED SEMIN R du MNHN 10 Décembre 2009 E. Morand 10 Décembre 2009 INED 1 / 42 Part I Analyse en Composantes Principales : ACP 2 / 42 Sommaire 1 Introduction

Plus en détail

Module 3 : Introduction à la Modélisation SOUS MODELER

Module 3 : Introduction à la Modélisation SOUS MODELER Module 3 : Introduction à la Modélisation SOUS MODELER 1 Techniques prédictives Passé pour prédire l avenir 2 Concepts de la modélisation Données test / apprentissage Généralement créées par l utilisateur

Plus en détail

Analyse des données - Logiciel R

Analyse des données - Logiciel R Université de Strasbourg Analyse des données Master de Sciences, Spécialité Statistique 2012/13 Master Actuariat Emmanuel Périnel Analyse des données - Logiciel R TP n 2. L Analyse en Composantes Principales

Plus en détail

UNIVERSITÉ DU QUÉBEC À MONTRÉAL Département des sciences comptables. PLAN DE COURS SCO4524 CONTRÔLE INTERNE Automne 2008

UNIVERSITÉ DU QUÉBEC À MONTRÉAL Département des sciences comptables. PLAN DE COURS SCO4524 CONTRÔLE INTERNE Automne 2008 UNIVERSITÉ DU QUÉBEC À MONTRÉAL Département des sciences comptables PLAN DE COURS SCO4524 CONTRÔLE INTERNE Automne 2008 Professeur : Coordonnateur : À déterminer Claude Pilote R-4665 X 7944 pilote.claude@uqam.ca

Plus en détail

Analyse en composantes principales (ACP)

Analyse en composantes principales (ACP) Analyse en composantes principales (ACP) François Husson Laboratoire de mathématiques appliquées - Agrocampus Rennes husson@agrocampus-ouest.fr 1 / 31 Quel type de données? L ACP s intéresse à des tableaux

Plus en détail

Formation Actuaire Data-Scientist PROGRAMME

Formation Actuaire Data-Scientist PROGRAMME Formation Actuaire Data-Scientist PROGRAMME 15 Septembre 2014 Arthur Charpentier, Romuald Élie & Jérémie Jakubowicz 15914 Programme Séance inaugurale : révolu-on numérique besoins des entreprises cadre

Plus en détail

Cours Fouille de données avancée

Cours Fouille de données avancée Ministère de l Enseignement Supérieur et de la Recherche Scientifique Université Mohamed Khider - Biskra Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie Département d Informatique

Plus en détail

REFERENTIEL NORMATIF du CNES

REFERENTIEL NORMATIF du CNES REFERENTIEL NORMATIF du CNES Référence : Méthode et Procédure DEMARCHE D'ANALYSE DU LOGICIEL Annexe Technique de la MP RNC-CNES-Q-80-529 APPROBATION Président du CDN ; date et nom : Page i.1 PAGE D'ANALYSE

Plus en détail

Mesurer l incidence de BDC sur ses clients

Mesurer l incidence de BDC sur ses clients Équipe de la Recherche et de l analyse économique de BDC Juillet 213 DANS CE RAPPORT Le présent rapport est fondé sur une analyse statistique réalisée par Statistique Canada visant à évaluer l incidence

Plus en détail

Séance 2: Modèle Euclidien

Séance 2: Modèle Euclidien Généralités Métrique sur les INDIVIDUS Métrique sur les VARIABLES Inertie Analyse des individus Laboratoire de Statistique et Probabilités UMR 5583 CNRS-UPS www.lsp.ups-tlse.fr/gadat Généralités Métrique

Plus en détail

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7 Table des matières Préface Public 1 Structure de l ouvrage 1 Caractéristiques de l ouvrage 3 Contenu 3 Pédagogie 4 Remarques sur l adaptation française 4 Ressources numériques 5 Biographie 6 PREMIÈRE PARTIE

Plus en détail

LES ORIENTATIONS DE VALEURS DES ENSEIGNANTS D ÉDUVATION PHYSIQUE ET SPORTIVE. INFLUENCE DU SEXE, DE L ÂGE ET DE L ANCIENNETÉ

LES ORIENTATIONS DE VALEURS DES ENSEIGNANTS D ÉDUVATION PHYSIQUE ET SPORTIVE. INFLUENCE DU SEXE, DE L ÂGE ET DE L ANCIENNETÉ N 189 PASCO D., GUINARD J-Y. et KERMARREC G. LES ORIENTATIONS DE VALEURS DES ENSEIGNANTS D ÉDUVATION PHYSIQUE ET SPORTIVE. INFLUENCE DU SEXE, DE L ÂGE ET DE L ANCIENNETÉ Les valeurs se révèlent à l occasion

Plus en détail

Techniques d estimation : Maximum de Vraisemblance et Méthode des Moments Généralisée

Techniques d estimation : Maximum de Vraisemblance et Méthode des Moments Généralisée Techniques d estimation : Maximum de Vraisemblance et Méthode des Moments Généralisée Philippe Gagnepain Université Paris 1 Ecole d Economie de Paris Centre d économie de la Sorbonne-UG 4-Bureau 405 philippe.gagnepain@univ-paris1.fr

Plus en détail

Analyse simultanée de variables quantitatives et qualitatives. à l aide de l analyse factorielle multiple

Analyse simultanée de variables quantitatives et qualitatives. à l aide de l analyse factorielle multiple Analyse simultanée de variables quantitatives et qualitatives à l aide de l analyse factorielle multiple Jérôme Pagès Laboratoire de mathématiques appliquées Agrocampus France Analyse Factorielle Multiple

Plus en détail

Analyse de données avec Complémentarité des méthodes d analyse factorielle et de classification

Analyse de données avec Complémentarité des méthodes d analyse factorielle et de classification Analyse de données avec Complémentarité des méthodes d analyse factorielle et de classification François Husson & Julie Josse Laboratoire de mathématiques appliquées Agrocampus Rennes husson@agrocampus-ouest.fr

Plus en détail

MASTER INFORMATIQUE - SPÉCIALITÉ : INTELLIGENCE ARTIFICIELLE

MASTER INFORMATIQUE - SPÉCIALITÉ : INTELLIGENCE ARTIFICIELLE MASTER INFORMATIQUE - SPÉCIALITÉ : INTELLIGENCE ARTIFICIELLE RÉSUMÉ DE LA FORMATION Type de diplôme : Master (LMD) Domaine : Sciences, Technologies, Santé Nature de la formation : Mention Niveau d'étude

Plus en détail

Analyse des Données. Questions de cours. Exercice n o 1. Examen terminal - Durée 3h

Analyse des Données. Questions de cours. Exercice n o 1. Examen terminal - Durée 3h I.U.T de Caen STID 2ème année Département STID Année Universitaire 2002-2003 Responsable de cours : Alain LUCAS Seule la calculatrice type collège est autorisée. Seul le cours est autorisé. On rappelera

Plus en détail

Licence Sciences, Technologie, Santé Mention MATHématiques - INFOrmatique

Licence Sciences, Technologie, Santé Mention MATHématiques - INFOrmatique Licence Sciences, Technologie, Santé Mention MATHématiques - INFOrmatique Objectif Cette licence a pour objectif de répondre aux besoins de formation des étudiants qui désirent approfondir leurs connaissances

Plus en détail

Questionnaire. Questionnaire. www.quint-essenz.ch Promotion Santé Suisse, Avenue de la Gare 52, CH-1001 Lausanne. Fonction

Questionnaire. Questionnaire. www.quint-essenz.ch Promotion Santé Suisse, Avenue de la Gare 52, CH-1001 Lausanne. Fonction Version: 2.0 / 14.10.2003 / 1 Fonction En général, pour les projets de prévention et de promotion de la santé, on utilise un questionnaire pour obtenir des informations et/ou des données sur des avis ou

Plus en détail

Motivation : pourquoi exploration de données? Nous nous noyons dans les données, mais manquons cruellement de connaissances

Motivation : pourquoi exploration de données? Nous nous noyons dans les données, mais manquons cruellement de connaissances 1 Introduction Définition et motivations Tâches de data mining (fouille de données, exploration de données) Techniques et algorithmes Exemples et applications 1 Motivation : pourquoi exploration de données?

Plus en détail

Module A ALGEBRE MATRICIELLE. Prçesentation - Plan

Module A ALGEBRE MATRICIELLE. Prçesentation - Plan Module A ALGEBRE MATRICIELLE Prçesentation - Plan Ce module occupe une place particuliçere dans le dispositif de formation ça la statistique mis en place par le service de Formation Permanente et le dçepartement

Plus en détail

PROGRAMME DE MATHEMATIQUE 6 ème SCIENTIFIQUE & TECHNIQUE INDUSTRIELLE

PROGRAMME DE MATHEMATIQUE 6 ème SCIENTIFIQUE & TECHNIQUE INDUSTRIELLE PROGRAMME DE MATHEMATIQUE 6 ème SCIENTIFIQUE & TECHNIQUE INDUSTRIELLE Chaque fois que c est nécessaire, il sera fait usage des moyens modernes de calcul. I. ALGEBRE-ANALYSE OBJECTIFS SPECIFIQUES CONTENUS/MATIERES

Plus en détail

Partie I : Séries statistiques descriptives univariées (SSDU)... 1

Partie I : Séries statistiques descriptives univariées (SSDU)... 1 Table des matières Préface Avant-propos Pourquoi un tel ouvrage?... À propos de l ouvrage... À propos de la statistique................................................................ Remerciements....

Plus en détail

Choix de modèle en régression linéaire

Choix de modèle en régression linéaire Master pro Fouille de données Philippe Besse 1 Objectif Choix de modèle en régression linéaire La construction d un score d appétence sur les données bancaires correspond au choix et à l estimation d un

Plus en détail

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p.

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p. STATISTIQUE THÉORIQUE ET APPLIQUÉE Tome 2 Inférence statistique à une et à deux dimensions Pierre Dagnelie TABLE DES MATIÈRES Bruxelles, De Boeck, 2011, 736 p. ISBN 978-2-8041-6336-5 De Boeck Services,

Plus en détail

Analyse de données M1 Statistique et économétrie - 2013 V. Monbet Analyse factorielle des correspondances

Analyse de données M1 Statistique et économétrie - 2013 V. Monbet Analyse factorielle des correspondances Analyse de données M1 Statistique et économétrie - 2013 V. Monbet Analyse factorielle des correspondances A travers ce TD, nous allons apprendre à mettre en oeuvre l analyse factorielle des correspondances.

Plus en détail

Dossier de conception. Conception d un site E-learning

Dossier de conception. Conception d un site E-learning Conception d un site E-learning Encadré par : Mr. LACHGAR Mohamed Réalisé par : LECHQER Younesse ELEOUAD Abdelhadi SOMMAIRE I. PERIMETRE DU PROJET... 2 1.1. ENJEUX ET VISION DU PROJET... 3 1.2. ARCHITECTURE

Plus en détail

Laboratoire 2 Extraction des caractéristiques

Laboratoire 2 Extraction des caractéristiques Laboratoire 2 Extraction des caractéristiques L objectif de l extraction et de la sélection de caractéristiques est d identifier les caractéristiques importantes pour la discrimination entre classes. Après

Plus en détail

La régression. Quantifier en sociologie. Séance 10 Joanie Cayouette

La régression. Quantifier en sociologie. Séance 10 Joanie Cayouette La régression Quantifier en sociologie. Séance 10 Joanie Cayouette Principe général L effet d une variable x sur une seconde variable y toutes choses égales par ailleurs Deux types de régression : 1)La

Plus en détail

1.1 Exemple introductif d un cube de données... 2

1.1 Exemple introductif d un cube de données... 2 1.1 Exemple introductif d un cube de données............... 2 2.1 Pré-traitement des données avec les outils OLAP [MHW00]...... 14 2.2 Architecture d un système intégrant SGBD, OLAP et MOLAP [Fu05] 16

Plus en détail

LEAN SIX SIGMA. Lean Six Sigma Black Belt

LEAN SIX SIGMA. Lean Six Sigma Black Belt LEAN SIX SIGMA Lean Six Sigma Black Belt XL SA Fabrice SANCHIS : fabrice.sanchis@xl-sa.fr 11 CHEMIN DU VIEUX CHENE 38240 MEYLAN tel. : 04 76 61 34 00 / fax : 04 76 61 34 01 de 8635 à 17550 Formation financée

Plus en détail

Cours 2 : Rappels de Statistique descriptive. A- Introduction B- Statistique descriptive unidimensionnelle C- Statistique descriptive bidimensionnelle

Cours 2 : Rappels de Statistique descriptive. A- Introduction B- Statistique descriptive unidimensionnelle C- Statistique descriptive bidimensionnelle Cours 2 : Rappels de Statistique descriptive A- Introduction B- Statistique descriptive unidimensionnelle C- Statistique descriptive bidimensionnelle A- Introduction A- Introduction Rappel : Série statistique

Plus en détail

PLACE DES STATISTIQUES DANS LA RECHERCHE MEDICALE

PLACE DES STATISTIQUES DANS LA RECHERCHE MEDICALE PLACE DES STATISTIQUES DANS LA RECHERCHE MEDICALE PLAN Définition des statistiques Échantillonnage Mise en place d une étude Interprétation des résultats Petits échantillons Analyse des bases de données

Plus en détail

Le Data Mining au service du Scoring ou notation statistique des emprunteurs!

Le Data Mining au service du Scoring ou notation statistique des emprunteurs! France Le Data Mining au service du Scoring ou notation statistique des emprunteurs! Comme le rappelle la CNIL dans sa délibération n 88-083 du 5 Juillet 1988 portant adoption d une recommandation relative

Plus en détail

Microcrédit, cause de la défaillance dans le prêt collectif (Une analyse empirique)

Microcrédit, cause de la défaillance dans le prêt collectif (Une analyse empirique) Microcrédit, cause de la défaillance dans le prêt collectif (Une analyse empirique) Mohammed Kaicer* & Rajae Aboulaich* *Laboratoire d étude et de recherche en mathématiques appliquées, Université Mohammed

Plus en détail

1. Explorer, organiser et démontrer des propriétés géométriques en termes de longueurs et d angles. Découvrir et étudier des nombres irrationnels.

1. Explorer, organiser et démontrer des propriétés géométriques en termes de longueurs et d angles. Découvrir et étudier des nombres irrationnels. Compétences : math, 2 ème degré (pages 1 à 3) math, 3 ème degré (pages 4 à 8) 3 grands thèmes du cours à 4h sem (pages 9 à 11) 3 grands thèmes du cours à 2h sem (pages 12 à 14) (Seules les définitions

Plus en détail

L analyse des correspondances et ses applications en recherche marketing. MONSUG mai 2015

L analyse des correspondances et ses applications en recherche marketing. MONSUG mai 2015 L analyse des correspondances et ses applications en recherche marketing MONSUG mai 2015 Contenu Mise en contexte et exemple d application L analyse des correspondances multiples (ACM) L ACM et la segmentation

Plus en détail

EFFICACITE PROFESSIONNELLE. Itinéraires : Ecoute et analyse prospective de son terrioire Ecoute citoyenne et démocratie participative

EFFICACITE PROFESSIONNELLE. Itinéraires : Ecoute et analyse prospective de son terrioire Ecoute citoyenne et démocratie participative EFFICACITE PROFESSIONNELLE Itinéraires : Ecoute et analyse prospective de son terrioire Ecoute citoyenne et démocratie participative DOMAINE : REPÈRES ET OUTILS FONDAMENTAUX / Sous-domaine : Connaissance

Plus en détail

Chef de projet, Votre kit tout-terrain

Chef de projet, Votre kit tout-terrain Chef de, Votre kit tout-terrain Auteur : Hughes Marchat Président du cabinet EFII (conseil et formation en conduite de ) Enseignant au CNAM et à l Ecole centrale de Paris Éditeur : Éditions d organisation

Plus en détail

Introduction à l'utilisation d'excel en Supervision

Introduction à l'utilisation d'excel en Supervision MASTERS ASE & GSI Introduction à l'utilisation d'excel en Supervision Pierre BONNET 2012-2013 2 Excel et Supervision Objectif d'une approche sous Excel - fournir une représentation concrète d'une partie

Plus en détail

P R O G R A M M E E T I N S T R U C T I O N S O F F I C I E L L E S

P R O G R A M M E E T I N S T R U C T I O N S O F F I C I E L L E S P R O G R A M M E E T I N S T R U C T I O N S O F F I C I E L L E S MP deuxième années PREAMBULE Sommaire I. Contexte de la réforme de l informatique en C.P.G.E II. Objectifs de la formation III. Moyens

Plus en détail

Catalogue des formations

Catalogue des formations Catalogue des formations Année 2015-2016 Conseil et formation Data Analytics tous droits réservés Formations analyse de données Sommaire Formations analyse de données L approche PLS... 2 Les modèles d

Plus en détail

WEKA : c est quoi? Brigitte Bigi. 15 février 2011. LPL - Équipe C3I. Brigitte Bigi (LPL - Équipe C3I) WEKA : c est quoi? 15 février 2011 1 / 32

WEKA : c est quoi? Brigitte Bigi. 15 février 2011. LPL - Équipe C3I. Brigitte Bigi (LPL - Équipe C3I) WEKA : c est quoi? 15 février 2011 1 / 32 WEKA : c est quoi? Brigitte Bigi LPL - Équipe C3I 15 février 2011 Brigitte Bigi (LPL - Équipe C3I) WEKA : c est quoi? 15 février 2011 1 / 32 Introduction 1 Introduction 2 Classification supervisée 3 WEKA

Plus en détail

Session 1 durée 3 heures

Session 1 durée 3 heures Université de Nantes Mai 27 Master MIM Examen d'analyse de données Session durée 3 heures Les documents sont interdits. Les calculatrices sont autorisées. Exercice : - Etude d un tableau à l aide d une

Plus en détail

Méthodes de projection

Méthodes de projection Chapitre 11 Méthodes de projection Contenu 11.1 Analyse en composantes principales........ 138 11.1.1 L Analyse en Composantes Principales........ 139 11.1.2 La (grande) famille des ACP............. 151

Plus en détail

Analyse en Composantes Principales avec XLSTAT

Analyse en Composantes Principales avec XLSTAT Analyse en Composantes Principales avec XLSTAT Une feuille Excel contenant à la fois les données et les résultats peut-être téléchargée en cliquant ici. Les données proviennent du US Census Bureau (le

Plus en détail

Ces activités peuvent nécessiter des adaptations avant d être utilisées auprès des élèves.

Ces activités peuvent nécessiter des adaptations avant d être utilisées auprès des élèves. Description des expériences Remarques : Ces activités peuvent nécessiter des adaptations avant d être utilisées auprès des élèves. Pour chaque expérience, l élève doit suivre un cadre spécifique d analyse.

Plus en détail

REFERENTIEL TECHNIQUE. Intrants. Utilisables en Agriculture Biologique

REFERENTIEL TECHNIQUE. Intrants. Utilisables en Agriculture Biologique Page: 1/10 REFERENTIEL TECHNIQUE Intrants Utilisables en Agriculture Biologique Ce document est la propriété d ECOCERT. Toute reproduction intégrale ou partielle faite sans le consentement écrit d ECOCERT

Plus en détail

INTRODUCTION AU DATA MINING

INTRODUCTION AU DATA MINING INTRODUCTION AU DATA MINING 6 séances de 3 heures mai-juin 2006 EPF - 4 ème année - Option Ingénierie d Affaires et de Projets Bertrand LIAUDET TP DE DATA MINING Le TP et le projet consisteront à mettre

Plus en détail

Enseignement secondaire. 3e classique F - Musique

Enseignement secondaire. 3e classique F - Musique Enseignement secondaire Classe de IIIe Physique 3e classique F - Musique Nombre de leçons: 2.5 Nombre minimal de devoirs: 1 de voir par trimestre Langue véhiculaire: Français I. Objectifs et compétences:

Plus en détail

Pierre-Louis GONZALEZ

Pierre-Louis GONZALEZ SEGMENTATION Pierre-Louis GONZALEZ 1 I. Les méthodes de segmentation. Introduction Les méthodes de segmentation cherchent à résoudre les problèmes de discrimination et de régression en divisant de façon

Plus en détail

Introduction. Vous avez sous les yeux la fiche descriptive de l unité de formation Informatique - Mathématiques appliquées à l informatique.

Introduction. Vous avez sous les yeux la fiche descriptive de l unité de formation Informatique - Mathématiques appliquées à l informatique. 1/6 Section : Bachelier en informatique de gestion Intitulé du cours : Professeur titulaire : Hubert SCHYNS Introduction Vous avez sous les yeux la fiche descriptive de l unité de formation Informatique

Plus en détail

Mastère spécialisé Data science. La Data science vous offre des débouchés innovants et porteurs dans le domaine stratégique des Big DataS

Mastère spécialisé Data science. La Data science vous offre des débouchés innovants et porteurs dans le domaine stratégique des Big DataS Mastère spécialisé Data science La Data science vous offre des débouchés innovants et porteurs dans le domaine stratégique des Big DataS Le volume des informations et des données disponibles explose. Il

Plus en détail

Outil pour l attribution des notes

Outil pour l attribution des notes Outil pour l attribution des notes Gilbert Babin A- Contexte Le présent document décrit le mode d utilisation d un outil développé avec Microsoft Excel permettant l analyse et l attribution des notes finales.

Plus en détail

Séminaire de Statistique

Séminaire de Statistique Master 1 - Economie & Management Séminaire de Statistique Support (1) Statistique descriptive «Uni & Bi-variée» R. Abdesselam - 2013/2014 Faculté de Sciences Economiques et de Gestion Université Lumière

Plus en détail

Analyse ABC d'un stock

Analyse ABC d'un stock Analyse ABC d'un stock Les analyses ABC sont propres à des stocks ayant beaucoup d'articles. Ils permettent de repérer les articles les plus importants qui ne sont généralement pas très nombreux et les

Plus en détail

Septembre 2008 DataLab

Septembre 2008 DataLab Septembre 2008 DataLab Toute la connaissance client en quelques minutes DataLab, Logiciel distribué par AMABIS www.amabis.com Tel 01 45 36 45 00 Valorisation des bases de données marketing Un aperçu de

Plus en détail

DATA.DREES MANUEL DÉTAILLÉ DES CUBES DE DONNEES

DATA.DREES MANUEL DÉTAILLÉ DES CUBES DE DONNEES DATA.DREES MANUEL DÉTAILLÉ DES CUBES DE DONNEES LES FONCTIONNALITÉS PROPOSÉES CONSULTER, MANIPULER ET CONSERVER DES CUBES DE DONNÉES EN LIGNE Ce document est destiné à vous présenter le fonctionnement

Plus en détail

Analyse de données M1 Statistique et économétrie - 2011 C. Herzet, V. Monbet Analyse Factorielle des Correspondances Multiples

Analyse de données M1 Statistique et économétrie - 2011 C. Herzet, V. Monbet Analyse Factorielle des Correspondances Multiples Analyse de données M1 Statistique et économétrie - 2011 C. Herzet, V. Monbet Analyse Factorielle des Correspondances Multiples 1 ACM avec R Plusieurs packages fournissent des outils permettant de réaliser

Plus en détail

TD ANALYSE DES DONNEES

TD ANALYSE DES DONNEES Master 2 TVPS Angers Analyse des données : ACP AFC CAH 1 TD ANALYSE DES DONNEES Exemple d'acp : Etude olfacto-gustative de cidres Plusieurs caractéristiques du cidre ont été mesurées sur 10 cidres différents.

Plus en détail

1. Description du cours

1. Description du cours 1. Description du cours Ce cours porte sur la généralisation de notions mathématiques par le biais d expériences, d applications et du développement de structures formelles et abstraites. Au moyen de la

Plus en détail

Système de gestion des risques

Système de gestion des risques Méthodes scientifiques pour les applications prometteuses des systèmes de gestion des risques Environnement (contexte) Domaines de risque Critères de risque Analyse des risques Identification des risques

Plus en détail

Section 3 - Méthode des prix hédoniques

Section 3 - Méthode des prix hédoniques Section 3 - Méthode des prix hédoniques L3 économétrie - Modélisation et inférence statistique Florence Goffette-Nagot GATE CNRS - Université Lyon 2 - ENS-LSH XX Section 3 - Estimation de prix hédoniques

Plus en détail