Stages de Formation en Statistique Appliquée et Logistique

Dimension: px
Commencer à balayer dès la page:

Download "Stages de Formation en Statistique Appliquée et Logistique"

Transcription

1 Stages de Formation en Statistique Appliquée et Logistique

2 Un aperçu de nos stages Titre Avec PC Durée Info Visualisation de données de laboratoire avec Excel oui 2 jours p. 3 Analyse de données de laboratoire avec Excel oui 2 jours p. 4 Introduction à la biostatistique avec Excel oui 2 jours p. 5 Analyse de mesures répétées oui 2 jours Web Introduction à la méthodologie Six Sigma non 1 jour p. 6 Formation Six Sigma Green Belt oui 5 jours p. 6 Optimisation et supervision de procédés dans le cadre de PAT oui 2 jours p. 7 Maîtrise statistique de la qualité et des procédés oui 1 jour p. 8 Analyse de données de stabilité et de durée de vie oui 2 jours p. 9 Analyse de données de durée de vie oui 1 jour Web Les plans d expériences et leur utilisation avec STAVEX : partie A oui 2 jours p Les plans d expériences et leur utilisation avec STAVEX : partie B oui 2 jours p Conception robuste & méthode de Taguchi oui 2 jours p. 12 Introduction au Data Mining non 1 jour p. 13 Introduction à l analyse de données multivariées non 1 jour p. 13 Data Mining avec des arbres de décision CART oui 2 jours p. 14 Réseaux de neurones et algorithmes génétiques en pratique non 1 jour p. 15 Analyse des flux de matière par simulation : partie A oui 2 jours p Analyse des flux de matière par simulation : partie B oui 2 jours p Dates : se référer au formulaire d inscription. Stages orientés vers les applications et illustrés par divers exemples et exercices. L utilisation de formules mathématiques est réduite au minimum. Cours enseignés en français mais aussi disponibles en anglais et en allemand. Possibilité d organiser les cours «à domicile» pour une entreprise ou un département. Les enseignants sont des statisticiens ou mathématiciens titulaires d un doctorat et avec une expérience professionnelle, en particulier dans l industrie pharmaceutique et chimique mais aussi dans l industrie mécanique et automobile. Informations : Dr. Philippe Solot, AICOS Technologies SA, Efringerstrasse 32, CH-4057 Bâle Tél. : , Fax : , Courriel : Pour de plus amples informations sur les dates de cours et nos activités, veuillez consulter notre site Internet

3 Visualisation de données de laboratoire avec Excel Par des techniques de visualisation appropriées, vous pourrez détecter et comprendre efficacement les dépendances existant dans vos données. Le cours permet de commencer sans peine à utiliser des méthodes statistiques. Il traite les techniques les plus importantes, leur utilisation judicieuse et l interprétation des résultats obtenus. Les méthodes sont essentiellement graphiques et se rattachent aux notions de base de la statistique. Leur apprentissage est facilité par des exercices effectués dans Excel avec une librairie complémentaire, EasyStat. Aux laborantins, aux responsables de laboratoire, aux chimistes, aux ingénieurs. À tous ceux qui travaillent avec Excel et qui souhaitent exploiter au maximum les informations contenues dans leurs données. Avoir des connaissances de base d Excel est un atout. Aucune connaissance préalable en statistique ou en mathématiques est nécessaire. Techniques pour une variable Techniques pour deux variables Diagramme arbre et feuilles Histogramme Moyenne, médiane, écart-type, variance Étendue Boîte à moustache Distributions, loi normale (gaussienne) Intervalles de confiance (idées de base) Graphique quantiles versus quantiles Carte de contrôle simple Graphique de nuage de points Coefficient de corrélation Régression linéaire simple (introduction) Quelques recommandations Diagramme de Pareto Diagramme d Ishikawa Traitement en couches Durée : 2 jours Nombre de participants : de 4 à 12 personnes (1 ordinateur par personne) Tél. : , Fax : , Courriel : - 3 -

4 Analyse de données de laboratoire avec Excel Le cours est destiné aux personnes soucieuses d exploiter efficacement des données de laboratoire pour, par exemple, assurer la qualité de leurs mesures. Les participants se familiarisent avec les outils les plus importants de la statistique, en principe disponibles sur Excel. Ces outils permettent une visualisation et une modélisation des données. Les notions de base et les méthodes de validation sont introduites. Le cours est orienté vers les applications pratiques. Des exercices sur PC traitant des données analytiques occupent une place centrale dans le cours. Excel et une librairie complémentaire, EasyStat, sont utilisés. Aux laborantins, aux responsables de laboratoire, aux chimistes, aux ingénieurs. Des connaissances préalables élémentaires en statistique sont requises (par exemple celles correspondant au cours «Visualisation de données de laboratoire avec Excel»). Des connaissances de base dans l utilisation d Excel sont requises. Rappel de notions de base Comparaison de plusieurs échantillons Expériences inter-laboratoires Régression linéaire Calibration Description de données par des graphiques simples (boîte à moustache, histogramme) Intervalles de confiance pour la moyenne Justesse, répétabilité Problématique des données aberrantes ou extrêmes et tests pour les détecter Graphiques simples de comparaison (boîte à moustache en parallèle) Tests statistiques de comparaison de deux échantillons Analyse de variance pour la comparaison de plusieurs échantillons Reproductibilité de méthodes de mesure Analyse de variance dans une expérience interlaboratoires Ajustement d une droite Intervalles de confiance pour la pente et l ordonnée à l origine Qualité d ajustement et analyse des résidus Transformations pour obtenir une relation linéaire Prédiction Régression forcée par l origine Calibration en tant qu inverse de la régression Intervalle de confiance Durée : 2 jours Nombre de participants : de 4 à 12 personnes (1 ordinateur par personne) Tél : , Fax : , Courriel : - 4 -

5 Introduction à la biostatistique avec Excel Le cours présente les principales méthodes de tests statistiques utilisées en biologie, en médecine et en pharmacie. L exemple typique de la biostatistique consiste à détecter et comparer avec assurance les effets significatifs d une substance. Outre les techniques de comparaison de deux ou de plusieurs échantillons, le cours traite la problématique de la comparaison multiple et des mesures répétées ainsi que différents aspects des plans d expériences. Les méthodes sont introduites avec un souci de simplicité, le formalisme mathématique étant réduit au minimum. L accent est mis sur des exercices pratiques sur PC pour lesquels Excel et une librairie complémentaire, EasyStat, sont utilisés. Selon les besoins, des démonstrations avec des programmes statistiques spécifiques seront effectuées. Aux scientifiques en recherche et développement qui souhaitent exploiter efficacement les informations se trouvant dans les données à l aide de méthodes statistiques. Des connaissances préalables élémentaires en statistique sont requises (par exemple celles correspondant au cours «Visualisation de données de laboratoire avec Excel»). Des connaissances de base dans l utilisation d Excel sont requises. Notions de base Comparaison de deux échantillons Comparaison de plusieurs échantillons Analyse de tableaux croisés deux-à-deux Distributions continues : loi normale (gaussienne), loi t de Student, loi F de Fisher-Snedecor, loi du chi-carré χ 2 Intervalle de confiance pour la moyenne Notions générales sur les tests statistiques Quelques grandeurs caractéristiques de l échantillon Problématique des données aberrantes ou extrêmes et tests pour les détecter Échantillons appariés et non appariés Test t Influence des grandeurs caractéristiques de l échantillon Tests non paramétriques : Wilcoxon-Mann-Whitney Les bases de l analyse de variance L analyse de variance à deux voies Quelques aspects des expériences inter-laboratoires : effets déterministes ou effets aléatoires Comparaisons multiples Mesures répétées (Repeated Measures) Test chi-carré d indépendance ou d homogénéité Généralisation Voyez aussi le cours spécifique «Analyse de mesures répétées» Vous trouverez des informations détaillées sur ce cours sur Durée : 2 jours Nombre de participants : de 4 à 12 personnes (1 ordinateur par personne) Tél : , Fax : , Courriel : - 5 -

6 Introduction à la méthodologie Six Sigma & Formation Six Sigma Green Belt Vous êtes confronté à la nécessité d optimiser vos procédés et de réduire notablement les coûts et vous désirez utiliser à ces fins la stratégie Six Sigma qui a fait ses preuves? Vous souhaitez acquérir, sur la base de nombreux cas pratiques, les connaissances indispensables à un Green Belt pour bien maîtriser le déroulement du projet et les analyses statistiques qui en font partie? Ce cours propose tout d abord une introduction d une journée à la méthodologie Six Sigma et explique dans ce cadre les 5 étapes DMAIC (Définir Mesurer Analyser Améliorer (Improve) Maîtriser (Control)). Vous apprendrez ensuite à connaître les outils Six Sigma et à les mettre en oeuvre efficacement. Vous appliquerez immédiatement les connaissances acquises pour résoudre par vous-même une série d exercices issus de la pratique. Pour vous faciliter la tâche, vous utiliserez Excel ainsi qu un progiciel convivial pour Six Sigma. La formation Green Belt comprend, outre un examen final et une attestation correspondante, une licence annuelle de ce progiciel.... l introduction? Aux managers qui souhaitent s informer sur les possibilités d application de Six Sigma, aux responsables production et qualité et aux responsables Six Sigma.... la formation Green Belt? Aux ingénieurs, aux scientifiques et aux techniciens dans les secteurs du développement, du génie des procédés, de la production et de la qualité. Aucune connaissance préalable en statistique n est requise, mais des connaissances de base d Excel sont recommandées. Méthodologie Six Sigma (1 jour) Outils Six Sigma (3,5 jours) Conclusion (0,5 jour) Qu est-ce que Six Sigma? Droit au but en 5 étapes claires (DMAIC) Vue d ensemble des outils Six Sigma Mise en place du système en entreprise, gestion de projet Présentation de projets Six Sigma réussis Process Mapping, diagramme d Ishikawa Visualisation de données Concepts de base (statistiques élémentaires, capabilité du procédé,...) Maîtrise Statistique de la Qualité et des Procédés Tests statistiques pour comparer des groupes Introduction aux plans d expériences Exercices détaillés sur PC Examen (certificat «Six Sigma Green Belt AICOS Technologies») Durée : 1 jour (Introduction), resp. 5 jours (Formation Green Belt) Nombre de participants : de 4 à 12 personnes (1 ordinateur par personne pour la formation Green Belt) Tél : , Fax : , Courriel : - 6 -

7 Optimisation et supervision de procédés dans le cadre de PAT (Process Analytical Technology) Voulez-vous adapter votre production aux standards GMP ou y est-elle déjà conforme? Vous voulez aussi mieux comprendre et maîtriser vos procédés? PAT (Process Analytical Technology) est une approche systématique qui constitute un des points clés de l initiative «GMP pour le 21 e siècle» de la FDA et qui est également fortement suivie par l'emea. Dans le cadre de la supervision de procédés requise par PAT, on collecte souvent de grandes quantités de données. Vous apprendrez à concevoir, analyser et superviser systématiquement vos procédés de fabrication en vous fondant sur les mesures des paramètres de qualité critiques. La priorité est accordée ici aux méthodes fondamentales qui, utilisées à bon escient, permettent de mieux comprendre les procédés. Les applications sont illustrées par de nombreux exemples pratiques et par des démonstrations de logiciel. Vous aurez en outre l'occasion de mettre les connaissances acquises en application au cours de nombreux exercices sur PC. Aux ingénieurs, aux scientifiques et aux techniciens dans les secteurs du développement, du génie des procédés, de la production et de la qualité. Des connaissances élémentaires en statistique sont requises (par exemple celles correspondant au cours «Visualisation de données de laboratoire avec Excel»). Le projet PAT Notions de base Plans d expériences Maîtrise des procédés Analyse de données multivariées La philosophie de PAT Stratégies pour l amélioration des procédés Visualisation de données Régression linéaire (multiple) : modélisation de la structure de corrélation entre observations Concept des plans d expériences statistiques Spécifications de l utilisateur Stratégie : criblage, modélisation, optimisation Plans d expériences : plans factoriels (fractionnaires), plans d optimisation Méthodes d analyse utilisées Cartes de contrôle Cartes Cusum Capabilité du processus : indices Cp et Cpk Analyse en composantes principales (ACP) Analyse discriminante Application : réduction de la dimension et maîtrise des procédés multivariée Durée : 2 jours Nombre de participants : de 4 à 12 personnes (1 ordinateur par personne) Tél. : , Fax : , Courriel : - 7 -

8 Maîtrise statistique de la qualité et des procédés Quand un procédé est-il sous contrôle? Comment reconnaît-on un écart par rapport à une valeur spécifiée? Comment peut-on comparer les résultats d un procédé sous contrôle aux spécifications exigées? Dans ce cours, vous apprendrez les principales techniques de supervision, d amélioration et de validation des procédés. Les méthodes sont essentielles en développement et en production (BPF/GMP) afin d identifier rapidement des variations de qualité et de documenter le déroulement des procédés (par exemple selon l Annual Product Review). Le cours présente beaucoup d applications pratiques et évite le formalisme mathématique dans la mesure du possible. Toutes les méthodes sont illustrées par des démonstrations sur PC. Principalement à des techniciens et à des responsables du contrôle de qualité. Des connaissances élémentaires en statistique sont requises (par exemple celles correspondant au cours «Visualisation de données de laboratoire avec Excel»). Maîtrise statistique de la qualité Maîtrise statistique des procédés (MSP) Aperçu de quelques autres méthodes (Quality by Design) Contexte historique Échantillons Plans d échantillonnage : Concepts (caractéristiques des opérations) Exemples (MIL STD 105E) Cartes de qualité (cartes de contrôle) pour des valeurs groupées pour des valeurs individuelles limites de contrôle et de spécification Cartes Cusum Capabilité du processus : indices Cp et Cpk Maîtrise de procédés multivariée Stratégies pour l amélioration des procédés Durée : 1 jour Nombre de participants : de 4 à 12 personnes (1 ordinateur par personne) Tél. : , Fax : , Courriel : - 8 -

9 Analyse de données de stabilité et de durée de vie Devez-vous veiller à ce que votre produit soit utilisable sans problème ou conserve les mêmes propriétés pendant une certaine période? Au moyen des méthodes présentées, issues des domaines de la fiabilité et de l analyse de données de stabilité et de durée de vie, vous apprendrez dans ce cours à estimer de manière plausible la durée de conservation ou de fiabilité de votre produit. L accent sera mis sur l utilisation de méthodes graphiques ainsi que sur le choix et l adaptation de distributions statistiques adéquates. Les méthodes seront illustrées par des exemples et des exercices pratiques issus de l industrie chimique et pharmaceutique ainsi que de l industrie des machines. Des démonstrations logicielles complèteront la présentation. La mise en oeuvre des normes de la ICH sera discutée en détail. Aux chimistes, aux pharmaciens et aux ingénieurs qui sont responsables de la stabilité ou du fonctionnement sans faille de produits sur un certain horizon temporel. Aux personnes qui doivent analyser des données de fiabilité ou de péremption. Des connaissances élémentaires en statistique sont requises (par exemple celles correspondant au cours «Visualisation de données de laboratoire avec Excel»). Introduction Modèles de données de stabilité (traitement détaillé) Modèles de durée de vie (vue d ensemble) Situation des données Bases de statistique Régression linéaire Ajustement d une droite Intervalles de confiance Analyse de covariance «Pooling» des données Réponses multiples Normes ICH : mise en oeuvre Survival-Plots, Hazard-Plots Modèles paramétriques : Distribution exponentielle, distribution de Weibull Modèles non paramétriques (Estimation de Kaplan-Meier) Voyez aussi le cours spécifique «Analyse de données de durée de vie» Vous trouverez des informations détaillées sur ce cours sur Durée : 2 jours (cours spécifique «Analyse de données de durée de vie» : 1 jour) Nombre de participants : de 4 à 12 personnes (1 ordinateur par personne) Tél. : , Fax : , Courriel : - 9 -

10 Les plans d expériences et leur utilisation avec STAVEX Les plans d expériences statistiques permettent d obtenir un maximum d informations à un coût minimal. Les avantages bien connus des plans d expériences sont : L efficacité : seules les expériences indispensables sont réalisées! L exactitude : pour un effort expérimental donné, la plus grande exactitude possible sera atteinte. Les interactions : les synergies existant entre les paramètres sont identifiées et mieux comprises. Le cours s adresse aux scientifiques qui souhaitent utiliser les plans d expériences statistiques afin, par exemple, d optimiser des procédés ou des produits à l aide de STAVEX. STAVEX est un progiciel convivial pour PC. Il a été initialement développé par l ancienne multinationale Ciba-Geigy et fonctionne sous Windows. Conçu comme système-expert, il guide l utilisateur dans tout le processus d optimisation qui va de la planification à l analyse des données. À chaque étape, il offre des conseils et facilite l interprétation des résultats. La poursuite du développement de STAVEX et sa maintenance sont assurées par AICOS Technologies SA. D une part, le cours permet d acquérir les connaissances de base nécessaires à une utilisation aisée des plans d expériences statistiques. D autre part, il permet aux participants de se familiariser avec STAVEX au moyen de nombreux exemples et exercices pratiques. Le cours se divise en deux parties, A et B, chacune programmée sur deux jours. Elles peuvent être suivies indépendamment l une de l autre. Dans la seconde partie, les participants ont la possibilité de soumettre leurs propres jeux de données. Aux scientifiques dans les domaines de la chimie, de la physique, du génie des procédés,... dans les secteurs de la recherche, du développement et de la production. Aucune connaissance préalable en statistique ou en mathématiques n est requise. La partie A ne suppose pas forcément une utilisation ultérieure de STAVEX. La partie B présuppose les connaissances acquises dans la partie A ou des connaissances équivalentes. Il est souhaitable, mais pas indispensable, d avoir déjà utilisé STAVEX (traitement puis discussion d exemples issus de données soumises par les participants)

11 Les plans d expériences et leur utilisation avec STAVEX Partie A : Concepts des plans d expériences statistiques Motivation : Pourquoi les plans d expériences statistiques sont-ils supérieurs à la méthode par tâtonnements? Spécifications de l utilisateur : variables de réponse, facteurs, interactions Stratégie : criblage de facteurs modélisation optimisation d une variable de réponse Les plans d expériences : plans factoriels plans factoriels fractionnaires plans d optimisation Les méthodes d analyse utilisées : criblage : graphique semi-normal modélisation et optimisation : régression multiple Expérimentation séquentielle Partie B : Optimisation de plusieurs variables de réponse : fonction de profit fonction de désirabilité Aspects économiques Plans particuliers : plans Desperado plans D-optimaux plans pour facteurs qualitatifs Adaptation de plans : contraintes expérimentales, tendance Complétion de plans par des expériences spécifiques Prise en compte a posteriori d un réglage imprécis du niveau des facteurs Visualisation interactive des plans et des résultats de l analyse Variables de réponse qualitatives : spécification et plans méthode d analyse utilisée : analyse discriminante Facteurs de mélange : concepts et définition des contraintes plans analyse Discussion de problèmes rencontrés par les participants : chaque participant a la possibilité d analyser avec l enseignant ses propres exemples appliqués. Recommandations pratiques Durée : 2 jours (partie A) et 2 jours (partie B) Nombre de participants : de 4 à 12 personnes (1 ordinateur par personne) Tél. : , Fax : , Courriel :

12 Conception robuste & méthode de Taguchi Souhaitez-vous développer vos procédés de telle sorte qu ils soient peu sensibles aux variations des paramètres du système et ne s éloignent pas d un objectif? Et bien entendu à coût minimal en un laps de temps très court? Grâce à de simples applications innovatrices de la technique des plans d expériences, ces objectifs ambitieux et a priori contradictoires peuvent être atteints. D abord étudiées au Japon par G. Taguchi, elles constituent actuellement une partie reconnue de la méthodologie moderne d optimisation des procédés et des produits. Ces techniques ont fait leurs preuves dans plusieurs secteurs industriels comme la chimie, l agro-alimentaire, l automobile et l électronique. Elles peuvent aussi être utilisées dans l industrie pharmaceutique, par exemple dans l optimisation d instruments de mesure analytiques (HPLC) ou pour l installation d appareils sophistiqués. Après un bref rappel des concepts de base des plans d expériences et de leur utilisation, la méthode de Taguchi sera exposée. Ses avantages et ses inconvénients ainsi que les récents résultats de l ingénierie robuste seront discutés. La dernière partie du cours est consacrée aux problèmes rencontrés par les participant(e)s (présentation puis discussion). Aux scientifiques, aux ingénieurs et aux responsables de la qualité dans les secteurs du développement, de la production ou du contrôle de qualité. Des connaissances élémentaires en statistique sont requises (par exemple celles correspondant au cours «Visualisation de données de laboratoire avec Excel»). Des connaissances en plans d expériences ne sont pas indispensables mais constituent un atout. Notions de base Techniques d analyse simples Raffinements Aspects pratiques Durée : 2 jours Philosophie de Taguchi en vue d améliorer la qualité Le problème du plan robuste au sens de Taguchi Quelques concepts des plans d expériences et de leur utilisation Exemples Principe de Taguchi dans les plans d expériences Rapports signal/bruit Les plans d expériences de Taguchi Critique de la méthode de Taguchi Analyse des effets d échange Traitement commun des paramètres de plan et de perturbation Caractéristiques dynamiques Les paramètres de perturbation non maîtrisables Discussion des problèmes soumis par les participant(e)s Recommandations pratiques Nombre de participants : de 4 à 12 personnes (1 ordinateur par personne) Tél. : , Fax : , Courriel :

13 Introduction au Data Mining Soupçonnez-vous vos bases de données de receler des trésors d informations cachées? Le «Data Mining» désigne les procédés et les algorithmes permettant de découvrir les structures et relations se trouvant dans les grandes bases de données complexes. Ce cours présente un large aperçu des principales méthodes de Data Mining. Différents aspects de l organisation des données seront abordés, et quelques techniques statistiques choisies seront exposées et illustrées par des exemples concrets. Aux managers et aux scientifiques. Aucune connaissance en statistique n est requise. Introduction Qu est-ce que le Data Mining? Data Mining et analyse statistique des données Organisation des données Collecte, sources et qualité des données et concepts Stockage des données (Data Warehouse) Techniques statistiques choisies (aperçu) Traitement analytique en ligne (OLAP) Apprentissage, analyse par regroupement Modélisation, arbres de classification (CART) Réseaux de neurones, algorithmes génétiques Limites du Data Mining Introduction à l analyse de données multivariées Souhaitez-vous découvrir et examiner les dépendances entre plusieurs variables? Différentes méthodes de la statistique multivariée, aussi bien numériques que graphiques, peuvent vous permettre d identifier les principales structures existant dans vos données. Elles rendent possible une interprétation claire et rapide des dépendances. Ces méthodes et leur utilisation sont illustrées par de nombreux exemples pratiques (production de colorants, qualité de procédés, spectrographie). Le cours est complété par des démonstrations sur PC. À tous ceux qui souhaitent analyser de grands jeux de données multivariées (des connaissances de base en statistique selon le contenu du cours en page 3 sont nécessaires). Représentations graphiques Réduction de la dimension Discrimination et classification D autres questions? Durée : 1 jour (pour chacun des cours de cette page) Nombre de participants : de 4 à 12 personnes Matrice de nuages de points, trellis-display, graphiques interactifs à l aide de l ordinateur (Spin, Brush) Analyse en composantes principales (ACP), biplot Analyse discriminante, arbres de classification et de régression (CART), classification hiérarchique Philippe Solot, AICOS Technologies SA, Tél. : , Fax : , Courriel :

14 Data Mining avec des arbres de décision CART Votre production est confrontée à de graves problèmes de qualité sans que la cause ait pu être identifiée? Ou êtes-vous plutôt dans le domaine commercial et perdez des clients sans raison apparente? Si vous disposez d une grande quantité de données inexploitées, alors la puissance des arbres de décision CART vous permettra de comprendre l influence des divers paramètres (température, concentration, durée,... ou âge du client, sexe,...) sur votre système. Vous pourrez ainsi l optimiser efficacement. Ce cours présente les concepts de base des arbres de classification et de régression et les illustre par des exemples pratiques issus de divers domaines. De nombreux exercices sur ordinateur vous permettront de comprendre comment la méthode présentée peut vous aider à prendre aisément de bonnes décisions. Vous vous familiariserez en outre avec le logiciel convivial CART qui a déjà permis à de nombreuses entreprises d augmenter notablement leur efficacité. Aux responsables de la qualité, de la production ou du développement qui souhaitent exploiter des jeux de données de grande taille. Aux responsables marketing qui désirent analyser des données client pour créer ou promouvoir des produits ciblés. Des connaissances élémentaires en statistique sont requises (par exemple celles correspondant au cours «Visualisation de données de laboratoire avec Excel»). Introduction Arbres de classification Arbres de régression Mise en oeuvre en pratique L analyse de données non paramétrique Automatiser l analyse de données Comment lire un arbre de décision Quelques exemples d applications Historique Division de la population en sous-groupes, règles de division, affectation aux classes Croissance et élagage des arbres de décision Visualisation et interprétation des résultats Classification ou régression? Paramètres de contrôle Exemple pratique Bases de la régression Règles de division Construire des fichiers adéquats Utiliser les données existantes Données d apprentissage, de test et de validation Votre modèle : construction automatique de l arbre, sélection des variables, interprétation des résultats Automatiser les rapports, exporter les graphiques Faire des prédictions et exporter les modèles pour la production Durée : 2 jours Nombre de participants : de 4 à 12 personnes (1 ordinateur par personne) Philippe Solot, AICOS Technologies SA, Tél. : , Fax : , Courriel :

15 Réseaux de neurones et algorithmes génétiques en pratique Souhaitez-vous déceler les nombreuses informations inconnues que contient une grande base de données complexe? Désirez-vous faire des prédictions fiables à partir de données antérieures? Devez-vous trouver une combinaison optimale des divers paramètres d entrée d un système? Les réseaux de neurones et les algorithmes génétiques sont alors à même de vous aider. Les réseaux de neurones ont la faculté d apprendre les relations les plus complexes entre des données, en particulier là où les méthodes statistiques ne sont applicables que de manière limitée. Le cours présente les idées générales des réseaux de neurones qui ont été appliquées à différents domaines (l industrie chimique, la robotique, la prédiction d un changement de tendance en bourse, la reconnaissance d images, la médecine etc...). Les algorithmes génétiques, qui figurent parmi les méthodes les plus robustes d optimisation, sont ensuite présentés. Ils peuvent notamment être utilisés pour l apprentissage de réseaux de neurones. La méthodologie est exposée dans le cours tout comme quelques applications pratiques par l intermédiaire de demonstrations sur PC. Aux managers et aux scientifiques. Des connaissances préalables minimales en mathématiques sont souhaitées mais ne sont pas indispensables. Réseaux de neurones Algorithmes génétiques Logiciel Développement historique Le perceptron multicouches (feed-forward) L apprentissage par l algorithme de rétro-propagation Forces et faiblesses des réseaux de neurones Étude de cas Motivation par la biologie Notions de base : aptitude, sélection, recombinaison, mutation Avantages et inconvénients Exemples d utilisation Comparaison de quelques logiciels Démonstration avec Excel Durée : 1 jour Nombre de participants : de 4 à 12 personnes Tél. : , Fax : , Courriel :

16 Analyse de flux de matière par simulation Devez-vous optimiser l efficacité ou l utilisation d une installation de production existante ainsi que des procédés correspondants, par exemple suite à des changements dans la répartition de la demande entre les produits? Ou, en tant qu ingénieur, concevoir de manière optimale une nouvelle usine? Dans ce cours, vous apprendrez à identifier les goulots d étranglement au moyen de simulations de nature logistique et à effectuer des analyses de capacité, afin de réduire les coûts de production et d éviter tout investissement superflu. Ce cours s adresse aux personnes qui désirent utiliser la simulation, par exemple pour optimiser des procédés et des installations de production, et qui souhaitent utiliser SIMBAX dans ce cadre. SIMBAX est un progiciel convivial pour PC. Il a été développé initialement par l ancienne multinationale Ciba-Geigy et fonctionne sur Windows. SIMBAX a été conçu pour les besoins spécifiques de l industrie de process et permet à l ingénieur de modéliser facilement une multitude d opérations des procédés continus à la logistique des conteneurs en passant par les opérations batch usuelles. Le progiciel offre de nombreux résultats graphiques, par exemple un diagramme de Gantt animé et des représentations statistiques pour l analyse des résultats. La poursuite du développement de SIMBAX et sa maintenance sont assurées par AICOS Technologies SA. D une part, le cours permet d acquérir les connaissances de base nécessaires à une utilisation aisée de la simulation de flux de matière. D autre part, il permet aux participants de se familiariser avec SIMBAX au moyen de nombreux exemples et exercices pratiques. Le cours se divise en deux parties, A et B, chacune programmée sur deux jours. Elles peuvent être suivies indépendamment l une de l autre. Aux ingénieurs en développement des procédés et/ou en conception d usines qui souhaitent profiter des possibilités d optimisation existant au niveau logistique (élimination des goulots d étranglement). Aux ingénieurs chimistes et aux responsables de production qui souhaitent utiliser pleinement le potentiel de capacité d installations multi-produit existantes en évitant systématiquement les conflits entre flux de matière. Aux managers qui souhaitent s informer sur les possibilités d application de la simulation de flux de matière

17 Analyse de flux de matière par simulation Partie A : Partie B : Introduction Niveaux de conception et de planification dans les industries de process Composantes d un modèle de simulation SIMBAX et son environnement Simulation d un procédé isolé Description et modélisation de l équipement Description et modélisation d un procédé Une première simulation Analyse des résultats de simulation (diagramme de Gantt, statistiques d utilisation,...) Simulation d une usine multi-produit Représentation des produits et des matières premières Description et modélisation d un plan de production Tour d horizon des fonctions de SIMBAX Description détaillée d une étape de procédé Aperçu des opérations disponibles (y.c. opérations parallèles et conditionnelles) Exercice récapitulatif Procédés semi-continus, y.c. opérations de séparation et réservoirs tampons Modélisation rapide de procédés semblables au moyen de paramètres et supervision de variables définies par l utilisateur Analyse graphique détaillée du diagramme de Gantt dans des installations multi-produit Trafic de conteneurs : remplissage, vidage, transport Synchronisation de plusieurs opérations Regroupement ou division de batchs en cours de procédé Contraintes temporelles : disponibilité des appareils et des ressources, y.c. consommation de ressources variable et modélisation de pannes Gestion des données procédé et produit à l aide d Excel Durée : 2 jours (partie A) et 2 jours (partie B) Nombre de participants : de 4 à 12 personnes (1 ordinateur par personne) Tél : , Fax : , Courriel :

18 Les chargés de cours Philippe Solot est directeur d AICOS Technologies. Il possède une expérience de plus de quinze ans dans le milieu industriel. Il s est principalement spécialisé dans le domaine de l optimisation mathématique et de son application pour améliorer les processus de développement et de production. Il donne régulièrement des cours dans de hautes écoles suisses et françaises et a publié plus de vingt articles dans des revues scientifiques internationales réputées telles que International Journal of Production Research et INFOR. Monsieur Solot possède un doctorat de l Ecole Polytechnique Fédérale de Lausanne. Il a reçu le prix Robert Faure de l AFCET (France) pour sa thèse. Il a été président de l Association Suisse de Recherche Opérationnelle de 2001 à Stefanie Feiler est consultante en statistique appliquée chez AICOS Technologies. Elle possède quatre ans d expérience en tant qu assistante de recherche au département de statistique de l université de Heidelberg (Allemagne). Parallèlement, elle a participé à des modules d enseignement destinés à des praticiens de l industrie pharmaceutique ainsi qu à des médecins, et a collaboré avec des chercheurs de l hôpital universitaire de Heidelberg à l analyse de données d études psychosomatiques. Elle se passionne particulièrement pour la diffusion des méthodes statistiques aux praticiens qui ont régulièrement besoin, dans leur travail quotidien, de procédures statistiques. Madame Feiler a étudié les mathématiques et la chimie à l université de Tübingen (Allemagne). Son cursus comprend une année à Besançon, dans le cadre d un programme d échange d étudiants, où elle a obtenu une maîtrise en mathématiques pures. Elle a soutenu sa thèse à l Université de Heidelberg fin

19 Commentaires de participants Quelques commentaires spontanés extraits des formulaires d évaluation des cours : «Un cours très bien structuré» «Graphiques très simples pour découvrir les dépendances complexes» «Ce qui a été présenté se retrouve très bien dans les exercices» «Le chargé de cours était excellent et très compétent. Il a rendu compréhensibles des dépendances compliquées et les a représentées clairement» «De nombreux problèmes peuvent être résolus avec STAVEX» «En général, j ai trouvé les exercices pratiques sur PC très bons» «Un bon mélange entre la théorie et la pratique» «Très bon support de cours» «Très professionnel, EasyStat fut une agréable surprise!» «Mes attentes ont été dépassées : la statistique n était plus ennuyeuse. Un mélange agréable entre théorie et exercices» Nous offrons aussi des cours adaptés à vos besoins spécifiques! AICOS Technologies SA a déjà donné des cours «à domicile» dans les entreprises suivantes : Alcan B. Braun Medical Ciba Spécialités Chimiques Clariant Eckart Ems-Chemie F. Hoffmann-La Roche Mettler-Toledo Novartis Pharma Oril Industrie Sanofi-Aventis Siegfried Sika Syngenta Crop Protection ZLB Behring etc

20 Progiciels : Conseil ou réalisation de projets Solutions informatiques pour vos analyses de routine avec Excel, S-Plus, SAS STAVEX : Notre système-expert pour les plans d expériences EasyStat : Nos pratiques macros Excel validées Pr SIMBAX : Notre solution pour la simulation de flux de matière CART : Notre progiciel convivial de Data Mining Des questions? Des problèmes? Appelez-nous sans hésiter : QuickGantt & Schedule++ : Nos solutions pour faciliter l ordonnancement Tél. : Fax : ou envoyez-nous un courriel à : AICOS Technologies SA Efringerstrasse 32 CH-4057 Bâle

Stages de Formation en Statistique Appliquée et Logistique

Stages de Formation en Statistique Appliquée et Logistique Stages de Formation en Statistique Appliquée et Logistique Un aperçu de nos stages Titre Avec PC Durée Info Visualisation de données de laboratoire avec Excel oui 2 jours p. 3 Analyse de données de laboratoire

Plus en détail

Utilisation des plans d expériences dans la recherche, le développement et la production

Utilisation des plans d expériences dans la recherche, le développement et la production Lausanne, juin 2005 Utilisation des plans d expériences dans la recherche, le développement et la production Cours de deux jours plus un jour de pratique 14 au 16 septembre 2005 donné par Dr. Jacques Zuber,

Plus en détail

Utilisation des plans d expériences dans la recherche, le développement et la production

Utilisation des plans d expériences dans la recherche, le développement et la production Berne, Suisse, Septembre 2010 Utilisation des plans d expériences dans la recherche, le développement et la production Cours de 3 jours : du mercredi 13 au vendredi 15 avril 2011 ou du mercredi 7 au vendredi

Plus en détail

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation Programme des épreuves des concours externes de recrutement des personnels E1 RECRUTEMENT DES ASSISTANTS INGENIEURS DE RECHERCHE ET DE FORMATION...2 E1.1 Gestionnaire de base de données...2 E1.2 Développeur

Plus en détail

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7 Table des matières Préface Public 1 Structure de l ouvrage 1 Caractéristiques de l ouvrage 3 Contenu 3 Pédagogie 4 Remarques sur l adaptation française 4 Ressources numériques 5 Biographie 6 PREMIÈRE PARTIE

Plus en détail

Outils Statistiques du Data Mining

Outils Statistiques du Data Mining Outils Statistiques du Data Mining Pr Roch Giorgi roch.giorgi@univ-amu.fr SESSTIM, Faculté de Médecine, Aix-Marseille Université, Marseille, France http://sesstim-orspaca.org http://optim-sesstim.univ-amu.fr

Plus en détail

Activité Intitulé de l'activité Volume horaire

Activité Intitulé de l'activité Volume horaire Informations de l'unité d'enseignement Implantation IPL Cursus de Bachelier en chimie Introduction à la statistique C1110 Cycle 1 Bloc 1 Quadrimestre 2 Pondération 1 Nombre de crédits 4 Nombre d heures

Plus en détail

Organisé par StatSoft France et animé par Dr Diego Kuonen, expert en techniques de data mining.

Organisé par StatSoft France et animé par Dr Diego Kuonen, expert en techniques de data mining. 2 jours : Mardi 15 et mercredi 16 novembre 2005 de 9 heures 30 à 17 heures 30 Organisé par StatSoft France et animé par Dr Diego Kuonen, expert en techniques de data mining. Madame, Monsieur, On parle

Plus en détail

LE RÔLE DE LA STATISTIQUE DANS UN PROCESSUS DE PRISE DE DÉCISION

LE RÔLE DE LA STATISTIQUE DANS UN PROCESSUS DE PRISE DE DÉCISION LE RÔLE DE LA STATISTIQUE DANS UN PROCESSUS DE PRISE DE DÉCISION Sylvie Gervais Service des enseignements généraux École de technologie supérieure (sylvie.gervais@etsmtl.ca) Le laboratoire des condensateurs

Plus en détail

Activité Intitulé de l'activité Volume horaire

Activité Intitulé de l'activité Volume horaire Informations de l'unité d'enseignement Implantation IPL Cursus de Intitulé Bachelier en biologie médicale Introduction à la Statistique B1110 Cycle 1 Bloc 1 Quadrimestre 2 Pondération 1 Nombre de crédits

Plus en détail

Lean Six Sigma Caractéristiques de Certification

Lean Six Sigma Caractéristiques de Certification Lean Six Sigma Caractéristiques de Certification Exigences relatives à certification Lean Six Sigma de BSI Introduction La certification Lean Six Sigma de BSI est l occasion de prouver que les compétences

Plus en détail

CATALOGUE DES FORMATIONS 2014

CATALOGUE DES FORMATIONS 2014 CATALOGUE DES FORMATIONS 2014 Introduction à la Statistique Techniques de modélisation Plans d expériences Méthodes et outils de la Fiabilité Maîtrise Statistique des Processus Analyse multi-variée Six

Plus en détail

Qualité en production

Qualité en production Daniel DURET et Maurice PILLET Qualité en production De l ISO 9000 à Six Sigma Troisième édition Éditions d Organisation, 1998, 2001, 2005 ISBN : 2-7081-3388-8 Sommaire INTRODUCTION... 17 Première partie

Plus en détail

MATHÉMATIQUES CYCLE TERMINAL DE LA SÉRIE ÉCONOMIQUE ET SOCIALE ET DE LA SÉRIE LITTERAIRE CLASSE DE PREMIÈRE

MATHÉMATIQUES CYCLE TERMINAL DE LA SÉRIE ÉCONOMIQUE ET SOCIALE ET DE LA SÉRIE LITTERAIRE CLASSE DE PREMIÈRE Annexe MATHÉMATIQUES CYCLE TERMINAL DE LA SÉRIE ÉCONOMIQUE ET SOCIALE ET DE LA SÉRIE LITTERAIRE CLASSE DE PREMIÈRE L enseignement des mathématiques au collège et au lycée a pour but de donner à chaque

Plus en détail

Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring

Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Année académique 2006-2007 Professeurs : Marco Saerens Adresse : Université catholique de Louvain Information Systems

Plus en détail

Cours IFT6266, Exemple d application: Data-Mining

Cours IFT6266, Exemple d application: Data-Mining Cours IFT6266, Exemple d application: Data-Mining Voici un exemple du processus d application des algorithmes d apprentissage statistique dans un contexte d affaire, qu on appelle aussi data-mining. 1.

Plus en détail

Reconnaissance des formes : Classement d ensembles d objets

Reconnaissance des formes : Classement d ensembles d objets Reconnaissance des formes : Classement d ensembles d objets Données Méthodes Extraction de connaissances Applications Expertise Apprentissage Bernard FERTIL Directeur de Recherche CNRS Équipe LXAO, UMR

Plus en détail

Programme de Première

Programme de Première BAC TECHNO STAV 66 I. Algèbre Programme de Première Objectif 1 - Effectuer de manière autonome des calculs numériques ou algébriques, résoudre des équations ou inéquations en vue de résoudre des problèmes

Plus en détail

CONTRÔLE DE LA QUALITE ANALYTIQUE AU LABO. Août 2009 Hilde De Boeck

CONTRÔLE DE LA QUALITE ANALYTIQUE AU LABO. Août 2009 Hilde De Boeck CONTRÔLE DE LA QUALITE ANALYTIQUE AU LABO Août 2009 Hilde De Boeck SOMMAIRE 1. Introduction 2. Mise en œuvre d un CQI 3. Préparation d un échantillon CQI 4. Calcule des valeurs cibles 5. Réalisation du

Plus en détail

CATALOGUE DES FORMATIONS STATISTIQUES 2015

CATALOGUE DES FORMATIONS STATISTIQUES 2015 CATALOGUE DES FORMATIONS STATISTIQUES 2015 Améliorez vos connaissances statistiques pour une meilleure exploitation de vos données TOUTES LES SOLUTIONS FORMATION INTER Entreprises (catalogue) ou INTRA

Plus en détail

Séances 5 et 6 4-530-03. La gestion de la qualité. Gestion des opérations et de la logistique

Séances 5 et 6 4-530-03. La gestion de la qualité. Gestion des opérations et de la logistique Gestion des opérations et de la logistique Séances 5 et 6 4-530-03 La gestion de la qualité 2011, Service d enseignement de la Gestion des Opérations et de la Logistique, HEC Montréal. Points importants

Plus en détail

Ingénierie d aide à la décision

Ingénierie d aide à la décision Ingénierie d aide à la décision Maria Malek 1 er septembre 2009 1 Objectifs et débouchés Nous proposons dans cette option deux grands axes pour l aide à la décision : 1. La recherche opérationnelle ; 2.

Plus en détail

Formation Inter Entreprises

Formation Inter Entreprises Formation Inter Entreprises Lean Six Sigma - Méthodologie DMAIC Niveau Black Belt 3conseils 10, place Charles Béraudier 69428 LYON CEDEX 03 www.3conseils.com 2015 Objectifs de la formation La formation

Plus en détail

TABLE DES MATIERES. C Exercices complémentaires 42

TABLE DES MATIERES. C Exercices complémentaires 42 TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence

Plus en détail

FORMATION CONTINUE SUR L UTILISATION D EXCEL DANS L ENSEIGNEMENT Expérience de l E.N.S de Tétouan (Maroc)

FORMATION CONTINUE SUR L UTILISATION D EXCEL DANS L ENSEIGNEMENT Expérience de l E.N.S de Tétouan (Maroc) 87 FORMATION CONTINUE SUR L UTILISATION D EXCEL DANS L ENSEIGNEMENT Expérience de l E.N.S de Tétouan (Maroc) Dans le cadre de la réforme pédagogique et de l intérêt que porte le Ministère de l Éducation

Plus en détail

MASTER «Sciences de la Vie et de la Santé» Mention «Santé Publique»

MASTER «Sciences de la Vie et de la Santé» Mention «Santé Publique» M1_presentation_generale_4juil05.doc 1/11 MASTER «Sciences de la Vie et de la Santé» Mention «Santé Publique» La mention s articule autour de 6 spécialités : Recherche en éthique : Pr Christian HERVE (herve@necker.fr)

Plus en détail

Bouchekif Abdesselam 11 mars 2012

Bouchekif Abdesselam 11 mars 2012 Expériences sur les données du répertoire de données de UCI avec une boîte à outils Bouchekif Abdesselam 11 mars 2012 Résumé Les dix dernières années ont été témoin de grands progrès réalisés dans le domaine

Plus en détail

TABLE DES MATIÈRES. PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats. Pierre Dagnelie

TABLE DES MATIÈRES. PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats. Pierre Dagnelie PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats Pierre Dagnelie TABLE DES MATIÈRES 2012 Presses agronomiques de Gembloux pressesagro.gembloux@ulg.ac.be www.pressesagro.be

Plus en détail

Ecole Nationale Supérieure d Arts et Métiers Meknès

Ecole Nationale Supérieure d Arts et Métiers Meknès Ecole Nationale Supérieure d Arts et Métiers Meknès EFFECTUE AUPRES D IMACAB Du 01/07/02 Au 05/08/02 Préparé par : Encadré par : CHADMI ISSAM M.HABTI Année Universitaire: 2001/2002 Ensam-Méknes - 1 - imacab

Plus en détail

CTE Éditeur de classification arborescente pour spécifications du cas de test

CTE Éditeur de classification arborescente pour spécifications du cas de test Tessy Test d intégration et unitaire dynamique automatisé pour des applications embarquées CTE Éditeur de classification arborescente pour spécifications du cas de test Le meilleur outil de test unitaire

Plus en détail

Annexe 4 Programmes des classes préparatoires aux Grandes Ecoles

Annexe 4 Programmes des classes préparatoires aux Grandes Ecoles Annexe 4 Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Technologie et biologie (TB) Discipline : Informatique Première et seconde années Programme d informatique

Plus en détail

UNIVERSITÉ PARIS DESCARTES

UNIVERSITÉ PARIS DESCARTES UNIVERSITÉ PARIS DESCARTES MASTER Domaine DROIT, ÉCONOMIE, GESTION Mention MONNAIE,BANQUE, FINANCE, ASSURANCE Spécialité RISQUE, ASSURANCE, DÉCISION 2014 / 2015 Z.Trocellier Directeurs Pr Kouroche VAFAÏ

Plus en détail

Outils méthodologiques et astuces pour la thèse de médecine Les statistiques, comment faire?

Outils méthodologiques et astuces pour la thèse de médecine Les statistiques, comment faire? Outils méthodologiques et astuces pour la thèse de médecine Les statistiques, comment faire? Cyril Ferdynus, USM, CHU RECUEIL DE DONNEES Recueil hors ligne Epidata (http://www.epiconcept.fr/html/epidata.html)

Plus en détail

RESUME DESCRIPTIF DE LA CERTIFICATION (FICHE REPERTOIRE)

RESUME DESCRIPTIF DE LA CERTIFICATION (FICHE REPERTOIRE) RESUME DESCRIPTIF DE LA CERTIFICATION (FICHE REPERTOIRE) Intitulé (cadre 1) Ingénieur diplômé de l École Nationale Supérieure d Ingénieurs en Informatique, Automatique, Mécanique, Énergétique et Électronique

Plus en détail

Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing

Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing Gilbert Saporta Chaire de Statistique Appliquée, CNAM ActuariaCnam, 31 mai 2012 1 L approche statistique

Plus en détail

- Mobiliser les résultats sur le second degré dans le cadre de la résolution d un problème.

- Mobiliser les résultats sur le second degré dans le cadre de la résolution d un problème. Mathématiques - classe de 1ère des séries STI2D et STL. 1. Analyse On dote les élèves d outils mathématiques permettant de traiter des problèmes relevant de la modélisation de phénomènes continus ou discrets.

Plus en détail

INTERNATIONAL CHAIR IN MATHEMATICAL PHYSICS AND APPLICATIONS (ICMPA) UNESCO CHAIR IN MATHEMATICAL PHYSICS AND APPLICATIONS

INTERNATIONAL CHAIR IN MATHEMATICAL PHYSICS AND APPLICATIONS (ICMPA) UNESCO CHAIR IN MATHEMATICAL PHYSICS AND APPLICATIONS INTERNATIONAL CHAIR IN MATHEMATICAL PHYSICS AND APPLICATIONS (ICMPA) UNESCO CHAIR IN MATHEMATICAL PHYSICS AND APPLICATIONS established in 2006 at the University of Abomey-Calavi (Republic of Benin) UNITWIN/UNESCO

Plus en détail

Annexe 4 Programmes des classes préparatoires aux Grandes Ecoles

Annexe 4 Programmes des classes préparatoires aux Grandes Ecoles Annexe 4 Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Informatique Première et seconde années

Plus en détail

Introduction au datamining

Introduction au datamining Introduction au datamining Patrick Naïm janvier 2005 Définition Définition Historique Mot utilisé au départ par les statisticiens Le mot indiquait une utilisation intensive des données conduisant à des

Plus en détail

Votre organisation en 3 clics. www.optimiso.com

Votre organisation en 3 clics. www.optimiso.com Votre organisation en 3 clics www.optimiso.com 2 Intuitif, modulable et fiable Réponse idéale à chaque exigence.... 3 Fiabilité, sécurité et solution personnalisable.... 4 Modules Optimiso : > Process

Plus en détail

Eléments de statistique Introduction - Analyse de données exploratoire

Eléments de statistique Introduction - Analyse de données exploratoire Eléments de statistique Introduction - Louis Wehenkel Département d Electricité, Electronique et Informatique - Université de Liège B24/II.93 - L.Wehenkel@ulg.ac.be MATH0487-2 : 3BacIng, 3BacInf - 16/9/2014

Plus en détail

STATISTIQUE SCIENCES DE DE LA LA VIE DOCUMENTATION. Diplôme de l université Paris XI. ssv.medecine@u-psud.fr

STATISTIQUE SCIENCES DE DE LA LA VIE DOCUMENTATION. Diplôme de l université Paris XI. ssv.medecine@u-psud.fr Diplôme de l université Paris XI STATISTIQUE ET ET SCIENCES DE DE LA LA VIE Contact uniquement par courrier électronique aucun accueil possible - Trois options Modélisation Recherche clinique Recherche

Plus en détail

CONFERENCE PALISADE. Optimisation robuste d un plan d expériences par simulation Monte-Carlo Concepts de «Design Space» et de «Quality by Design»

CONFERENCE PALISADE. Optimisation robuste d un plan d expériences par simulation Monte-Carlo Concepts de «Design Space» et de «Quality by Design» CONFERENCE PALISADE Optimisation robuste d un plan d expériences par simulation Monte-Carlo Concepts de «Design Space» et de «Quality by Design» 1 SIGMA PLUS Logiciels, Formations et Etudes Statistiques

Plus en détail

Christophe CANDILLIER Cours de DataMining mars 2004 Page 1

Christophe CANDILLIER Cours de DataMining mars 2004 Page 1 Christophe CANDILLIER Cours de DataMining mars 2004 age 1 1. Introduction 2. rocessus du DataMining 3. Analyse des données en DataMining 4. Analyse en Ligne OLA 5. Logiciels 6. Bibliographie Christophe

Plus en détail

La survie nette actuelle à long terme Qualités de sept méthodes d estimation

La survie nette actuelle à long terme Qualités de sept méthodes d estimation La survie nette actuelle à long terme Qualités de sept méthodes d estimation PAR Alireza MOGHADDAM TUTEUR : Guy HÉDELIN Laboratoire d Épidémiologie et de Santé publique, EA 80 Faculté de Médecine de Strasbourg

Plus en détail

Choisissez la formation. Qui vous intéresse! SPSS Maghreb 72,Av.des Nations Unies Rabat-Agdal-Maroc. Tél : 037-67.08.66/67 Fax : 037-67.08.

Choisissez la formation. Qui vous intéresse! SPSS Maghreb 72,Av.des Nations Unies Rabat-Agdal-Maroc. Tél : 037-67.08.66/67 Fax : 037-67.08. SPSS Maghreb 72,Av.des Nations Unies Rabat-Agdal-Maroc Tél : 037-67.08.66/67 Fax : 037-67.08.69 Choisissez la formation spssmaroc@maghrebnet.net.ma Qui vous intéresse! Site web : www.spss.com/localoffices/morocco

Plus en détail

1 Présentation générale

1 Présentation générale Parcours «Management des processus de production de biens et services» du Master de Sciences de Gestion (M2) - mention «Management Global» de l Université Paris Dauphine 1 Présentation générale 1.1 Objectifs

Plus en détail

Nouveautés de StatView 5

Nouveautés de StatView 5 Nouveautés de StatView 5 Nouvelles fonctionnalités Régression logistique StatView propose désormais la régression logistique, une technique de construction d un modèle semblable à la régression linéaire

Plus en détail

INTRODUCTION AU DATA MINING

INTRODUCTION AU DATA MINING INTRODUCTION AU DATA MINING 6 séances de 3 heures mai-juin 2006 EPF - 4 ème année - Option Ingénierie d Affaires et de Projets Bertrand LIAUDET TP DE DATA MINING Le TP et le projet consisteront à mettre

Plus en détail

Formations EViews FORMATIONS GENERALES INTRODUCTIVES INTRO : INTRODUCTION A LA PRATIQUE DE L ECONOMETRIE AVEC EVIEWS

Formations EViews FORMATIONS GENERALES INTRODUCTIVES INTRO : INTRODUCTION A LA PRATIQUE DE L ECONOMETRIE AVEC EVIEWS Formations EViews FORMATIONS GENERALES INTRODUCTIVES DEB : DECOUVERTE DU LOGICIEL EVIEWS INTRO : INTRODUCTION A LA PRATIQUE DE L ECONOMETRIE AVEC EVIEWS FORMATIONS METHODES ECONOMETRIQUES VAR : MODELES

Plus en détail

Master. en sciences et technologies mention mathématiques et applications

Master. en sciences et technologies mention mathématiques et applications Master en sciences et technologies mention mathématiques et applications master mathématiques et applications Contacts Nicolas Lerner lerner@math.jussieu.fr www.master.math.upmc.fr Master sciences et technologies

Plus en détail

Assistance à l exploitation de données de campagnes et à la réalisation de cartographies (1/2) Organisation d une formation en statistique

Assistance à l exploitation de données de campagnes et à la réalisation de cartographies (1/2) Organisation d une formation en statistique Traitements numériques Assistance à l exploitation de données de campagnes et à la réalisation de cartographies (1/2) Organisation d une formation en statistique Décembre 2010 Programme 2010 L. MALHERBE

Plus en détail

Plan II-1. Généralités II-1-1. Définitions et principes II-1-2. Mise en place

Plan II-1. Généralités II-1-1. Définitions et principes II-1-2. Mise en place SPC 1 Plan II-1. Généralités II-1-1. Définitions et principes II-1-2. Mise en place II-2-1. Définitions II-1-2. Capabilité machine et capabilité procédé II-2-3. Ppm 2 II-1. GénéralitG ralités Définitions

Plus en détail

Cours de Gastronomie moléculaire

Cours de Gastronomie moléculaire Cours de Gastronomie moléculaire (de l expérience au calcul) 1. Un besoin : Des cours de Gastronomie moléculaire sont aujourd hui dispensés dans des cadres variés : universités, grandes écoles, industrie

Plus en détail

Plan du cours. 1. Généralités sur l analyse chimique. 2. Préparation de l échantillon. 3. Analyse des métaux. 4. Analyse des polluants inorganiques

Plan du cours. 1. Généralités sur l analyse chimique. 2. Préparation de l échantillon. 3. Analyse des métaux. 4. Analyse des polluants inorganiques Plan du cours 1. Généralités sur l analyse chimique 2. Préparation de l échantillon 3. Analyse des métaux 4. Analyse des polluants inorganiques 5. Analyse des polluants organiques 6. Assurance qualité

Plus en détail

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population.

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population. Première STMG1 2014-2015 progression. - 1 Table des matières Fil rouge. 3 Axes du programme. 3 Séquence : Proportion d une sous population dans une population. 3 Information chiffrée : connaître et exploiter

Plus en détail

Contributions à la maîtrise statistique des processus industriels multivariés

Contributions à la maîtrise statistique des processus industriels multivariés UNIVERSITE d ANGERS Contributions à la maîtrise statistique des processus industriels multivariés Soutenue par: Teodor TIPLICA Directeur de thèse: Mr. Alain BARREAU Co-encadrant de thèse: Mr. Abdessamad

Plus en détail

METHODOLOGIE SIX SIGMA POUR LES PME

METHODOLOGIE SIX SIGMA POUR LES PME C.Q.H.N. Centre Qualité Hainaut-Namur MAISON DE L INDUSTRIE Rue Auguste Piccard, 20 6041 GOSSELIES Tél. : 071/235.722 Fax. : 071/235.720 E-mail : info@cqhn.com METHODOLOGIE SIX SIGMA POUR LES PME OBJECTIFS

Plus en détail

Le bootstrap expliqué par l exemple

Le bootstrap expliqué par l exemple Le bootstrap expliqué par l exemple 1 Le bootstrap expliqué par l exemple 1. Les concepts du bootstrap 2. Des variantes adaptées au contexte 3. Comparaison des différentes méthodes 4. Les cas sensibles

Plus en détail

Les données manquantes en statistique

Les données manquantes en statistique Les données manquantes en statistique N. MEYER Laboratoire de Biostatistique -Faculté de Médecine Dép. Santé Publique CHU - STRASBOURG Séminaire de Statistique - 7 novembre 2006 Les données manquantes

Plus en détail

1. Glossaire Attestation fédérale professionnelle (AFP) BDEFA 2 Branche de formation et d examen Branche et entreprise

1. Glossaire Attestation fédérale professionnelle (AFP) BDEFA 2 Branche de formation et d examen Branche et entreprise 1. Glossaire Attestation fédérale professionnelle (AFP) La personne qui a réussi la procédure de qualification au terme de sa formation d assistant de bureau reçoit l attestation fédérale de formation

Plus en détail

L intégration de l Analyse de la valeur dans un processus de développement de produit «Design for Lean Six Sigma»

L intégration de l Analyse de la valeur dans un processus de développement de produit «Design for Lean Six Sigma» L intégration de l Analyse de la valeur dans un processus de développement de produit «Design for Lean Six Sigma» Présenté par : Ramez Zalat, ing., MBA Conseiller principal Le 20 novembre 2007 Intégrateur-conseil

Plus en détail

Fiche Contenu 3-1 : Vue d ensemble de la gestion de l équipement

Fiche Contenu 3-1 : Vue d ensemble de la gestion de l équipement Fiche Contenu 3-1 : Vue d ensemble de la gestion de l équipement Son rôle dans le système de gestion de la qualité Considérations sur le programme La gestion de l équipement est l un des points essentiels

Plus en détail

TABLE DES MATIÈRES CHAPITRE

TABLE DES MATIÈRES CHAPITRE TABLE DES MATIÈRES CHAPITRE 1 Le pilotage de la performance... 17 I. Du contrôle au pilotage de la performance... 17 A. Le contrôle de gestion traditionnel... 17 B. Le pilotage de la performance... 19

Plus en détail

MINITAB. L e L e a d e r d e s S t a t i s t i q u e s S i x S i g m a

MINITAB. L e L e a d e r d e s S t a t i s t i q u e s S i x S i g m a MINITAB L e L e a d e r d e s S t a t i s t i q u e s S i x S i g m a Le logiciel qui est derrière le succès des Projets Six Sigma Le succès d une entreprise dépend de sa capacité à assurer un rendement

Plus en détail

Structure du cours : Il existe de nombreuses méthodes intéressantes qui couvrent l Analyse des Données

Structure du cours : Il existe de nombreuses méthodes intéressantes qui couvrent l Analyse des Données Structure du cours : Il existe de nombreuses méthodes intéressantes qui couvrent l Analyse des Données et le Data Mining Nous suivons le plan suivant : Fonctionnement de Spad Catalogue des méthodes (statistiques

Plus en détail

Mathématiques et licences professionnelles

Mathématiques et licences professionnelles MATHÉMATIQUES ET LICENCES PROFESSIONNELLES 73 Mathématiques et licences professionnelles La licence professionnelle a étécréée par un arrêté du 17 novembre 1999. Dès son premier article, cet arrêtéprécise

Plus en détail

Contrôle de Qualité en Biologie Médicale. Formation. Pr Niama Diop Sall Niama.sall@ucad.edu.sn

Contrôle de Qualité en Biologie Médicale. Formation. Pr Niama Diop Sall Niama.sall@ucad.edu.sn Contrôle de Qualité en Biologie Médicale Formation Qualité et Biosécurité Pr Niama Diop Sall Niama.sall@ucad.edu.sn Projet RESAOLAB Thiès, Août 2012 Eviter la Camisole de Force Essayer d être un Praticien

Plus en détail

Cycle de formation certifiante Sphinx

Cycle de formation certifiante Sphinx Cycle de formation certifiante Sphinx 28, 29, 30 Mai 2015 Initiation, Approfondissement et Maîtrise Etudes qualitatives / quantitatives Initiation, approfondissement et maîtrise des études qualitatives

Plus en détail

Téléchargez la Version d Évaluation 30 Jours de STATISTICA 9 en Français. Version Native en 64-bit... 2. Expérience Utilisateur Plus Intuitive...

Téléchargez la Version d Évaluation 30 Jours de STATISTICA 9 en Français. Version Native en 64-bit... 2. Expérience Utilisateur Plus Intuitive... Téléchargez la Version d Évaluation 30 Jours de STATISTICA 9 en Français Version Native en 64-bit... 2 Expérience Utilisateur Plus Intuitive... 3 Exploration Visuelle des Données... 5 Catégories de Graphiques...

Plus en détail

Session 8 : Assurance Qualité des produits absents du Programme de Préqualification de l OMS

Session 8 : Assurance Qualité des produits absents du Programme de Préqualification de l OMS Session 8 : Assurance Qualité des produits absents du Programme de Préqualification de l OMS Question aux participants Comment s assurer de la qualité et de l intégrité d un produit qui n a pas été préqualifié

Plus en détail

MIKRON CUSTOMER SERVICE. Un service client adapté à vos besoins

MIKRON CUSTOMER SERVICE. Un service client adapté à vos besoins MIKRON CUSTOMER SERVICE Un service client adapté à vos besoins 2-3 CUMULEZ LES OPTIONS DE SERVICES DE CHAQUE MODULE POUR AMéLIORER LA PRODUCTIVITé DE VOTRE SYSTÈME MIKRON CUSTOMER SERVICE FLEXIBLE, MODULAIRE,

Plus en détail

Utilisation du logiciel Unity Real Time 2 dans le contexte de la norme EN ISO 15189

Utilisation du logiciel Unity Real Time 2 dans le contexte de la norme EN ISO 15189 35 Utilisation du logiciel Unity Real Time 2 dans le contexte de la norme EN ISO 15189 Prérequis & public concerné Connaissances de l environnement Windows Connaissances de base sur la démarche qualité

Plus en détail

Coup de Projecteur sur les Réseaux de Neurones

Coup de Projecteur sur les Réseaux de Neurones Coup de Projecteur sur les Réseaux de Neurones Les réseaux de neurones peuvent être utilisés pour des problèmes de prévision ou de classification. La représentation la plus populaire est le réseau multicouche

Plus en détail

UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES

UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES Université Paris 13 Cours de Statistiques et Econométrie I UFR de Sciences Economiques Année 2008-2009 Licence de Sciences Economiques L3 Premier semestre TESTS PARAMÉTRIQUES Remarque: les exercices 2,

Plus en détail

données en connaissance et en actions?

données en connaissance et en actions? 1 Partie 2 : Présentation de la plateforme SPSS Modeler : Comment transformer vos données en connaissance et en actions? SPSS Modeler : l atelier de data mining Large gamme de techniques d analyse (algorithmes)

Plus en détail

Annexe commune aux séries ES, L et S : boîtes et quantiles

Annexe commune aux séries ES, L et S : boîtes et quantiles Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans

Plus en détail

Analyse de données longitudinales continues avec applications

Analyse de données longitudinales continues avec applications Université de Liège Département de Mathématique 29 Octobre 2002 Analyse de données longitudinales continues avec applications David MAGIS 1 Programme 1. Introduction 2. Exemples 3. Méthodes simples 4.

Plus en détail

Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés

Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Professeur Patrice Francour francour@unice.fr Une grande partie des illustrations viennent

Plus en détail

Présentation de l épreuve

Présentation de l épreuve MÉTHODO Présentation de l épreuve 1. Programme de l arrêté du 22 décembre 2006 DURÉE DE L ENSEIGNEMENT ÉPREUVE N 11 CONTRÔLE DE GESTION (à titre indicatif) : 210 heures 18 crédits européens 1. Positionnement

Plus en détail

Analyse complète des images thermiques.

Analyse complète des images thermiques. Analyse complète des images thermiques. testo IRSoft Un logiciel professionnelle performant. testo IRSoft Analyse, évaluation et documentation des images thermiques. La thermographie au plus haut niveau

Plus en détail

Arbres binaires. Hélène Milhem. Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012

Arbres binaires. Hélène Milhem. Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 Arbres binaires Hélène Milhem Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 H. Milhem (IMT, INSA Toulouse) Arbres binaires IUP SID 2011-2012 1 / 35 PLAN Introduction Construction

Plus en détail

AZAP LOGICIELS DE PRÉVISION. Azap Prévision de la Demande. Pour vos appels d offre. 3 e ÉDITION

AZAP LOGICIELS DE PRÉVISION. Azap Prévision de la Demande. Pour vos appels d offre. 3 e ÉDITION Septembre 2012 Pour vos appels d offre LGICIELS DE PRÉVISIN 3 e ÉDITIN AZAP Azap Prévision de la Demande SupplyChainMagazine.fr 19, rue Saint-Georges - 94700 Maisons-Alfort 1. NM de l'éditeur AZAP 2. Appartenance

Plus en détail

Déroulement d un projet en DATA MINING, préparation et analyse des données. Walid AYADI

Déroulement d un projet en DATA MINING, préparation et analyse des données. Walid AYADI 1 Déroulement d un projet en DATA MINING, préparation et analyse des données Walid AYADI 2 Les étapes d un projet Choix du sujet - Définition des objectifs Inventaire des données existantes Collecte, nettoyage

Plus en détail

Programme de Formation LEAN Six Sigma GREEN Belt Level

Programme de Formation LEAN Six Sigma GREEN Belt Level Première journée Jours Méthodes et Outils Formateurs DMAIC I. Définir, Mesurer 1. Définir : l environnement, les attendus, l équipe, la charte projet, - Outils : Matrice de sélection, VOC, MPM, diagramme

Plus en détail

Analyse de grandes bases de données en santé

Analyse de grandes bases de données en santé .. Analyse de grandes bases de données en santé Alain Duhamel Michaël Genin Mohamed Lemdani EA 2694 / CERIM Master 2 Recherche Biologie et Santé Journée Thématique Fouille de Données Plan. 1 Problématique.

Plus en détail

Classe de première L

Classe de première L Classe de première L Orientations générales Pour bon nombre d élèves qui s orientent en série L, la classe de première sera une fin d étude en mathématiques au lycée. On a donc voulu ici assurer à tous

Plus en détail

Analyse de grandes bases de données en santé

Analyse de grandes bases de données en santé .. Analyse de grandes bases de données en santé Alain Duhamel Michaël Genin Mohamed Lemdani EA 2694 / CERIM Master 2 Recherche Biologie et Santé Journée Thématique Fouille de Données Plan. 1 Problématique.

Plus en détail

4.2 Unités d enseignement du M1

4.2 Unités d enseignement du M1 88 CHAPITRE 4. DESCRIPTION DES UNITÉS D ENSEIGNEMENT 4.2 Unités d enseignement du M1 Tous les cours sont de 6 ECTS. Modélisation, optimisation et complexité des algorithmes (code RCP106) Objectif : Présenter

Plus en détail

COURS DE STATISTIQUES (24h)

COURS DE STATISTIQUES (24h) COURS DE STATISTIQUES (24h) Introduction Statistiques descriptives (4 h) Rappels de Probabilités (4 h) Echantillonnage(4 h) Estimation ponctuelle (6 h) Introduction aux tests (6 h) Qu est-ce que la statistique?

Plus en détail

IPA Industrial Process Automation

IPA Industrial Process Automation IPA Industrial Process Automation De la régulation de boucles simples à l automatisation flexible de procédés 2 e édition Automatisation industrielle des processus De la régulation de boucles simples à

Plus en détail

Introduction à l analyse quantitative

Introduction à l analyse quantitative Introduction à l analyse quantitative Vue d ensemble du webinaire Le webinaire sera enregistré. Les diapositives et tous les autres documents seront envoyés aux participants après la séance. La séance

Plus en détail

Introduction à l approche bootstrap

Introduction à l approche bootstrap Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?

Plus en détail

Heidi WECHTLER. Octobre 2005

Heidi WECHTLER. Octobre 2005 Heidi WECHTLER Le support aux analyses de données Séminaire GREGOR Octobre 2005 Support aux analyse de données du GREGOR Le poste Chargée d étude statistiques au GREGOR, bureau B126 (wechtler.iae@univ-paris1.fr)

Plus en détail

Qu est-ce que le ehealthcheck?

Qu est-ce que le ehealthcheck? Plus la dépendance d une compagnie envers ses systèmes informatiques est grande, plus le risque qu une erreur dans les processus métiers puisse trouver ses origines dans l informatique est élevé, d où

Plus en détail

9, rue Louis Courtois de Viçose - 31100 Toulouse www.kpeo.fr - tel: 05 81 10 01 30 - contact@kpeo.fr. Votre organisation en 3 clics. www.optimiso.

9, rue Louis Courtois de Viçose - 31100 Toulouse www.kpeo.fr - tel: 05 81 10 01 30 - contact@kpeo.fr. Votre organisation en 3 clics. www.optimiso. Votre correspondant en Midi-Pyrénées 9, rue Louis Courtois de Viçose - 31100 Toulouse www.kpeo.fr - tel: 05 81 10 01 30 - contact@kpeo.fr Votre organisation en 3 clics www.optimiso.com 2 Intuitif, modulable

Plus en détail

Techniques du Data Mining pour la prédiction de faillite des entreprises et la gestion du risque de crédit

Techniques du Data Mining pour la prédiction de faillite des entreprises et la gestion du risque de crédit Techniques du Data Mining pour la prédiction de faillite des entreprises et la gestion du risque de crédit Adil Belhouari HEC - Montréal - Journées de l Optimisation 2005-09 Mai 2005 PLAN DE LA PRÉSENTATION

Plus en détail

Aperçu de l offre de. formation continue PROGRESS 2015

Aperçu de l offre de. formation continue PROGRESS 2015 Aperçu de l offre de formation continue PROGRESS 2015 PROGRESS vous aide à concrétiser vos objectifs en matière de formation continue. Nous vous fournissons les outils, à vous de continuer à les utiliser

Plus en détail

La situation professionnelle des titulaires d un doctorat en Suisse

La situation professionnelle des titulaires d un doctorat en Suisse La situation professionnelle des titulaires d un doctorat en Suisse Résultats issus de l enquête 2007 auprès des personnes nouvellement diplômées Université de Lausanne, 18 février 2011 Véronique Meffre,

Plus en détail