TD4: Dipôles linéaires en régime sinusoïdal

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "TD4: Dipôles linéaires en régime sinusoïdal"

Transcription

1 TD4: Dipôles linéaires en régime sinusoïdal Exercice 1: Détermination des valeurs efficaces et des déphasages Exercice 2: Dipôles R, L série et:/ou parallèle 1. Soit le dipôle AB constitué d'une résistance R en parallèle avec une bobine d'inductance L. Soit le dipôle A'B' constitué d'une résistance R' en série avec une bobine d'inductance L'. Ces deux dipôles sont soumis à une tension sinusoïdale de pulsation ω. a) Déterminer R' et L' en fonction de R et L pour que ces deux dipôles soient équivalents b) Quelle est la pulsation ω o pour laquelle R'/R=L'/L. Calculer ω o pour R=10 2 Ω et L=10-2 H. 2. Soit le montage de la figure 2 où les dipôles précédents sont en série. On applique une tension sinusoïdale U(t) entre A et C telle que U(t)=U m cos(ωt). Les dipôles AB et BC sont équivalents et ω o telle que R'/R=L'/L. a) Déterminer l'impédance complexe Z AC, donner son expression polaire. b) Déterminer les amplitudes complexes des courants i 1 (t), i 2 (t) et i 1 (t). Déterminer les valeurs efficaces et les déphasages de ces grandeurs. c) Déterminer les amplitudes complexes des courants u 1 (t), u 2 (t) et u 1 (t). Déterminer les valeurs efficaces et les déphasages de ces grandeurs. 3. Donner l'expression de la capacité C qu'il faut mettre en série avec le dipôle AC pour que le courant i(t) soit en phase avec la tension u(t) à la pulsation ω o. Exercice 3: Réprésentation de Norton ; Condition de résonance

2 Soit le circuit ci-contre. Déterminer la condition sur R pour observer la résonance aux bornes du condensateur. Donner la pulsation de résonance ω c. Exercice 4: Modèle de Thévenin et Norton, Théorème de Millman Soit le circuit alimenté par une source de tension sinusoïdale e(t)=ecos(ωt) et les éléments du circuit sont tels que: LCω 2 =1 et RCω=1. Déterminer la tension Uc(t) aux bornes du condensateur. Exercice 5: Superposition de sources de courant continue et sinusoïdale i 0 (t)=i A +i B cos(ωt) avec i A et i B des constantes 1. Déterminer l'équation différentielle en i(t) (courant circulant dans R 1 ). 2. Résoudre avec les C.I. à t=o i(o)=i 1. Exercice 6: Déphaseur (R, C) Dans le circuit ci-contre, les résistances R sont couplées de façon à rester toujours égales. La tension d'entrée u 1 (t) étant sinusoïdale, déterminer la tension de sortie u 2 (t) lorsque la sortie est ouverte (i 2 (t)=0). Exercice 7:Dipôle inconnu Dans le montage suivant, le GBF délivre une tension e(t) sinusoïdale de pulsation w, R est une résistance et D un dipôle inconnu. On note u(t) = U max cos(ωt) et v (t) =V max cos(ωt + ϕ) les tensions aux bornes respectivement de R et D.

3 R e(t) U(t) D V(t) i(t) On visualise à l oscilloscope v(t) et u(t) et on obtient le graphe suivant. L unité de l axe des temps est 10-2 s et celle de l axe des tensions est de 1V. On utilise ces résultats graphiques pour déterminer les caractéristiques de D sachant que R=100Ω. 1. Déterminer Um et Vm ainsi que la période et la pulsation. 2. La tension v(t) est elle en retard ou en avance sur u(t)? déterminer le déphasage ϕ. 3. On note Z = X + j Y l impédance du dipôle D. Déterminer les valeurs de X et Y. 4. Par quel dipôle (condensateur, bobine ) peut on modéliser D? Donner ses caractéristiques. Exercice 8: Réponse d un circuit soumis à deux excitations sinusoïdales Déterminer la réponse u(t) du circuit représenté ci-contre lorsqu'il est soumis aux deux excitations sinusoïdales: e1(t)=emcos(ωt) et e2(t)=emsin(2ωt)

4 Exercice 9 : Puissance en régime sinusoïdal L U L R C Le circuit ci-contre est alimenté par une tension sinusoïdal de valeur efficace U=240V et de fréquence f = 50Hz. La valeur de l inductance est L = 1H. On sait que : Pour R=R 0 =12Ω, la puissance P est maximale et vaut P M ; Pour une autre valeur de la résistance R 1 < R 0, cos ( ϕ )=1 et P 1 =1000W Calculer L, P M, R 1 et C. Exercice 10 Amélioration du facteur de puissance Un moteur fonctionne sous une tension efficace U=200V de fréquence f =50Hz. Il est modélisé par une résistance R en série avec une inductance propre L. La puissance consommée est P = 1000 W, alors que l intensité efficace I= 10A. 1. Déterminer L et R. Que vaut le cos( ϕ )? 2. Quelle est la capacité C du condensateur à placer en parallèle à ses bornes pour que le facteur de puissance soit égal à On utilise un condensateur de capacité C < C. le facteur de puissance vaut Déterminer C. Exercice 11: Adaptateur d impédances 1) Soit un dipôle d impédance Z u branché aux bornes d un générateur de f.e.m. e g et d une impédance Z g. Déterminer les conditions (sur les parties réelle et imaginaire de Zu) pour que la puissance reçue par l impédance Z u soit maximale. On dit qu il y a adaptation d impédance. 2) On dispose d'une source de tension sinusoïdale, de pulsation ω et de résistance interne R 0 et l'on désire transférer le maximum de puissance dans la charge de résistance R. a) Lorsque R> R 0, on réalise le montage de la figure 3. Déterminer L et C en fonction de R, R 0 et ω. b) Lorsque R< R 0, on réalise le montage de la figure 4. Déterminer L et C en fonction de R, R 0 et ω. Eléments de réponse.:

5 Ex 1 : Ex 2 : Ex 3 : Ex 4 : Ex 5 : Ex 6 : Ex.7 : Ex8 : V m = 3, 5V U m = 5V ω = 100rads 1 ϕ = 2π τ = 0, 75rad = 42, 8 T X = tan 2 (ϕ) V max U mqx R = 51, 2Ω 51Ω, Y = tan(ϕ) X = 47, 7Ω 48Ω Im(Z ) = Y 0 : on peut donc modéliser le dipôle par une résistance r = X en série avec une bobine d inductance L telle que Lω = Y, soit L = Y = 0, 48H ω Ex.9 : Ex.10 : Ex.11 :Adaptation d impédance : Zu=R u +jx u,, Zg=R g +jx g ; R u =R g ; X u =-X g

RÉGIME SINUSOÏDAL PERMANENT

RÉGIME SINUSOÏDAL PERMANENT RÉGIME SINUSOÏDAL PERMANENT 1 Calculs d impédances Déterminer l impédance complexe Z des montages ci-dessous. En déduire Z le rapport de l amplitude de la tension sur l amplitude de l intensité et ϕ =

Plus en détail

Feuille d exercices n 11 : Régime sinusoïdal forcé / Résonance. au dipôle AB en fonction de j, R, C, L et ω.

Feuille d exercices n 11 : Régime sinusoïdal forcé / Résonance. au dipôle AB en fonction de j, R, C, L et ω. Feuille d exercices n 11 : Régime sinusoïdal forcé / Résonance Exercice 1 : Notion d impédance : 1) Exprimez l impédance équivalente Z éq au dipôle AB en fonction de j, R, C, et ω. 2) On branche aux bornes

Plus en détail

EXI Caractéristiques d un dipôle inconnu

EXI Caractéristiques d un dipôle inconnu Devoir du 20/01/15 Calculatrice interdite EXI Caractéristiques d un dipôle inconnu Dans le montage suivant,le GBF Délivre une tension e(t) sinusoïdale de pulsation ω ; R est une résistance et D un dipôle

Plus en détail

CIRCUITS ELECTRIQUES EN REGIME SINUSOIDAL MONOPHASE

CIRCUITS ELECTRIQUES EN REGIME SINUSOIDAL MONOPHASE CIRCUITS ELECTRIQUES EN REGIME SINUSOIDAL MONOPHASE I TENSIONS ET INTENSITES ALTERNATIVES INSTANTANEES 1 Sinusoïde et vecteur de FRESNEL 2 Période, fréquence et pulsation 3 Tension maximum -Tension efficace

Plus en détail

PC A DOMICILE WAHAB DIOP LSLL

PC A DOMICILE WAHAB DIOP LSLL cos PC A DOMICILE - 779165576 WAHAB DIOP LSLL P13-OSCILLATIONS E L E C T R I Q U E S F O R C E E S E N R TRAVAUX DIRIGES TERMINALE S 1 On donne deux tensions sinusoïdales, exprimées en volts u 1 = 3cos(250t)

Plus en détail

Série : Oscillation électrique en régime sinusoïdale forcée

Série : Oscillation électrique en régime sinusoïdale forcée Exercice n 1 On considère un circuit électrique série constitué par un G.B.F délivrant une tension sinusoïdale U(t) = U m sin (2πNt), un condensateur de capacité C, un résistor de résistance R = 80 Ω et

Plus en détail

Circuit (R,L,C) série en régime sinusoïdal forcé : Exercices

Circuit (R,L,C) série en régime sinusoïdal forcé : Exercices ircuit (,L,) série en régime sinusoïdal forcé : Exercices Exercice 1 : QM épondre par vrai ou faux 1 Le déphasage de la tension aux bornes d un dipôle (,L,) série par rapport à l intensité peut être nul

Plus en détail

I- Généralités : Pour assimiler le cours

I- Généralités : Pour assimiler le cours I- Généralités : Pour assimiler le cours Exercice N 01 Au cours d une séance de travaux pratiques, on dispose du matériel suivant : Un résistor de résistance R Une bobine de caractéristiques (L; r) Un

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE ÉPREUVE DE PHYSIQUE

BACCALAURÉAT TECHNOLOGIQUE ÉPREUVE DE PHYSIQUE Session 2009 BACCALAURÉAT TECHNOLOGIQUE STL - CHIMIE DE LABORATOIRE ET DE PROCÉDÉS INDUSTRIELS ÉPREUVE DE PHYSIQUE Durée de l'épreuve : 2 heures Coefficient : 3 Le sujet comporte 6 pages numérotées de

Plus en détail

V e. S e. relative ε r sachant que C = ε 0 ε r

V e. S e. relative ε r sachant que C = ε 0 ε r G. Pinson : Physique Appliquée Couant alternatif ACA-TD / ---------------- ACA-- Soit un circuit RL série, avec R = 0 Ω ; L = 70 mh. Calculer les tensions V R (tension aux bornes de R), V L (tension aux

Plus en détail

SERIE N 6 ETUDE DES OSCILLATIONS ELECTRIQUE FORCE CIRCUIT RLC EN REGIME SINUSOIDALE

SERIE N 6 ETUDE DES OSCILLATIONS ELECTRIQUE FORCE CIRCUIT RLC EN REGIME SINUSOIDALE SERIE N 6 ETUDE DES OSCILLATIONS ELECTRIQUE FORCE CIRCUIT RLC EN REGIME SINUSOIDALE EXERCICE 1 On réalise entre deux points A et M d un circuit un montage série comportant un résistor de résistance R=40Ω,

Plus en détail

M ) {( R ), ( B ), ( C )} = UDM

M ) {( R ), ( B ), ( C )} = UDM Exercice 1 :(bac 98) Le circuit électrique de la figure-2 comporte en série : - un résistor ( R ) de résistance R = 80 Ω - une bobine ( B ) d inductance L et de résistance propre r. - un condensateur (

Plus en détail

SUJET DE TAI D ELECTRICITE : L1

SUJET DE TAI D ELECTRICITE : L1 SUJET DE TAI D ELECTRICITE : L1 Année 2013-2014 Isabelle Sirot Exercice 1 : R1 A R2 E1 RU E2 On souhaite étudier le comportement de deux piles (E1, R1) et (E2, R2) en fonction des valeurs des résistances

Plus en détail

C 1 courbe correspondante.

C 1 courbe correspondante. Exercice n : 1 Un oscillateur électrique est constitué des dipôles suivants associés en série : un résistor de résistance R, une bobine d inductance L et de résistance négligeable un condensateur de capacité

Plus en détail

Le circuit électrique de la figure-1 comporte en série : - un résistor ( R ) de résistance R=170.

Le circuit électrique de la figure-1 comporte en série : - un résistor ( R ) de résistance R=170. Lycée Maknassy 2011-2012 - 4 éme TEC et SC EXP- ALIBI.A. Sc.physiques Exercice n : 1 Le circuit électrique de la figure-1 comporte en série : - un résistor ( R ) de résistance R=170. 2 1 une bobine (B)

Plus en détail

Préparez votre baccalauréat

Préparez votre baccalauréat Exercice N 1 Un générateur basse fréquence, délivrant une tension sinusoïdale u(t) =U m sin(2 Nt), d amplitude U m constante et de fréquence N réglable, alimente un circuit électrique comportant les dipôles

Plus en détail

Étude d' une bobine en régime sinusoïdal forcé

Étude d' une bobine en régime sinusoïdal forcé SP-lec-C6-problème pour s'entraîner PCSI Étude d' une bobine en régime sinusoïdal forcé Un générateur sinusoïdal alimente un circuit RLC constitué d un condensateur de capacité C.μF d une bobine réelle

Plus en détail

tout droit est réservé à l auteur ( SFAXI SALAH : professeur hors classes)

tout droit est réservé à l auteur ( SFAXI SALAH : professeur hors classes) 4eme/math Sc/tec/info PROBLEME N1 On réalise entre deux points A et M d un circuit un montage série comportant un résistor de résistance r=40ω, une bobine d inductance L et de résistance R=13Ω et un condensateur

Plus en détail

SUJET DE TAI D ELECTRICITE : L1

SUJET DE TAI D ELECTRICITE : L1 SUJET DE TAI D ELECTRICITE : L1 Année 2011-2012 Isabelle Sirot Exercice 1 A R2 E1 R3 E2 =400 Ω, R2= 200 Ω, R3= 1200Ω, E1= 6 Volts, E2=12 Volts Exprimer la loi des nœuds au nœud A 1) En déduire la valeur

Plus en détail

En régime transitoire

En régime transitoire TD 08 - Oscillateurs amortis En régime transitoire 1 Analyse dimensionnelle 1. Donner et interpréter les trois temps que l'on peut dimensionnellement construire avec une résistance R, une inductance L

Plus en détail

Génie électrique TD Source d'énergie

Génie électrique TD Source d'énergie Exercice 1 (difficulté *) On considère le circuit suivant : A i(t) C On donne : u(t) u L (t) L R=200 Ω D u R (t) R B M 1. Indiquer les branchements de l oscilloscope pour visualiser u(t) en voie1 et u

Plus en détail

maximale. Qu appelle-t-on le phénomène qui se produit? c. À quelle condition ce phénomène se produit-t-il? Montrer que N 1 obéit à cette condition.

maximale. Qu appelle-t-on le phénomène qui se produit? c. À quelle condition ce phénomène se produit-t-il? Montrer que N 1 obéit à cette condition. Prof : Barhoumi Ezzedine Classe : 4 ème Math A.S. : 213/214 Tunisie - Sidi Bouzid - Lycée de Cebbala Les oscillations électriques forcées Exercice n 1 : Un dipôle RLC est constitué d un résistor de résistance

Plus en détail

Exercice 1 Calculs d intensité (3 points)

Exercice 1 Calculs d intensité (3 points) Page 1/ 5 Devoir électrocinétique n o 1 M1 EFTIS/IUFM Nice Le contrôle est constitué de cinq exercices indépendants, le barême étant approximatif et donné à titre indicatif seulement. Toute erreur éventuelle

Plus en détail

CLASSES DE PCSI 1, 2 et 3 - CORRIGÉ D.S N 4 DE PHYSIQUE

CLASSES DE PCSI 1, 2 et 3 - CORRIGÉ D.S N 4 DE PHYSIQUE CLASSES DE PCSI, et 3 - CORRIGÉ DS N 4 DE PHYSIQUE Exercice : Circuit R-L-C en régime sinusoïdal Etude de l intensité En très basse fréquence, le condensateur se comporte comme un interrupteur ouvert et

Plus en détail

FILTRES. 2 Entrée d un oscilloscope

FILTRES. 2 Entrée d un oscilloscope FILTRES Un quadrupôle constitué de deux dipôles (D ) et (D 2 ), disposés comme l indique la figure cicontre, contient une résistance R, un condensateur de capacité C et une bobine d inductance L. Seules

Plus en détail

Exercice n 1 : Un dipôle RLC est constitué d un résistor de résistance

Exercice n 1 : Un dipôle RLC est constitué d un résistor de résistance Prof : Barhoumi Ezzedine Classe : 4 ème Math A.S. : 215/216 Tunisie - Sidi Bouzid - Lycée de Cebbala Les oscillations électriques forcées Exercice n 1 : Un dipôle RLC est constitué d un résistor de résistance

Plus en détail

Chapitre 8 : Dipôles linéaires en régime sinusoïdal

Chapitre 8 : Dipôles linéaires en régime sinusoïdal Chapitre 8 : Dipôles linéaires en régime sinusoïdal I / Introduction 1. position du problème 2. montage II / Résistance 1. Etude théorique 2. Etude expérimentale 3. généralisation 4. application III /

Plus en détail

CIRCUITS EN RÉGIME SINUSOÏDAL FORCÉ

CIRCUITS EN RÉGIME SINUSOÏDAL FORCÉ CICUIS EN ÉGIME SINUSOÏDAL FOCÉ Dans ces circuits électriques, les sources d énergie fournissent des tensions ou des courants alternatifs sinusoïdaux qui, après un bref régime transitoire, imposent leur

Plus en détail

Etude de la résonance série

Etude de la résonance série Circuit électrique comprenant une bobine (L, r), un condensateur C et une résistance R montés en série Etude de la résonance série i A u L Bobine L = 1 H r = 1,5 Ω i GBF u u C Condensateur C =,1 µf B u

Plus en détail

E5 Réseaux linéaires en régime

E5 Réseaux linéaires en régime E5 Réseaux linéaires en régime sinusoïdal forcé Régime Sinusoïdal Forcé.1 Régime transitoire et régime permanent a Régime libre et régime permanent : L étude d un circuit linéaire conduit à résoudre une

Plus en détail

-Exercices d électricité -

-Exercices d électricité - Université Claude ernard Lyon-I INSTITUT TECHNIQUES DE ÉDPTTION adresse postale: 8 av ockefeller-69373 LYON cedex 08-1re NNÉE DIPLÔME D ÉTT D UDIOPOTHÉSISTE -Exercices d électricité - 1 1 Electrocinétique

Plus en détail

PHYSIQUE Durée 2 h Coefficient 3. Une feuille de papier millimétré est fournie. I. COURBE DE RÉPONSE D UN CIRCUIT RLC SÉRIE

PHYSIQUE Durée 2 h Coefficient 3. Une feuille de papier millimétré est fournie. I. COURBE DE RÉPONSE D UN CIRCUIT RLC SÉRIE Épreuve : - CHIMIE Une feuille de papier millimétré est fournie. I. COURBE DE RÉPONSE D UN CIRCUIT RLC SÉRIE On réalise un circuit, alimenté par un GBF, comportant en série les éléments suivants : - un

Plus en détail

Circuits linéaires en régime sinusoïdal forcé. Contents. Chapitre 8. Les prérequis du lycée. Les prérequis de la prépa

Circuits linéaires en régime sinusoïdal forcé. Contents. Chapitre 8. Les prérequis du lycée. Les prérequis de la prépa Chapitre 8 Circuits linéaires en régime sinusoïdal forcé Contents 1 De l'intérêt du régime sinusoïdal forcé et de l'étude harmonique 3 1.1 Mis en évidence du rôle privilégié du signal sinusoïdal....................

Plus en détail

Lycée Maknassy ALIBI.A.

Lycée Maknassy ALIBI.A. Lycée Maknassy ALIBI.A. 2010-2011 - 4 éme TEC - Sc.physiques EXERCICE 1 Un dipôle AB est constitue par l association en série d un résistor de résistance R = 10 ohms, d une bobine d inductance L = 0,5

Plus en détail

C I R C U I T S L I N E A I R E S E N R E G I M E S I N U S O I D A L F O R C E C I R C U I T R L C E T R E S O N A N C E

C I R C U I T S L I N E A I R E S E N R E G I M E S I N U S O I D A L F O R C E C I R C U I T R L C E T R E S O N A N C E ELECTROCINETIQE R.Duperray Lycée F.BISSON PTSI C I R C I T S L I N E A I R E S E N R E G I M E S I N S O I D A L F O R C E C I R C I T R L C E T R E S O N A N C E Nous allons étudier la réponse des circuits

Plus en détail

Calculs de puissance. Chapitre Introduction

Calculs de puissance. Chapitre Introduction Chapitre 2 Calculs de puissance On explore ici les concepts de puissance qui seront la base pour la résolution de plusieurs types de problèmes. En fait, on verra qu il est souvent plus simple de résoudre

Plus en détail

i 2 i 1 Exercices sur le régime sinusoïdal forcé Détermination d une intensité I. Rame de TGV L,R L,R S. Benlhajlahsen

i 2 i 1 Exercices sur le régime sinusoïdal forcé Détermination d une intensité I. Rame de TGV L,R L,R S. Benlhajlahsen Exercices sur le régime sinusoïdal forcé S. Benlhajlahsen Dans tous les exercices, on étudie les circuits en régime sinusoïdal forcé. II. Détermination d une intensité I. ame de TGV Un moteur de rame de

Plus en détail

BTS2006: Redressement d'un courant

BTS2006: Redressement d'un courant BTS2006: Redressement d'un courant 1. L'oscillogramme ci- dessous représente une tension, e(t) délivrée par une source de tension sinusoïdale. Les sensibilités verticale et horizontale de l'oscilloscope

Plus en détail

Lycée Hédi Chaker Sfax. Devoir de contrôle N 2 Mars Prof : Abdmouleh- Nabil. CHIMIE (5 points)

Lycée Hédi Chaker Sfax. Devoir de contrôle N 2 Mars Prof : Abdmouleh- Nabil. CHIMIE (5 points) Lycée Hédi haker Sfax Devoir de contrôle N 2 Mars 2011 Section : SIENE DE L INFORMATIQUE Durée : 2 Heures Prof : Abdmouleh- Nabil SIENES PHYSIQUES L épreuve comporte un exercice de chimie et deux exercices

Plus en détail

TD Ec0 : Révisions : électrocinétique et inductances

TD Ec0 : Révisions : électrocinétique et inductances PT Lycée Benjamin Franklin 5 septembre 018 TD Ec0 : évisions : électrocinétique et inductances EXECICE 1 : Interprétation qualitative du phénomène d auto-induction par Faraday Une bobine de fil conducteur

Plus en détail

1- Le régime sinusoïdal forcé : généralisation 2- Impédance et admittance complexes 3- Lois de l'électrocinétique en complexe

1- Le régime sinusoïdal forcé : généralisation 2- Impédance et admittance complexes 3- Lois de l'électrocinétique en complexe OH2 Oscillateurs en régime sinusoïdal forcé Plan I- Signaux sinusoïdaux 1- Dénition 2- Grandeurs caractéristiques 3- Notation complexe d'un signal sinusoïdal 4- Application de la notation complexe à un

Plus en détail

TD Systèmes électriques. Mesures Physiques

TD Systèmes électriques. Mesures Physiques TD Systèmes électriques Mesures Physiques 05-06 Cette série de TD se décompose en 9 chapitres qui seront étudiés durant 0 séances de h. Le tableau en première page est une aide pour les étudiants de ère

Plus en détail

Les calculatrices sont autorisées. L usage de tout ouvrage de référence et de tout document est interdit.

Les calculatrices sont autorisées. L usage de tout ouvrage de référence et de tout document est interdit. Les calculatrices sont autorisées L usage de tout ouvrage de référence et de tout document est interdit. De très nombreuses parties sont indépendantes. Il est conseillé aux candidats de prendre connaissance

Plus en détail

Courant Continu CC (Direct Current DC)

Courant Continu CC (Direct Current DC) G. Pinson - Physique Appliquée Théorèmes généraux sur les circuits - A / A. Théorèmes généraux sur les circuits Courant Continu CC (Direct Current DC) A B Différence de potentiel (ddp) = V A V B V A V

Plus en détail

Etude du circuit RLC série : Sujet 5

Etude du circuit RLC série : Sujet 5 Etude du circuit RLC série : Sujet 5 LACROIX Axel LARDET Florie LUCACIU Sonia RAJERISON Nasiantsoa Partie : Modélisation du circuit : Régime forcé Régime général Le générateur G délivre une tension sinusoïdale

Plus en détail

Questions de cours. Chimie VI.13

Questions de cours. Chimie VI.13 Questions de cours. Définir l impédance en électricité 2. Qu est ce qu un régime sinusoïdal forcé? 3. Définir la résonance en électricité 4. Définir la bande passante à 3 d himie VI.3 e document ci-dessous

Plus en détail

Exercices d électrocinétique

Exercices d électrocinétique Master MEEF Université Paris Diderot Étienne Parizot (Année 2017-2018) Exercices d électrocinétique Exercice 1 : Deux circuits élémentaires Fig. 1 Circuits à deux mailles (à gauche) et à trois mailles

Plus en détail

SOURCES D ENERGIE. CI3 : Chaînes d énergie SOURCES D ENERGIE TD2. Edition 2-23/09/2018 CHAÎNE D INFORMATION CHAÎNE D ENERGIE

SOURCES D ENERGIE. CI3 : Chaînes d énergie SOURCES D ENERGIE TD2. Edition 2-23/09/2018 CHAÎNE D INFORMATION CHAÎNE D ENERGIE Edition 2-23/09/2018 CHAÎNE D INFORMATION ACQUERIR TRAITER COMMUNIQUER ALIMENTER DISTRIBUER CONVERTIR TRANSMETTRE CHAÎNE D ENERGIE ACTION Lycée Jules Ferry - 06400 Cannes ats.julesferry.cannes@gmail.com

Plus en détail

Table des matières. 2.1 Amplitude, phase, pulsation et fréquence. MPSI - Électrocinétique II - Régime sinusoïdal forcé page 1/7

Table des matières. 2.1 Amplitude, phase, pulsation et fréquence. MPSI - Électrocinétique II - Régime sinusoïdal forcé page 1/7 MPSI - Électrocinétique II - égime sinusoïdal forcé page /7 égime sinusoïdal forcé Table des matières ôle générique pour l étude des régimes périodiques forcés Signau sinusoïdau. Amplitude, phase, pulsation

Plus en détail

RESONANCES DU CIRCUIT RLC SERIE

RESONANCES DU CIRCUIT RLC SERIE TP CIRCUITS ELECTRIQUES R.DUPERRAY Lycée F.BUISSON PTSI RESONANCES DU CIRCUIT RLC SERIE OBJECTIFS Mesurer la réponse en intensité et en tension (aux bornes du condensateur) du circuit RLC série soumis

Plus en détail

Chapitre 1 : Régime sinusoïdal

Chapitre 1 : Régime sinusoïdal I Généralités 1. Définition a) amplitude b) pulsation c) phase à l origine 2. valeur moyenne 3. valeur efficace 4. représentation de Fresnel 5. complexe associé Chapitre 1 : Régime sinusoïdal II Etude

Plus en détail

Grandeurs sinusoïdales

Grandeurs sinusoïdales I. Les différents types de signaux Grandeurs sinusoïdales ignal variable En régime variable, les courants et les tensions sont des signaux variant avec le temps ignal périodique n signal est périodique

Plus en détail

3. Montage RLC série : un exercice autour de la manip

3. Montage RLC série : un exercice autour de la manip 1. Représentation de FRESNEL (Augustin) Circuit domestique : Un particulier branche trois dipôles chez lui aux bornes de son installation. La tension délivrée par EDF est de la forme U(t) = Uo 2.cos(Ωt)

Plus en détail

UNE CALCULATRICE NON PROGRAMMABLE, NON GRAPHIQUE AUTORISEE; AUCUN DOCUMENT AUTORISE

UNE CALCULATRICE NON PROGRAMMABLE, NON GRAPHIQUE AUTORISEE; AUCUN DOCUMENT AUTORISE E.C. P3 I.S. 2 heures ON REDIGERA L EXERCICE I SUR UNE COPIE, ET LES EXERCICES II ET III SUR UNE AUTRE. SI UNE PARTIE N EST PAS TRAITEE JOINDRE UNE COPIE BLANCHE A VOTRE NOM. LE NON-RESPECT DE CES CONSIGNES

Plus en détail

Electrocinétique Circuits magnétiques Bobine à noyau de fer Transformateur Systèmes triphasés Machine Synchrone

Electrocinétique Circuits magnétiques Bobine à noyau de fer Transformateur Systèmes triphasés Machine Synchrone Julien Seigneurbieux Conversion d énergie Présentation Générale Semestre 1 Electrocinétique Circuits magnétiques Bobine à noyau de fer Transformateur Systèmes triphasés Machine Synchrone 1 Rappels d électrocinétique

Plus en détail

PHYSIQUE Durée 2 h Coefficient 3

PHYSIQUE Durée 2 h Coefficient 3 BCCLUÉT TECHNOLOGIQUE -- SESSION 001 SEIE SCIENCES ET TECHNOLOGIES DE LBOTOIE SPÉCILITÉ : CHIMIE DE LBOTOIE ET DE POCÉDÉS INDUSTIELS Épreuve : - CHIMIE I. ÉTUDE D UN SSEVISSEMENT DE VITESSE On désire stabiliser

Plus en détail

Devoir n 3. e (t)= d Φ(t ) avec F(t) le flux à travers la spire. Il est très fortement conseillé de lire l'ensemble des énoncés avant de commencer.

Devoir n 3. e (t)= d Φ(t ) avec F(t) le flux à travers la spire. Il est très fortement conseillé de lire l'ensemble des énoncés avant de commencer. Devoir n 3 Il est très fortement conseillé de lire l'ensemble des énoncés avant de commencer. Exercice 1 (1,5 point) Le schéma ci contre représente le dispositif dit des «rails de Laplace». Ce dispositif

Plus en détail

TD 10 : Oscillateurs amortis en RSF

TD 10 : Oscillateurs amortis en RSF TD 10 : Oscillateurs amortis en RSF I. Tester ses connaissances et sa compréhension du cours 1) Quels sont les régimes observés lorsqu'on soumet un oscillateur à une excitation sinusoïdale? 2) Pourquoi

Plus en détail

PTSI EXAMEN SEMESTRIEL DE SCIENCES PHYSIQUES 16/01/2015. NB : Seuls les résultats mis en évidence seront pris en compte

PTSI EXAMEN SEMESTRIEL DE SCIENCES PHYSIQUES 16/01/2015. NB : Seuls les résultats mis en évidence seront pris en compte PTSI EXAMEN SEMESTRIEL DE SCIENCES PHYSIQUES 16/01/2015 Problème de cinétique chimique NB : Seuls les résultats mis en évidence seront pris en compte A la température T = 543K supposée constante pendant

Plus en détail

Série d'exercices Objet: Oscillations libres amorties et non amorties

Série d'exercices Objet: Oscillations libres amorties et non amorties D.R: SBZ Prof:Baccari.A A.S:2010-2011 Série d'exercices Objet: Oscillations libres amorties et non amorties Lycée Lessouda Classe: 4e SC.exp+M+T Exercice1 : A) Un générateur idéal de tension constante

Plus en détail

LYCEE DE MECKHE TERMINALE S 1 ANNEE SCOLAIRE 09/10 TD : DIPOLES RL ;RC :LC;RLC.

LYCEE DE MECKHE TERMINALE S 1 ANNEE SCOLAIRE 09/10 TD : DIPOLES RL ;RC :LC;RLC. TD : DIPOLES RL ;RC :LC;RLC EXERCICE N 1 : Etude d un circuit RC On réalise le circuit électrique suivant et on branche un oscilloscope bicourbe aux bornes du GBF (générateur basse fréquence) et aux bornes

Plus en détail

Chapitre 2 : Courant alternatif

Chapitre 2 : Courant alternatif Chapitre 2 : Courant alternatif I. Définition Un courant alternatif est un courant dont l intensité : varie périodiquement en fonction du temps =+ avec la période présente alternativement des valeurs positives

Plus en détail

Lycée El Hadji Omar lamine Badji nnée scolaire 2013-2014 Cellules de sciences physiques Classe : TS1 OSCILLTIONS ELECTRIQUES LIBRES ET OSCILLTIONS ELECTRIQUES FORCEES EXERCICE 1 : On réalise le montage

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE STL - CHIMIE DE LABORATOIRE ET DE PROCÉDÉS INDUSTRIELS ÉPREUVE DE PHYSIQUE

BACCALAURÉAT TECHNOLOGIQUE STL - CHIMIE DE LABORATOIRE ET DE PROCÉDÉS INDUSTRIELS ÉPREUVE DE PHYSIQUE Session 2012 BACCALAURÉAT TECHNOLOGIQUE STL - CHIMIE DE LABORATOIRE ET DE PROCÉDÉS INDUSTRIELS ÉPREUVE DE PHYSIQUE Durée de l'épreuve : 2 heures Coefficient : 3 Le sujet comporte 5 pages numérotées de

Plus en détail

ETUDE D ÉLÉMENTS CONSTITUANT UN FOUR À MICRO-ONDES

ETUDE D ÉLÉMENTS CONSTITUANT UN FOUR À MICRO-ONDES ETUDE D ÉLÉMENTS CONSTITUANT UN FOUR À MICRO-ONDES Dans la suite du document, ce symbole signifie «Appeler l examinateur». L organe essentiel d un four à micro-ondes est le magnétron, c est un oscillateur

Plus en détail

Résonance électrique

Résonance électrique lectrocinétique 5 ésonance électrique I. éponse du dipôle LC série à une excitation sinusoïdale Soit un circuit LC série, et un générateur de tension e(t) = cos t de résistance interne négligeable. A t

Plus en détail

Premier problème: Circuit L-R // R

Premier problème: Circuit L-R // R SP Electricité-C4-C5-problèmes pour s'entraîner MPSI3 Premier problème: Circuit L-R // R K i1(t) On considère le montage figure 1: Pour t < 0 l'interrupteur K est ouvert et le circuit est en régime permanent.

Plus en détail

Soutien P3. Pour y assister, vous devez vous inscrire sur Moodle/P3. Inscription pour la semaine 43/44 ouverte (jusqu au 20 octobre 14h)

Soutien P3. Pour y assister, vous devez vous inscrire sur Moodle/P3. Inscription pour la semaine 43/44 ouverte (jusqu au 20 octobre 14h) Soutien P3 Des séances de soutien en électricité sont organisées les lundi, mardi de 18h15 à 19h45 (sections 1&2), en semaines 42,(43/44),47,49,(51/1),2. Les inscriptions sont facultatives, et à renouveler

Plus en détail

Série physique : Forcée électrique

Série physique : Forcée électrique Exercice N 1 Le circuit électrique de la figure (1) comporte : un résistor de résistance R=24Ω, un condensateur de capacité Cet une bobine d inductance L=0.8 H, de résistance interne r. L ensemble est

Plus en détail

Thème II : analyse du signal

Thème II : analyse du signal Thème II : analyse du signal Importance du sinusoïdal 2 ième partie : Le signal sinusoïdal Figure Les signaux sinusoïdaux ont une grande importance en physique. En électrotechnique : la majeure partie

Plus en détail

TRAVAUX DIRIGÉS DE EC 5

TRAVAUX DIRIGÉS DE EC 5 TD E 5 orrection PSI 07 08 TRAVAUX DIRIGÉS DE E 5 Exercice : Utilisation des omplexes On pose x (t) =. cos(ωt + π 3 ) et x (t) = 3. cos(ωt π 4 ). En utilisant la méthode des complexes, déterminer l amplitude

Plus en détail

Lycée Maknassy Prof : Kh.Bessem. Un oscillateur mécanique, formé d un solide S de masse m = 40 g accroché à l extrémité d un

Lycée Maknassy Prof : Kh.Bessem. Un oscillateur mécanique, formé d un solide S de masse m = 40 g accroché à l extrémité d un Révision N - 11 - Lycée Maknassy 01-013 Prof : Kh.Bessem Mécanique Forcé - Analogie avec Electrique forcé Exercice N - 1 Un oscillateur mécanique, formé d un solide S de masse m = 40 g accroché à l extrémité

Plus en détail

Université Paul Sabatier Fascicule de Travaux Dirigés de Physique 1 Semestre 1, L1, Portail SFA. Année

Université Paul Sabatier Fascicule de Travaux Dirigés de Physique 1 Semestre 1, L1, Portail SFA. Année Université Paul Sabatier Fascicule de Travaux Dirigés de Physique 1 Semestre 1, L1, Portail SFA Année 2011-2012 1 4 Thème 4 Oscillations forcées, résonance, impédances (durée 6 heures) 4.1 Circuit RL série

Plus en détail

SERIE N 7 LES FILTRES ELECTRIQUES

SERIE N 7 LES FILTRES ELECTRIQUES SERIE N 7 LES FILTRES ELECTRIQUES EXERCICE N A l entrée d un filtre RC schématisé sur la figure ci-contre, on applique une tension sinusoïdale u E (t) de fréquence N réglable : Soit u E (t) = U Em. sin(

Plus en détail

Université Paul Sabatier Licence STS Parcours PC Physique L1

Université Paul Sabatier Licence STS Parcours PC Physique L1 Université Paul Sabatier Licence STS Parcours PC Physique L1 Thèmes 5 et 6 Oscillations forcées ; résonance ; impédance 2009 2010, durée : 6 h Conformément à l usage typographique international, les vecteurs

Plus en détail

CPGE&SAFI Sup3 Devoir surveillé 2 Durée : 3h 2009/2010

CPGE&SAFI Sup3 Devoir surveillé 2 Durée : 3h 2009/2010 Si, au cours de l épreuve, un candidat repère ce qui lui semble être une erreur d énoncé, il le signale sur sa copie et poursuivant sa composition en indiquant les raisons des initiatives qu il est amené

Plus en détail

GELE2112 Chapitre 7 : Analyse sinusoïdale

GELE2112 Chapitre 7 : Analyse sinusoïdale GELE2112 Chapitre 7 : Analyse sinusoïdale Gabriel Cormier, Ph.D. Université de Moncton Hiver 2009 Gabriel Cormier (UdeM) GELE2112 Chapitre 7 Hiver 2009 1 / 82 Introduction Contenu Ce chapitre présente

Plus en détail

Électrocinétique de base

Électrocinétique de base Sujet Électrocinétique de base... 1 A.Rappel de quelques méthodes de résolution en continu...1 1)Passage entre modèles de Thévenin et de Norton... 1 2)Association de résistances en série et en parallèle...

Plus en détail

remarque : la notation complexe est ici moins pratique car elle s'applique surtout aux opérations linéaires : Re(ui) Re(u)Re(i).

remarque : la notation complexe est ici moins pratique car elle s'applique surtout aux opérations linéaires : Re(ui) Re(u)Re(i). EC.VII - RÉGIME SINUSOÏDAL - ADAPTATIONS. Puissance en régime sinusoïdal permanent.. Puissance moyenne et valeurs efficaces La puissance instantanée reçue par un dipôle est : p(t) = u AB (t) i(t) (convention

Plus en détail

TP 11 : Étude de régimes transitoires du second ordre

TP 11 : Étude de régimes transitoires du second ordre TP 11 : Étude de régimes transitoires du second ordre I Présentation Le circuit étudié est un oscillateur électrique amorti constitué d'une résistance, d'un condensateur supposé idéal et d'une bobine réelle

Plus en détail

Cours d électricité. Associations de dipôles Transitoires et résonances. Mathieu Bardoux. 1 re année:

Cours d électricité. Associations de dipôles Transitoires et résonances. Mathieu Bardoux. 1 re année: Cours d électricité Associations de dipôles Transitoires et résonances Mathieu Bardoux mathieu.bardoux@univ-littoral.fr IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie 1 re année: 2011-2012

Plus en détail

Cours d électrocinétique

Cours d électrocinétique Cours d électrocinétique C5-Résonance du circuit RLC série Introduction Ce chapitre sera l occasion de reprendre en partie les contenus des deu chapitres précédents : à l aide de la notation complee, nous

Plus en détail

Exercice 1 : Réponse d'un circuit (R, L, C) - Niveau 1/4. On considère le circuit (R, L, C) suivant (on suppose RC = L R = τ ) : d 2 i

Exercice 1 : Réponse d'un circuit (R, L, C) - Niveau 1/4. On considère le circuit (R, L, C) suivant (on suppose RC = L R = τ ) : d 2 i Exercices de cours Exercice 1 : Réponse d'un circuit (R, L, C) - Niveau 1/4 On considère le circuit (R, L, C) suivant (on suppose RC = L R = τ ) : 1. Donner la tension initiale aux bornes de la bobine

Plus en détail

TPN02 : Résonance série et parallèle

TPN02 : Résonance série et parallèle Licence Télécommunications Module : Télécommunications fondamentales Section A&B TPN : ésonance série et parallèle But du TP L objectif de cette manipulation est l étude théorique et pratique d un circuit

Plus en détail

N Anonymat :.. Question Note Barême Question Note Barême III III III III III III III-2-4 5

N Anonymat :.. Question Note Barême Question Note Barême III III III III III III III-2-4 5 UNIVERSITE PAUL SABATIER MARDI 22 JANVIER 2008 L2 EEA-MI UE3 : 2L33EA1E3 EXAMEN ECRIT FINAL Durée : 1h30 CONVERSION DE L'ENERGIE ELECTRIQUE: Aucun document écrit n'est autorisé Le téléphone portable est

Plus en détail

Électronique en régime sinusoïdal forcé

Électronique en régime sinusoïdal forcé Électronique 5 Travaux dirigés angevin-wallon, PTS 207-208 Électronique en régime sinusoïdal forcé Exercice : Détermination d impédances Exercices [ ] Déterminer l impédance complexe des dipôles ci-dessous.

Plus en détail

de l armature A. c- En déduire l expression de l énergie électrostatique du condensateur en fonction de C et E.

de l armature A. c- En déduire l expression de l énergie électrostatique du condensateur en fonction de C et E. Lycée Maknassy 013-014 - 4 éme SC EXP- ALIBI.A. Sc.physiques Exercice N 1 On dispose d'un condensateur de capacité C=10 µf d'une bobine parfaite d'inductance L=0,1H et de résistance interne négligeable.

Plus en détail

T.P. n 9 : MULTIPLIEUR

T.P. n 9 : MULTIPLIEUR T.P. n 9 : MULTIPLIEUR 1 ) MESURES D IMPÉDANCES Soit l impédance inconnue qui est prête dans une «boîte noire» : Z Z e j ou Z R jx a) MESURE AVEC UN MULTIPLIEUR : - Mesure de la résistance R de l impédance

Plus en détail

Devoir Surveillé. Électricité Module P1

Devoir Surveillé. Électricité Module P1 Devoir Surveillé Électricité Module P Semestre Lundi mai Sans document Sans calculatrice Exercice Monophasé (8 points) Soit le circuit suivant, les appareils sont MS : W A c ~ Quelles sont les grandeurs

Plus en détail

et calculer sa valeur, b. l'expression littérale et la valeur de l'intensité nominale I 2N = 0,90. Toujours pour une intensité de fonctionnement I 2

et calculer sa valeur, b. l'expression littérale et la valeur de l'intensité nominale I 2N = 0,90. Toujours pour une intensité de fonctionnement I 2 BTS 2004 - L'installation électrique d'un atelier de teinture de tissus est alimenté par l'intermédiaire d'un transformateur monophasé (1), de rapport de transformation m = 0, 15 et de puissance nominale

Plus en détail

Partie PHYSIQUE : Circuits électriques

Partie PHYSIQUE : Circuits électriques 1/5 Problème n 1 : Un réveil en douceur Partie PHYSIQUE : Circuits électriques On commercialise aujourd hui des réveils «éveil lumière / éveil douceur». Le concept utilisé est le suivant : lorsque l heure

Plus en détail

B. Mesure de l impédance d entrée d un oscilloscope

B. Mesure de l impédance d entrée d un oscilloscope Problème : Mesures d impédances A. Mesure de l impédance de sortie d un générateur basse fréquence (GBF) On modélise un GBF par une source idéale de tension de force électromotrice ( ) ( ωt ) E t = E m

Plus en détail

Sujet de révision N o 4

Sujet de révision N o 4 Sujet de révision N o 4 CHIMIE Exercice 1 : 1- Le dibrome Br 2 est à la fois un oxydant et un réducteur.il intervient dans les couples BrO 3 - /Br 2 et Br 2 /Br -. Préciser dans quel couple il est oxydant

Plus en détail

Exercices du chapitre 10

Exercices du chapitre 10 Exercices du chapitre 10 Éléments et analyse des systèmes électriques 1. a) Calculer l énergie dans une inductance de 100 mh, à l instant t=30 ms, si le courant i L (t) prend la forme fournie à la figure

Plus en détail

Puissance en alternatif

Puissance en alternatif FACULÉ DES SCIENCES E DES ECHNIQUES DE NANES MAIISE SCIENCES PHYSIQUES Module M de Physique Puissance en alternatif Nous utilisons le même circuit, L, C qu'en P avec L=67 mh C= µf r=7 Ω, ext=50 Ω soit

Plus en détail

Les circuits linéaires

Les circuits linéaires Les circuits linéaires Révisé et compris Chapitre à retravaillé Chapitre incompris DEF Soit une tension sinusoïdale u(t)= U 2 sin (wt + ϕ) u(t) : tension instantanée à l instant t, exprimé en Volts U :

Plus en détail