Eléments de NP-Complétude
|
|
|
- Geoffroy Lavallée
- il y a 9 ans
- Total affichages :
Transcription
1 Module d Algorithmique Avancée Année Eléments de NP-Complétude Safia Kedad-Sidhoum [email protected] Module d Algorithmique AvancéeAnnée p. 1/15
2 Introduction Algorithmes efficaces : nombre d étapes qui croît de façon polynomiale par rapport à la taille de l entrée Module d Algorithmique AvancéeAnnée p. 2/15
3 Introduction Algorithmes efficaces : nombre d étapes qui croît de façon polynomiale par rapport à la taille de l entrée Problèmes NP-complets : Voyageur de commerce (Traveling Salesman Problem) Aucun problème NP-complet ne peut être résolu par un algorithme polynomial, Sil existe un algorithme polynomial pour un problème NP-complet alors il existe un algorithme polynomial pour tout problème NP-complet. Module d Algorithmique AvancéeAnnée p. 2/15
4 Introduction Conjecture P NP Module d Algorithmique AvancéeAnnée p. 3/15
5 Introduction Conjecture P NP Problèmes polynomiaux : algorithmes exacts Problèmes NP-complets : approches alternatives (algorithmes d approximation, heuristiques...) Module d Algorithmique AvancéeAnnée p. 3/15
6 Problème d optimisation Prolème d optimisation : ensemble d instances I Module d Algorithmique AvancéeAnnée p. 4/15
7 Problème d optimisation Prolème d optimisation : ensemble d instances I Instance : (F,c) F - ensemble des solutions réalisables, c - fonction coût de F dans R. Module d Algorithmique AvancéeAnnée p. 4/15
8 Problème d optimisation hypothèses : F et c sont donnés implicitement par deux algorithmes A F et A c A F - permet de répondre à f F, F étant caractérisé par un ensemble de paramètres S, A c - retourne la valeur de c(f) en fonction d un ensemble de paramètres Q. Module d Algorithmique AvancéeAnnée p. 5/15
9 Problème d optimisation hypothèses : F et c sont donnés implicitement par deux algorithmes A F et A c A F - permet de répondre à f F, F étant caractérisé par un ensemble de paramètres S, A c - retourne la valeur de c(f) en fonction d un ensemble de paramètres Q. Instance : représentation des ensembles de paramètres (S,Q) (cf. modèles de calcul) Module d Algorithmique AvancéeAnnée p. 5/15
10 Problème d optimisation : Exemples Problème du voyageur de commerce : visiter un ensemble de n villes exactement une fois S - entier n, Q - matrice de distances d ij de taille (n n). Module d Algorithmique AvancéeAnnée p. 6/15
11 Problème d optimisation : Exemples Problème du voyageur de commerce : visiter un ensemble de n villes exactement une fois S - entier n, Q - matrice de distances d ij de taille (n n). Instance : A F - vérifie si le tour f est une permutation de l ensemble {1, 2,,n}, A c - calcule le coût c(f) en sommant toutes les distances des arêtes qui constituent le tour f. Module d Algorithmique AvancéeAnnée p. 6/15
12 Problème d optimisation : Exemples Problème de la clique maximale : Etant donné un graphe G = (S,A), déterminer le plus grand ensemble C S tel que pour tout élément a,b C, {a,b} A. S - graphe G, Q - vide Module d Algorithmique AvancéeAnnée p. 7/15
13 Problème d optimisation : Exemples Problème de la clique maximale : Etant donné un graphe G = (S,A), déterminer le plus grand ensemble C S tel que pour tout élément a,b C, {a,b} A. S - graphe G, Q - vide Instance : A F - vérifie si f est une clique de G (sous-graphe complet), A c - calcule le cardinal de f. Module d Algorithmique AvancéeAnnée p. 7/15
14 Problème d optimisation combinatoire Problème d optimisation combinatoire : Etant donnée une représentation des ensembles de paramètres S et Q pour les algorithmes A F et A c, il s agit de trouver la solution réalisable optimale. Module d Algorithmique AvancéeAnnée p. 8/15
15 Problème d optimisation combinatoire Problème d optimisation combinatoire : Etant donnée une représentation des ensembles de paramètres S et Q pour les algorithmes A F et A c, il s agit de trouver la solution réalisable optimale. Formes relaxées : Problème d évaluation - Etant donnés S et Q, trouver le coût de la solution optimale, (si A c est polynomial alors le problème d évaluation n est pas plus difficile que le problème d optimisation) Problème de reconnaissance - Etant donnés une instance (représentation de S et Q) et un entier L, existe-t-il une solution réalisable f F tel que c(f) L? (problème de minimisation) Module d Algorithmique AvancéeAnnée p. 8/15
16 Evaluation vs. Optimisation : Exemple Problème de la clique maximale : on dispose de la procédure cliquesize qui permet d évaluer le cardinal de la clique maximale d un graphe G. On s intéresse à la résolution du problème d optimisation. Module d Algorithmique AvancéeAnnée p. 9/15
17 Evaluation vs. Optimisation : Exemple Problème de la clique maximale : on dispose de la procédure cliquesize qui permet d évaluer le cardinal de la clique maximale d un graphe G. On s intéresse à la résolution du problème d optimisation. (Procédure récursive maxclique) procédure maxclique(g : graphe) Si G ne possède plus de sommets alors retourner Sinon Soit s un sommet tel que cliquesize(g(s)) = cliquesize(g) G(s) est le sous-graphe de G constitué de s et de tous ses vois retourner {s} maxclique(g(s)\s) Fin Si Module d Algorithmique AvancéeAnnée p. 9/15
18 Evaluation vs. Optimisation : Complexité Soit C(n) la complexité de cliquesize Soit T(n) la complexité de maxclique Module d Algorithmique AvancéeAnnée p. 10/15
19 Evaluation vs. Optimisation : Complexité On a : Soit C(n) la complexité de cliquesize Soit T(n) la complexité de maxclique T(0) = O(1) T(n) (n + 1)C(n) + T(n 1) + O(n) Ainsi, T(n) = O(n 2 C(n)) Si la complexité de cliquesize est bornée par une fonction polynomiale alors maxclique le sera également (ce n est pas le cas!). Module d Algorithmique AvancéeAnnée p. 10/15
20 Classes P et NP Problèmes de reconnaisance «archétypes» Arrêt : Etant donné un algorithme et son entrée, est-ce qu il s arrête? Satisfiabilité : Etant donnée une formule booléenne, est-elle satisfiable? Circuit Hamiltonien : Etant donné un graphe, existe-t-il un circuit passant exactement une fois par tous les sommets du graphe? Module d Algorithmique AvancéeAnnée p. 11/15
21 Classes P et NP Problèmes de reconnaisance «archétypes» Arrêt : Etant donné un algorithme et son entrée, est-ce qu il s arrête? Satisfiabilité : Etant donnée une formule booléenne, est-elle satisfiable? Circuit Hamiltonien : Etant donné un graphe, existe-t-il un circuit passant exactement une fois par tous les sommets du graphe? Remarque : Tout résultat négatif concernant la complexité des problèmes de reconnaissance pourra être appliqué au problème d optimisation associé. Module d Algorithmique AvancéeAnnée p. 11/15
22 Classes P et NP On s intéresse à la classification des problèmes de reconnaissance en fonction de leur complexité. P : problèmes résolus par des algorithmes polynomiaux, NP : Si x est une instance «vrai», il existe un certificat «concis» de x pouvant être validé en temps polynomial. Module d Algorithmique AvancéeAnnée p. 12/15
23 Classes P et NP On s intéresse à la classification des problèmes de reconnaissance en fonction de leur complexité. P : problèmes résolus par des algorithmes polynomiaux, NP : Si x est une instance «vrai», il existe un certificat «concis» de x pouvant être validé en temps polynomial. Exemples : P : connexité d un graphe, couplage maximal, arbre couvrant de coût minimum... NP : clique maximale, PVC, Satisfiabilié... Module d Algorithmique AvancéeAnnée p. 12/15
24 Réduction polynomiale Soient A 1 et A 2 deux problèmes de reconaissance. A 1 est réductible à A 2 en temps polynomial si et seulement si il existe un algorithme polynomial 1 pour A 1 qui utilise comme sous-programme (coût unitaire) un algorithme 2 pour A 2. Module d Algorithmique AvancéeAnnée p. 13/15
25 Réduction polynomiale Soient A 1 et A 2 deux problèmes de reconaissance. A 1 est réductible à A 2 en temps polynomial si et seulement si il existe un algorithme polynomial 1 pour A 1 qui utilise comme sous-programme (coût unitaire) un algorithme 2 pour A 2. Propriété : Si A 1 est réductible à A 2 en temps polynomial et qu il existe un algorithme polynomial pour A 2 alors il existe un algorithme polynomial pour A 1. Module d Algorithmique AvancéeAnnée p. 13/15
26 Problème NP-complet Définition : Un problème de reconnaissance A 1 peut être polynomialement transformé en un problème de reconnaissance A 2 si étant donnée une chaîne x on peut construire en temps polynomial une chaîne y tel que x est une instance «vrai» de A 1 si et seulement si y est une instance «vrai» de A 2. Module d Algorithmique AvancéeAnnée p. 14/15
27 Problème NP-complet Définition : Un problème de reconnaissance A 1 peut être polynomialement transformé en un problème de reconnaissance A 2 si étant donnée une chaîne x on peut construire en temps polynomial une chaîne y tel que x est une instance «vrai» de A 1 si et seulement si y est une instance «vrai» de A 2. Un problème de reconnaisance est dit NP-complet si tous les problèmes de la classe NP lui sont polynomialement réductibles. Module d Algorithmique AvancéeAnnée p. 14/15
28 Théorème de Cook Problèmes NP-complets : Satisfiabilité, 3-Satisfiabilité Clique Couverture de sommets Cycle hamiltonien, Voyageur de commerce Module d Algorithmique AvancéeAnnée p. 15/15
La NP-complétude. Johanne Cohen. PRISM/CNRS, Versailles, France.
La NP-complétude Johanne Cohen PRISM/CNRS, Versailles, France. Références 1. Algorithm Design, Jon Kleinberg, Eva Tardos, Addison-Wesley, 2006. 2. Computers and Intractability : A Guide to the Theory of
Objectifs du cours d aujourd hui. Informatique II : Cours d introduction à l informatique et à la programmation objet. Complexité d un problème (2)
Objectifs du cours d aujourd hui Informatique II : Cours d introduction à l informatique et à la programmation objet Complexité des problèmes Introduire la notion de complexité d un problème Présenter
Jean-Philippe Préaux http://www.i2m.univ-amu.fr/~preaux
Colonies de fourmis Comment procèdent les colonies de fourmi pour déterminer un chemin presque géodésique de la fourmilière à un stock de nourriture? Les premières fourmis se déplacent au hasard. Les fourmis
Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1
Exemples de problèmes et d applications INF6953 Exemples de problèmes Sommaire Quelques domaines d application Quelques problèmes réels Allocation de fréquences dans les réseaux radio-mobiles Affectation
Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes
Loris MARCHAL Laboratoire de l Informatique du Parallélisme Équipe Graal Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes Thèse réalisée sous la direction
Resolution limit in community detection
Introduction Plan 2006 Introduction Plan Introduction Introduction Plan Introduction Point de départ : un graphe et des sous-graphes. But : quantifier le fait que les sous-graphes choisis sont des modules.
Cours Optimisation Partie Optimisation Combinatoire. Année scolaire 2008-2009. Gérard Verfaillie ONERA/DCSD/CD, Toulouse Gerard.Verfaillie@onera.
Cours Optimisation Partie Optimisation Combinatoire 3ième année ISAE Année scolaire 2008-2009 Gérard Verfaillie ONERA/DCSD/CD, Toulouse [email protected] Septembre 2008 Résumé Ce document couvre
Programmation Linéaire - Cours 1
Programmation Linéaire - Cours 1 P. Pesneau [email protected] Université Bordeaux 1 Bât A33 - Bur 265 Ouvrages de référence V. Chvátal - Linear Programming, W.H.Freeman, New York, 1983.
Introduction à la théorie des graphes. Solutions des exercices
CAHIERS DE LA CRM Introduction à la théorie des graphes Solutions des exercices Didier Müller CAHIER N O 6 COMMISSION ROMANDE DE MATHÉMATIQUE 1 Graphes non orientés Exercice 1 On obtient le graphe biparti
Théorie des Graphes Cours 3: Forêts et Arbres II / Modélisation
IFIPS S7 - informatique Université Paris-Sud 11 1er semestre 2009/2010 Théorie des Graphes Cours 3: Forêts et Arbres II / 1 Forêts et arbres II Théorème 1.1. Les assertions suivantes sont équivalentes
Annexe 6. Notions d ordonnancement.
Annexe 6. Notions d ordonnancement. APP3 Optimisation Combinatoire: problèmes sur-contraints et ordonnancement. Mines-Nantes, option GIPAD, 2011-2012. [email protected] Résumé Ce document
Limites finies en un point
8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,
Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/
Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation
Cours des Méthodes de Résolution Exactes Heuristiques et Métaheuristiques
Université Mohammed V, Faculté des Sciences de Rabat Laboratoire de Recherche Mathématiques, Informatique et Applications Cours des Méthodes de Résolution Exactes Heuristiques et Métaheuristiques MASTER
Info0804. Cours 6. Optimisation combinatoire : Applications et compléments
Recherche Opérationnelle Optimisation combinatoire : Applications et compléments Pierre Delisle Université de Reims Champagne-Ardenne Département de Mathématiques et Informatique 17 février 2014 Plan de
Quelques algorithmes simples dont l analyse n est pas si simple
Quelques algorithmes simples dont l analyse n est pas si simple Michel Habib [email protected] http://www.liafa.jussieu.fr/~habib Algorithmique Avancée M1 Bioinformatique, Octobre 2008 Plan Histoire
Ordonnancement. N: nains de jardin. X: peinture extérieure. E: électricité T: toit. M: murs. F: fondations CHAPTER 1
CHAPTER 1 Ordonnancement 1.1. Étude de cas Ordonnancement de tâches avec contraintes de précédences 1.1.1. Exemple : construction d'une maison. Exercice. On veut construire une maison, ce qui consiste
Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé
Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e
Complexité. Licence Informatique - Semestre 2 - Algorithmique et Programmation
Complexité Objectifs des calculs de complexité : - pouvoir prévoir le temps d'exécution d'un algorithme - pouvoir comparer deux algorithmes réalisant le même traitement Exemples : - si on lance le calcul
Cours de Recherche Opérationnelle IUT d Orsay. Nicolas M. THIÉRY. E-mail address: [email protected] URL: http://nicolas.thiery.
Cours de Recherche Opérationnelle IUT d Orsay Nicolas M. THIÉRY E-mail address: [email protected] URL: http://nicolas.thiery.name/ CHAPTER 1 Introduction à l optimisation 1.1. TD: Ordonnancement
Optimisation Combinatoire (Méthodes approchées) II. Recherche Locale simple (Les bases)
Optimisation Combinatoire (Méthodes approchées) II. Recherche Locale simple (Les bases) Heuristique Constructive Itérativement, ajoute de nouvelles composantes à une solution partielle candidate Espace
U.F.R. Sciences Fondamentales et Appliquées. pour obtenir. le grade de Docteur en Sciences. Spécialité : informatique
NNT : 2011EVRY0012 École Doctorale Sciences & Ingénierie Université d Évry-Val d Essonne U.F.R. Sciences Fondamentales et Appliquées Thèse présentée par Romain Campigotto pour obtenir le grade de Docteur
Mlle Yasmin A. RÍOS SOLÍS
Thèse de DOCTORAT de l UNIVERSITÉ PARIS VI - PIERRE ET MARIE CURIE Spécialité : INFORMATIQUE présentée par : Mlle Yasmin A. RÍOS SOLÍS pour obtenir le grade de DOCTEUR de l UNIVERSITÉ PARIS VI Sujet de
Cours de Master Recherche
Cours de Master Recherche Spécialité CODE : Résolution de problèmes combinatoires Christine Solnon LIRIS, UMR 5205 CNRS / Université Lyon 1 2007 Rappel du plan du cours 16 heures de cours 1 - Introduction
Problèmes d ordonnancement dans les systèmes de production. Journée Automatique et Optimisation Université de Paris 12 20 Mars 2003
Problèmes d ordonnancement dans les systèmes de production Michel Gourgand Université Blaise Pascal Clermont Ferrand LIMOS CNRS UMR 6158 1 Le LIMOS Laboratoire d Informatique, de Modélisation et d Optimisation
Fondements de l informatique Logique, modèles, et calculs
Fondements de l informatique Logique, modèles, et calculs Cours INF423 de l Ecole Polytechnique Olivier Bournez Version du 20 septembre 2013 2 Table des matières 1 Introduction 9 1.1 Concepts mathématiques........................
Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.
1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le
Architecture des Systèmes d Information Architecture des Systèmes d Information
Plan... Tableaux et tris I3 - Algorithmique et programmation 1 Rappels Nicol Delestre 2 Tableaux à n dimensions 3 Initiation aux tris Tableaux - v2.0.1 1 / 27 Tableaux - v2.0.1 2 / 27 Rappels : tableau
Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires
Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires Julien Jorge [email protected] Laboratoire d Informatique de Nantes Atlantique,
ALGORITHMIQUE II NOTION DE COMPLEXITE. SMI AlgoII
ALGORITHMIQUE II NOTION DE COMPLEXITE 1 2 Comment choisir entre différents algorithmes pour résoudre un même problème? Plusieurs critères de choix : Exactitude Simplicité Efficacité (but de ce chapitre)
Les colonies de fourmis : apprentissage coopératif pour le problème du voyageur de commerce
: apprentissage coopératif pour le problème du voyageur de commerce Alexandre Bargeton Benjamin Devèze Université Pierre et Marie Curie Présentation du projet ANIMAT 1 Comportements collectifs des insectes
Rapport de stage de première année de Master Optimisation de cache d instructions
Rapport de stage de première année de Master Optimisation de cache d instructions Benoit Boissinot [email protected] Université Lyon 1 sous la direction de Fabrice Rastello [email protected]
I. Polynômes de Tchebychev
Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire
OPTIMISATION À UNE VARIABLE
OPTIMISATION À UNE VARIABLE Sommaire 1. Optimum locaux d'une fonction... 1 1.1. Maximum local... 1 1.2. Minimum local... 1 1.3. Points stationnaires et points critiques... 2 1.4. Recherche d'un optimum
Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT
Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Ces exercices portent sur les items 2, 3 et 5 du programme d informatique des classes préparatoires,
Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?
Exercices Alternatifs Quelqu un aurait-il vu passer un polynôme? c 2004 Frédéric Le Roux, François Béguin (copyleft LDL : Licence pour Documents Libres). Sources et figures: polynome-lagrange/. Version
Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?
Exercices Alternatifs Quelqu un aurait-il vu passer un polynôme? c 2004 Frédéric Le Roux, François Béguin (copyleft LDL : Licence pour Documents Libres). Sources et figures: polynome-lagrange/. Version
Programmation linéaire
CHAPTER 1 Programmation linéaire 1.1. Qu'est-ce que la programmation linéaire 1.1.1. Exemple: le problème du régime de Polly [1, p.3]. Besoins journaliers: Énergie: 2000 kcal Protéines: 55g Calcium: 800
Colorations identiantes de graphes
Institut Supérieur d'informatique, de Modélisation et de leurs Applications Campus des Cézeaux avenue des Landais BP 05 7 AUBIERE Cedex Laboratoire d'analyse et d'architecture des Systèmes 7 avenue du
Big Data et Graphes : Quelques pistes de recherche
Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci http://liris.cnrs.fr/hamamache.kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de
Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34
Capacité d un canal Second Théorème de Shannon Théorie de l information 1/34 Plan du cours 1. Canaux discrets sans mémoire, exemples ; 2. Capacité ; 3. Canaux symétriques ; 4. Codage de canal ; 5. Second
Big Data et Graphes : Quelques pistes de recherche
Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université
Optimisation Discrète
Prof F Eisenbrand EPFL - DISOPT Optimisation Discrète Adrian Bock Semestre de printemps 2011 Série 7 7 avril 2011 Exercice 1 i Considérer le programme linéaire max{c T x : Ax b} avec c R n, A R m n et
Intégration de la dimension sémantique dans les réseaux sociaux
Intégration de la dimension sémantique dans les réseaux sociaux Application : systèmes de recommandation Maria Malek LARIS-EISTI [email protected] 1 Contexte : Recommandation dans les réseaux sociaux
Cours de Probabilités et de Statistique
Cours de Probabilités et de Statistique Licence 1ère année 2007/2008 Nicolas Prioux Université Paris-Est Cours de Proba-Stat 2 L1.2 Science-Éco Chapitre Notions de théorie des ensembles 1 1.1 Ensembles
Programmation linéaire
1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit
Eléments de Théorie des Graphes et Programmation Linéaire
INSTITUT NATIONAL POLYTECHNIQUE DE LORRAINE Ecole Nationale Supérieure d Electricité et de Mécanique Eléments de Théorie des Graphes et Programmation Linéaire Didier Maquin Professeur à l INPL Version
Problème d ordonnancement de véhicules en variables booléennes
Problème d ordonnancement de véhicules en variables booléennes Freddy Hetman 2 juillet 2013 Faculté des sciences Jean Perrin Freddy Hetman () 2 juillet 2013 1 / 22 Sommaire 1 Introduction 2 Le problème
ALOHA LOAD BALANCER MISE EN ŒUVRE DU SSL FRONTEND
ALOHA LOAD BALANCER MISE EN ŒUVRE DU SSL FRONTEND «APPNOTES» #0021 MISE EN ŒUVRE DU SSL FRONTEND Cette note applicative a pour vocation de vous aider à implémenter la gestion du SSL sur le frontend (connexion
PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES
Leçon 11 PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES Dans cette leçon, nous retrouvons le problème d ordonnancement déjà vu mais en ajoutant la prise en compte de contraintes portant sur les ressources.
Cryptographie et fonctions à sens unique
Cryptographie et fonctions à sens unique Pierre Rouchon Centre Automatique et Systèmes Mines ParisTech [email protected] Octobre 2012 P.Rouchon (Mines ParisTech) Cryptographie et fonctions
Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.
Eo7 Calculs de déterminants Fiche corrigée par Arnaud Bodin Eercice Calculer les déterminants des matrices suivantes : Correction Vidéo ( ) 0 6 7 3 4 5 8 4 5 6 0 3 4 5 5 6 7 0 3 5 4 3 0 3 0 0 3 0 0 0 3
Chapitre 6. Fonction réelle d une variable réelle
Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette
Théorie des graphes et optimisation dans les graphes
Théorie es graphes et optimisation ans les graphes Christine Solnon Tale es matières 1 Motivations 2 Définitions Représentation es graphes 8.1 Représentation par matrice ajacence......................
Microsoft Excel : tables de données
UNIVERSITE DE LA SORBONNE NOUVELLE - PARIS 3 Année universitaire 2000-2001 2ème SESSION SLMD2 Informatique Les explications sur la réalisation des exercices seront fournies sous forme de fichiers informatiques.
Nouvelles propositions pour la résolution exacte du problème de sac à dos bi-objectif unidimensionnel en variables binaires
Nouvelles propositions pour la résolution exacte du problème de sac à dos bi-objectif unidimensionnel en variables binaires Julien Jorge, Xavier Gandibleux Laboratoire d Informatique de Nantes Atlantique
Dossier d'étude technique
Centre national de la recherche scientifique Direction des systèmes d'information REFERENTIEL QUALITE Guide méthodologique Dossier d'étude technique Référence : CNRS/DSI/conduite-projet/developpement/technique/guide-etude-technique
Nombres premiers. Comment reconnaître un nombre premier? Mais...
Introduction Nombres premiers Nombres premiers Rutger Noot IRMA Université de Strasbourg et CNRS Le 19 janvier 2011 IREM Strasbourg Definition Un nombre premier est un entier naturel p > 1 ayant exactement
6. Les différents types de démonstrations
LES DIFFÉRENTS TYPES DE DÉMONSTRATIONS 33 6. Les différents types de démonstrations 6.1. Un peu de logique En mathématiques, une démonstration est un raisonnement qui permet, à partir de certains axiomes,
CH.6 Propriétés des langages non contextuels
CH.6 Propriétés des langages non contetuels 6.1 Le lemme de pompage 6.2 Les propriétés de fermeture 6.3 Les problèmes de décidabilité 6.4 Les langages non contetuels déterministes utomates ch6 1 6.1 Le
Continuité d une fonction de plusieurs variables
Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs
Plus courts chemins, programmation dynamique
1 Plus courts chemins, programmation dynamique 1. Plus courts chemins à partir d un sommet 2. Plus courts chemins entre tous les sommets 3. Semi-anneau 4. Programmation dynamique 5. Applications à la bio-informatique
Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme
Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet
Stratégie de recherche adaptative en programmation par contrainte
Université Paul Sabatier École Nationale de l Aviation Civile Master 2 Recherche Informatique et Télécommunication parcours Intelligence Artificielle Simon Marchal Stratégie de recherche adaptative en
Modélisation multi-agents - Agents réactifs
Modélisation multi-agents - Agents réactifs Syma cursus CSI / SCIA Julien Saunier - [email protected] Sources www-lih.univlehavre.fr/~olivier/enseignement/masterrecherche/cours/ support/algofourmis.pdf
Optimisation for Cloud Computing and Big Data
1 / 23 Optimisation for Cloud Computing and Big Data Olivier Beaumont, Lionel Eyraud-Dubois 2 / 23 Aujourd hui Problèmes de fiabilité on va oublier la dynamicité Placement de VMs en programmation par contraintes
Continuité et dérivabilité d une fonction
DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité
Séparation et Evaluation pour le problème d ordonnancement avec blocage.
Séparation et Evaluation pour le problème d ordonnancement avec blocage. Abdelhakim Ait Zai 1, Abdelkader Bentahar 1, Hamza Bennoui 1, Mourad Boudhar 2 et Yazid Mati 3 1 Faculté d Electronique et d Informatique,
Chapitre 5 : Flot maximal dans un graphe
Graphes et RO TELECOM Nancy A Chapitre 5 : Flot maximal dans un graphe J.-F. Scheid 1 Plan du chapitre I. Définitions 1 Graphe Graphe valué 3 Représentation d un graphe (matrice d incidence, matrice d
Algorithmes de Transmission et de Recherche de l Information dans les Réseaux de Communication. Philippe Robert INRIA Paris-Rocquencourt
Algorithmes de Transmission et de Recherche de l Information dans les Réseaux de Communication Philippe Robert INRIA Paris-Rocquencourt Le 2 juin 2010 Présentation Directeur de recherche à l INRIA Institut
Eteindre. les. lumières MATH EN JEAN 2013-2014. Mme BACHOC. Elèves de seconde, première et terminale scientifiques :
MTH EN JEN 2013-2014 Elèves de seconde, première et terminale scientifiques : Lycée Michel Montaigne : HERITEL ôme T S POLLOZE Hélène 1 S SOK Sophie 1 S Eteindre Lycée Sud Médoc : ROSIO Gauthier 2 nd PELGE
Logique. Plan du chapitre
Logique Ce chapitre est assez abstrait en première lecture, mais est (avec le chapitre suivant «Ensembles») probablement le plus important de l année car il est à la base de tous les raisonnements usuels
Résolution de systèmes linéaires par des méthodes directes
Résolution de systèmes linéaires par des méthodes directes J. Erhel Janvier 2014 1 Inverse d une matrice carrée et systèmes linéaires Ce paragraphe a pour objet les matrices carrées et les systèmes linéaires.
Introduction à la Programmation par Contraintes (PPC) Ruslan Sadykov LIX, École Polytechnique
Introduction à la Programmation par Contraintes (PPC) Ruslan Sadykov LIX, École Polytechnique Contenu Introduction Modélisation Problèmes de satisfaction des contraintes Exemples des modèles PPC simples
MABioVis. Bio-informatique et la
MABioVis Modèles et Algorithmes pour la Bio-informatique et la Visualisation Visite ENS Cachan 5 janvier 2011 MABioVis G GUY MELANÇON (PR UFR Maths Info / EPI GRAVITE) (là, maintenant) - MABioVis DAVID
Algorithmes de recherche
Algorithmes de recherche 1 Résolution de problèmes par recherche On représente un problème par un espace d'états (arbre/graphe). Chaque état est une conguration possible du problème. Résoudre le problème
Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités
Chapitre 2 Le calcul des probabilités Equiprobabilité et Distribution Uniforme Deux événements A et B sont dits équiprobables si P(A) = P(B) Si il y a équiprobabilité sur Ω, cad si tous les événements
Faculté des sciences Département de mathématiques. Théorie des graphes
Faculté des sciences Département de mathématiques Théorie des graphes Deuxièmes bacheliers en sciences mathématiques Année académique 2009 2010 Michel Rigo Table des matières Introduction 1 Chapitre I.
Leçon 01 Exercices d'entraînement
Leçon 01 Exercices d'entraînement Exercice 1 Etudier la convergence des suites ci-dessous définies par leur terme général: 1)u n = 2n3-5n + 1 n 2 + 3 2)u n = 2n2-7n - 5 -n 5-1 4)u n = lnn2 n+1 5)u n =
Aspects théoriques et algorithmiques du calcul réparti L agglomération
Aspects théoriques et algorithmiques du calcul réparti L agglomération Patrick CIARLET Enseignant-Chercheur UMA [email protected] Françoise LAMOUR [email protected] Aspects théoriques
Mesures gaussiennes et espaces de Fock
Mesures gaussiennes et espaces de Fock Thierry Lévy Peyresq - Juin 2003 Introduction Les mesures gaussiennes et les espaces de Fock sont deux objets qui apparaissent naturellement et peut-être, à première
Tâche complexe produite par l académie de Clermont-Ferrand. Mai 2012 LE TIR A L ARC. (d après une idée du collège des Portes du Midi de Maurs)
(d après une idée du collège des Portes du Midi de Maurs) Table des matières Fiche professeur... 2 Fiche élève... 5 1 Fiche professeur Niveaux et objectifs pédagogiques 5 e : introduction ou utilisation
Structures algébriques
Structures algébriques 1. Lois de composition s Soit E un ensemble. Une loi de composition interne sur E est une application de E E dans E. Soient E et F deux ensembles. Une loi de composition externe
Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples
45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et
UNIVERSITÉ DU QUÉBEC À CHICOUTIMI UNIVERSITÉ DU QUÉBEC À MONTRÉAL
UNIVERSITÉ DU QUÉBEC À CHICOUTIMI UNIVERSITÉ DU QUÉBEC À MONTRÉAL MÉTAHEURISTIQUES HYBRIDES POUR LA RÉSOLUTION DU PROBLÈME D'ORDONNANCEMENT DE VOITURES DANS UNE CHAÎNE D'ASSEMBLAGE AUTOMOBILE MÉMOIRE PRÉSENTÉ
Introduction à la théorie des graphes
CAHIERS DE LA CRM Introduction à la théorie des graphes Didier Müller CAHIER N O 6 COMMISSION ROMANDE DE MATHÉMATIQUE Table des matières Avant-propos But de ce fascicule................................
Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche
Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche Bachir Bekka Février 2007 Le théorème de Perron-Frobenius a d importantes applications en probabilités (chaines
Une nouvelle approche de détection de communautés dans les réseaux sociaux
UNIVERSITÉ DU QUÉBEC EN OUTAOUAIS Département d informatique et d ingénierie Une nouvelle approche de détection de communautés dans les réseaux sociaux Mémoire (INF 6021) pour l obtention du grade de Maîtrise
Analyse de la variance Comparaison de plusieurs moyennes
Analyse de la variance Comparaison de plusieurs moyennes Biostatistique Pr. Nicolas MEYER Laboratoire de Biostatistique et Informatique Médicale Fac. de Médecine de Strasbourg Mars 2011 Plan 1 Introduction
UNIVERSITÉ DU QUÉBEC MÉMOIRE PRÉSENTÉ À L'UNIVERSITÉ DU QUÉBEC À CHICOUTIMI COMME EXIGENCE PARTIELLE DE LA MAÎTRISE EN INFORMATIQUE
UNIVERSITÉ DU QUÉBEC MÉMOIRE PRÉSENTÉ À L'UNIVERSITÉ DU QUÉBEC À CHICOUTIMI COMME EXIGENCE PARTIELLE DE LA MAÎTRISE EN INFORMATIQUE OFFERTE EN VERTU D'UN PROTOCOLE D'ENTENTE AVEC L'UNIVERSITÉ DU QUÉBEC
Chapitre VI - Méthodes de factorisation
Université Pierre et Marie Curie Cours de cryptographie MM067-2012/13 Alain Kraus Chapitre VI - Méthodes de factorisation Le problème de la factorisation des grands entiers est a priori très difficile.
Triangle de Pascal dans Z/pZ avec p premier
Triangle de Pascal dans Z/pZ avec p premier Vincent Lefèvre (Lycée P. de Fermat, Toulouse) 1990, 1991 1 Introduction Nous allons étudier des propriétés du triangle de Pascal dans Z/pZ, p étant un nombre
Modèles à Événements Discrets. Réseaux de Petri Stochastiques
Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés
Groupe symétrique. Chapitre II. 1 Définitions et généralités
Chapitre II Groupe symétrique 1 Définitions et généralités Définition. Soient n et X l ensemble 1,..., n. On appelle permutation de X toute application bijective f : X X. On note S n l ensemble des permutations
Développements limités. Notion de développement limité
MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un
CCP PSI - 2010 Mathématiques 1 : un corrigé
CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P
Electricité : caractéristiques et point de fonctionnement d un circuit
Electricité : caractéristiques et point de fonctionnement d un circuit ENONCE : Une lampe à incandescence de 6 V 0,1 A est branchée aux bornes d une pile de force électromotrice E = 6 V et de résistance
TRACER LE GRAPHE D'UNE FONCTION
TRACER LE GRAPHE D'UNE FONCTION Sommaire 1. Méthodologie : comment tracer le graphe d'une fonction... 1 En combinant les concepts de dérivée première et seconde, il est maintenant possible de tracer le
Algorithmes d'apprentissage
Algorithmes d'apprentissage 1 Agents qui apprennent à partir d'exemples La problématique : prise de décision automatisée à partir d'un ensemble d'exemples Diagnostic médical Réponse à une demande de prêt
