Principe des travaux virtuels :
|
|
|
- Renaud Pageau
- il y a 9 ans
- Total affichages :
Transcription
1 Principe des travaux virtuels : ntroduction : C'est un outil puissant qui joue le même rôle que le principe fondamental de la statique (ou de la dynamique), mais qui permet une mise en œuvre des équations plus systématique. Énoncé : Dans un référentiel Galliléen et pour tout système matériel, le travail virtuel des quantités d'accélérations et égal à la somme du travail virtuel des forces extérieures au système et du travail virtuel des forces intérieures, et ceci que soit le déplacement virtuel considéré. W acc = W ext + W int Histoire : On doit le premier énoncé du «principe des vitesses virtuelles» au mathématicien et philosophe Jean e Rond D'alembert ( ) Calcul des travaux virtuels: es déplacements virtuels sont infinitésimaux, le calcul des travaux virtuels se fait avec les efforts et le moments réels. Cas d'un déplacement: e travail d'une force F appliqué au point lors d'un déplacement virtuel du point U est W = F U U F Cas d'une rotation: es rotations virtuelles étant infinitésimales, les déplacements virtuels correspondants des points peuvent être calculés comme des vitesses : B e travail d'un moment M d'une rotation virtuelle est W = M C. a Borderie
2 Utilisation : es champs de déplacements virtuels sont généralement notés par des, par exemple : U. es travaux virtuels occasionnés par un déplacement virtuel, se calculent simplement et sans tenir compte d'une éventuelle évolution des efforts appliqués au cours du déplacement virtuel. On peut imaginer des déplacements virtuels quelconques et en particulier, des déplacements virtuels qui rompent les liaisons ou les solides. On choisit généralement des déplacements virtuels qui font travailler une ou plusieurs inconnues et qui ne génèrent pas de travaux internes, ces champs de déplacements virtuels respectent les conditions de déplacements de solides indéformables et sont appelés mouvements rigidifiants. On peut appliquer le PTV autant de fois que nécessaire, il faut cependant veiller à obtenir des équations indépendantes ( équations en D, 6 en D). Exemple : Y a F Y B X C l Calcul des actions d'appuis : C U =U Y B e champ de déplacements est une translation d'axe Y qui rompt les liaisons en et B. W int=0 W ext= R U + F U C + R B U B Soit : W ext = Y U + F U + Y B U e PPV donne alors : Y U + F U + Y B U = 0 U Soit Y + F + Y B = 0 ce qui correspond à l'équation de la résultante en projection / Y C. a Borderie
3 C ω B e champ de déplacements est une rotation autour de l'axe Z W int=0 W ext= R U ( ) + F U ( C ) + RB U ( B) U ( ) = 0 Et : U ( B) = ω Z B = lω Y U ( C ) = ω Z C = aω Y W ext = F aω + Y B lω e PTV donne alors : F aω + Y B lω = 0 ω Soit F a + Y B l= 0 ce qui correspond à l'équation du moment en en projection / Z On obtient donc : Y B = -F a/l et Y = -F (l-a)/l a troisième équation traditionnellement obtenue à l'aide du PFS (Projection de la résultante/ X ) est obtenue en utilisant comme champ de déplacement virtuel, une translation suivant l'axe X. Calcul du moment fléchissant : On écrit l'équilibre de pour G [ C ] e champ de déplacements virtuel correspond à une rotation de [ G] autour de l'axe G z pour faire travailler le moment fléchissant en G. e déplacement virtuel du point est alors U = x y ω G C B = M / z=m fz W int W ext = X x Y y U = xy x e PTV donne alors : M fz x Y =0 Soit M fz = x Y C. a Borderie
4 Méthode des déplacements simplifiés : Principe : l s'agit, comme nous l'avons fait pour la méthode des forces, de négliger l'énergie due à l'effort normal et à l'effort tranchant devant l'énergie due au moment fléchissant. Cette hypothèse se traduit dans la méthode des déplacements en négligeant les déformées dues aux effort normaux et tranchants. Conséquences : Conséquences sur les déplacements : Si on néglige la déformée due à l'effort normal, on considère alors que la longueur des poutres est conservée. On dit que la longueur des barres est invariante. Déformée ω + = Déplacement de corps rigide Rotation des nœuds déformée de la poutre J J u = u ω es déplacements des nœuds de la structure sont alors liés et par exemple, dans la structure suivante : Y X =X Y =Y =0 u 1 =u 1 Y =0 u 4 =u 4 Y =0 u =u X =X 1 4 X Conséquences sur les équations d'équilibre : es équations faisant intervenir l'effort normal ne sont plus valables, seules sont disponibles les équations de moment. l manque donc des équations pour résoudre le problème, ces équations peuvent être obtenues par le principe des travaux virtuels (PTV ) C. a Borderie
5 Notations et résultats précédents: Efforts aux nœuds dans le repère local : actions des nœuds sur la barre Y V N M J V N M X Déplacements des nœuds dans le repère local Y u v X ω v J u ω ttention les valeurs indiquées sont bien les projections sur les axes et par exemple v = U i Y est un nombre négatif pour le déplacement représenté sur la figure. a remarque est la même pour les efforts. C. a Borderie
6 Équations d équilibre d un élément de poutre E 0 ( u u )+N N = E 0 (u u )+ N {N = 4E M = E {M = { V = 6E (ω +ω )+ 1E V = 6E (ω +ω ) 1E ω + E ω + 4E ( v v )+V 0 ( v v )+V 0 ω + 6E ( v v )+M 0 ω + 6E (v v )+ M 0 Relations établies en cours en utilisant par exemple la méthode des forces Dans ces équations : i<j. es M 0,V 0 et N 0 n'interviennent que sur des poutres recevant un chargement extérieur en d'autres points que leurs noeuds, leur valeurs dépendent du type de chargement. es équations N ne sont pas valables dans le cadre de la méthode des déplacements simplifiés. C. a Borderie
7 Utilisation de la méthode des déplacements simplifiés : llustration autour d'un exemple : O y / F D B C x Portique bi encastré de longueur et de hauteur chargé au milieu de la poutre par une force verticale. 'inertie de la poutre et du poteau est, le module d'élasticité du matériau, E. On néglige les déformations dues à l'effort normal et à l'effort tranchant. Prise en compte des symétries : e problème est symétrique par rapport à D y (géométrie, liaisons et chargement), on traitera donc la moitié du problème en imposant un déplacement de D nul en projection sur x et une rotation de D nulle. a sollicitation dans le plan de symétrie est divisée par deux. F y D O x Discrétisation : On découpe la structure en éléments de façon à ce que les charges concentrées soient appliquées aux nœuds et que les éléments aient un comportement connu (en général poutres droites). Pour chaque élément. On met en place le repère local. On écrit les conditions de liaisons aux nœuds. On écrit l'invariance de la longueur des barres. On dénombre les déplacements et rotations inconnues du problème: ce sont les degrés de liberté. C. a Borderie
8 F y y 1 1 x 1 Élément [1-] Conditions limites : u 1 =Y 1 =0 v 1 =-X 1 =0 ω 1 =0 ongueurs de barres invariantes : u 1 -u 1 =0 => Y =0 Élément [-] 1 x y x Conditions limites : u =X =0 ω =0 ongueurs de barres invariantes : u -u =0 => X =0 l reste déplacements/rotation ou degrés de liberté indépendants : a rotation du nœud : ω 1 =ω =Ω e déplacement vertical du nœud : v =Y Écriture des équations du PTV : On écrit les équations correspondantes aux déplacements générés par les degrés de libertés indépendants en considérant que les élément de poutre sont rigides et articulés entre eux : Ω e champ de déplacement virtuel correspond à la rotation du nœud sans que les éléments [1-] et [-] ne se déplacent. Seuls les moments M et M 1 travaillent, les efforts extérieurs ne travaillent pas. -M Ω -M 1 Ω =0 soit 1 (1) M +M 1 =0 Y 'élément [-]tourne autour de de façon à déplacer le nœud de Y. Y a rotation de l'élément est / e travail des efforts extérieurs est : W ext =FY / e travail des efforts intérieurs est : Y W int =(M +M ) / 1 Soit : () F + 4(M +M )=0 C. a Borderie
9 Équilibre des éléments : On écrit les valeurs des moments en fonction des déplacements et des rotation à l'aide de la matrice de rigidité. 4E M = E {M = Elément [1-] E M1 = ω 4E M 1 = ω Elément [-] (ttention à /) 8E 4 E M = ω Y 4E 4 E M = ω Y ω + E ω + 4E ω + 6E (v v ) ω + 6E ( v v ) Résolution: On remplace les valeurs des moments dans les équations données par le PTV 8E {(1) ω 4E () F+4 ( 8 E Y + 4E ω =0 ω 4 E Y + 4 E ω 4 E Y ) =0 1E {(1) () 4 ( 1 E ω 4E Y =0 ω 48 E Y ) = F {Y = F 96 E ω = F 48 E Calcul des efforts et des moments dans les poutres: On peut alors calculer les moments et efforts tranchants dans les poutres en introduisant la valeur des degrés de liberté dans les équations d'équilibre des poutres. Par contre on ne peut pas calculer directement l'effort normal. C. a Borderie
10 E F M 1 = ω = 4 4E F M 1 = ω = 1 8E 4 E F M = ω Y = 1 4E 4 E F M = ω Y = 6 e moment fléchissant dans l'élément [-J] de longueur est linéaire (élément non chargé) et vaut en fonction de l'abscisse locale x : u point : M(0)=-M u point J : M()=M xm ( x ) M Soit : M ( x) = On peut utiliser les équations d'équilibre donnant l'effort tranchant : { V = 6E (ω +ω )+ 1E (v v ) V = 6E (ω +ω ) 1E ( v v ) F/1 -F/6 -F/4 Diagramme des moments fléchissants F/ -F/8 Ce qui donne : F V1 = = V1 8 F V = = V 'effort tranchant dans l'élément [-J] est constant (élément non chargé) et vaut V=V =-V Diagramme des efforts tranchants C. a Borderie
11 Pour obtenir l'effort normal, il suffit d'écrire l'équilibre du nœud : V y V 1 y 1 N x F/8 N 1 x 1 F/ F [ 1 ]/ F [ ]/ = 0 N 1 x 1 V 1 y 1 N x V y = 0 N 1 Y V 1 X N X V Y = 0 N 1 = V = F N =V 1 = F 8 On a comme précédemment :N=N =-N Diagramme des efforts normaux Cas d'un élément chargé : On utilise la superposition : a solution d'un problème correspondant à une poutre [-J] sollicitée par : Des déplacements et rotations à ses extrémités. Une charge extérieure. Est la superposition des problèmes suivants : 1. Poutre soumise seulement aux déplacements et rotations imposés aux nœuds.. Poutre à la quelle on impose des déplacements et rotations nuls aux nœuds sollicitée par la charge extérieure. e premier problème est déjà connu, le second correspond à une poutre bi-encastrée sollicitée par la charge extérieure. y f x y x J a solution du problème est donnée par les actions de liaison exercées par les nœud et J sur la poutre [-J] 0 0 N x V y N x + V y { F /[ J ]} = { FJ J } = 0 [ ] 0 M z M z J es équations d'équilibre de la poutre deviennent : 4E E 6E 0 M = ω + ω + ( v + v ) M E 4E 6E 0 M = ω + ω + ( v ) + v M C. a Borderie
12 6E V = 6E V = Charge uniformément répartie. Soit à résoudre le problème suivant : ( ω + ω ) ( ω + ω ) 1 E 0 + ( v + v ) V 1 E ( v ) + v V 0 y f y x J On peut résoudre ce problème par la méthode des forces : 0 f 0 f 0 f 0 f V = V = M = M = 1 1 C. a Borderie
TUTORIAL 1 ETUDE D UN MODELE SIMPLIFIE DE PORTIQUE PLAN ARTICULE
TUTORIAL 1 ETUDE D UN MODELE SIMPLIFIE DE PORTIQUE PLAN ARTICULE L'objectif de ce tutorial est de décrire les différentes étapes dans CASTOR Concept / FEM permettant d'effectuer l'analyse statique d'une
Analyse statique d une pièce
Analyse statique d une pièce Contrainte de Von Mises sur une chape taillée dans la masse 1 Comportement d un dynamomètre On considère le dynamomètre de forme globalement circulaire, excepté les bossages
DISQUE DUR. Figure 1 Disque dur ouvert
DISQUE DUR Le sujet est composé de 8 pages et d une feuille format A3 de dessins de détails, la réponse à toutes les questions sera rédigée sur les feuilles de réponses jointes au sujet. Toutes les questions
Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.
Promotion X 004 COURS D ANALYSE DES STRUCTURES MÉCANIQUES PAR LA MÉTHODE DES ELEMENTS FINIS (MEC 568) contrôle non classant (7 mars 007, heures) Documents autorisés : polycopié ; documents et notes de
Annexe A. Annexe A. Tableaux et données relatifs à la vérification par Eurocode 3 A.3
Annexes Annexe A : Tableaux et données relatifs à la vérification par Eurocode 3... A.2 Annexe B : Format des fichiers générés et utilisés par CADBEL... A.11 Annexe C : Calcul de la résistance au flambement
TP2 ACTIVITE ITEC. Centre d intérêt : AUBE D UN MIRAGE 2000 COMPORTEMENT D UNE PIECE. Documents : Sujet Projet Dossier technique - Document réponse.
ACTIVITE ITEC TP2 Durée : 2H Centre d intérêt : COMPORTEMENT D UNE PIECE AUBE D UN MIRAGE 2000 BA133 COMPETENCES TERMINALES ATTENDUES NIVEAU D ACQUISITION 1 2 3 * * Rendre compte de son travail par écrit.
SSNL126 - Flambement élastoplastique d'une poutre droite. Deux modélisations permettent de tester le critère de flambement en élastoplasticité :
Titre : SSNL16 - Flambement élastoplastique d'une poutre [...] Date : 15/1/011 Page : 1/6 Responsable : Nicolas GREFFET Clé : V6.0.16 Révision : 8101 SSNL16 - Flambement élastoplastique d'une poutre droite
CHAPITRE IV Oscillations libres des systèmes à plusieurs degrés de liberté
CHAPITE IV Oscillations ibres des Systèmes à plusieurs derés de liberté 010-011 CHAPITE IV Oscillations libres des systèmes à plusieurs derés de liberté Introduction : Dans ce chapitre, nous examinons
Banc d études des structures Etude de résistances de matériaux (RDM) et structures mécaniques
Banc d études des structures Etude de résistances de matériaux (RDM) et structures mécaniques Descriptif du support pédagogique Le banc d essais des structures permet de réaliser des essais et des études
ANALYSE CATIA V5. 14/02/2011 Daniel Geffroy IUT GMP Le Mans
ANALYSE CATIA V5 1 GSA Generative Structural Analysis 2 Modèle géométrique volumique Post traitement Pré traitement Maillage Conditions aux limites 3 Ouverture du module Choix du type d analyse 4 Calcul
Version default Titre : Opérateur MECA_STATIQUE Date : 17/10/2012 Page : 1/5 Responsable : Jacques PELLET Clé : U4.51.
Titre : Opérateur MECA_STATIQUE Date : 17/10/2012 Page : 1/5 Opérateur MECA_STATIQUE 1 But Résoudre un problème de mécanique statique linéaire. Cet opérateur permet de résoudre soit : un problème mécanique
Chapitre 3. Les distributions à deux variables
Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles
INTRODUCTION. A- Modélisation et paramétrage : CHAPITRE I : MODÉLISATION. I. Paramétrage de la position d un solide : (S1) O O1 X
INTRODUCTION La conception d'un mécanisme en vue de sa réalisation industrielle comporte plusieurs étapes. Avant d'aboutir à la maquette numérique du produit définitif, il est nécessaire d'effectuer une
Rupture et plasticité
Rupture et plasticité Département de Mécanique, Ecole Polytechnique, 2009 2010 Département de Mécanique, Ecole Polytechnique, 2009 2010 25 novembre 2009 1 / 44 Rupture et plasticité : plan du cours Comportements
Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées.
Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées. 1 Ce sujet aborde le phénomène d instabilité dans des systèmes dynamiques
SDLS08 - Modes propres d'une plaque carrée calculés sur base réduite
Titre : SDLS08 - Modes propres d'une plaque carrée calculé[...] Date : 03/08/2011 Page : 1/6 SDLS08 - Modes propres d'une plaque carrée calculés sur base réduite Résumé : Ce cas test a pour objectif de
1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble..
1 Définition GÉNÉRALITÉS Statique 1 2 Systèmes matériels et solides Le système matériel : Il peut être un ensemble.un sous-ensemble..une pièce mais aussi un liquide ou un gaz Le solide : Il est supposé
Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.
1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le
Resolution limit in community detection
Introduction Plan 2006 Introduction Plan Introduction Introduction Plan Introduction Point de départ : un graphe et des sous-graphes. But : quantifier le fait que les sous-graphes choisis sont des modules.
Concours EPITA 2009 Epreuve de Sciences Industrielles pour l ingénieur La suspension anti-plongée de la motocyclette BMW K1200S
Concours EPIT 2009 Epreuve de Sciences Industrielles pour l ingénieur La suspension anti-plongée de la motocyclette MW K1200S Durée : 2h. Calculatrices autorisées. Présentation du problème Le problème
Cours Fonctions de deux variables
Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté
Problèmes sur le chapitre 5
Problèmes sur le chapitre 5 (Version du 13 janvier 2015 (10h38)) 501 Le calcul des réactions d appui dans les problèmes schématisés ci-dessous est-il possible par les équations de la statique Si oui, écrire
Chapitre 2 : Caractéristiques du mouvement d un solide
Chapitre 2 : Caractéristiques du mouvement d un solide I Rappels : Référentiel : Le mouvement d un corps est décris par rapport à un corps de référence et dépend du choix de ce corps. Ce corps de référence
INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES
INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES Dominique LAFFLY Maître de Conférences, Université de Pau Laboratoire Société Environnement Territoire UMR 5603 du CNRS et Université de Pau Domaine
COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre?
Claire FORGACZ Marion GALLART Hasnia GOUDJILI COMPTERENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre? Si l on se pose la question de savoir comment on peut faire
Cours de Résistance des Matériaux (RDM)
Solides déformables Cours de Résistance des Matériau (RDM) Structure du toit de la Fondation Louis Vuitton Paris, architecte F.Gehry Contenu 1 POSITIONNEMENT DE CE COURS... 2 2 INTRODUCTION... 3 2.1 DEFINITION
Reconstruction de bâtiments en 3D à partir de nuages de points LIDAR
Reconstruction de bâtiments en 3D à partir de nuages de points LIDAR Mickaël Bergem 25 juin 2014 Maillages et applications 1 Table des matières Introduction 3 1 La modélisation numérique de milieux urbains
Figure 1 : représentation des différents écarts
ulletin officiel spécial n 9 du 30 septembre 2010 Annexe SIENES DE L INGÉNIEUR YLE TERMINAL DE LA SÉRIE SIENTIFIQUE I - Objectifs généraux Notre société devra relever de nombreux défis dans les prochaines
Yves Debard. Université du Mans Master Modélisation Numérique et Réalité Virtuelle. http://iut.univ-lemans.fr/ydlogi/index.html
Méthode des éléments finis : élasticité à une dimension Yves Debard Université du Mans Master Modélisation Numérique et Réalité Virtuelle http://iut.univ-lemans.fr/ydlogi/index.html 4 mars 6 9 mars 11
Construire. Statique. Styled by Smou. SEMA France SARL: 50, avenue d Alsace F-68027 Colmar Tél. +49-8304-939-0 Fax +49-8304-939-240
Construire Statique Styled by Smou SEMA France SARL: 50, avenue d Alsace F-68027 Colmar Tél. +49-8304-939-0 Fax +49-8304-939-240 Manuel d'application - Calcul statique -- Ferme et pannes à devers Page
TUBES ET ACCESSOIRES Serrurier A ailettes Construction Canalisation Spéciaux
TUBES ET ACCESSOIRES 47 Serrurier A ailettes Construction Canalisation Spéciaux Possibilité d autres sections sur demande. Les caractéristiques indiquées sont théoriques et non garanties. TUBES 48 TUBES
PROFIS Installation. Module 4: Module 3D Design
PROFIS Installation Module 4: Module 3D Design Ce module de formation est basé sur un cas réel construit en gamme MI. Ce cas permet de présenter toutes les fonctions du module 3D design. 1 Comment utiliser
Jean-Marc Schaffner Ateliers SCHAFFNER. Laure Delaporte ConstruirAcier. Jérémy Trouart Union des Métalliers
Jean-Marc Schaffner Ateliers SCHAFFNER Laure Delaporte ConstruirAcier Jérémy Trouart Union des Métalliers Jean-Marc SCHAFFNER des Ateliers SCHAFFNER chef de file du GT4 Jérémy TROUART de l Union des Métalliers
Dimensionnement d une roue autonome pour une implantation sur un fauteuil roulant
Dimensionnement d une roue autonome pour une implantation sur un fauteuil roulant I Présentation I.1 La roue autonome Ez-Wheel SAS est une entreprise française de technologie innovante fondée en 2009.
Chapitre 0 Introduction à la cinématique
Chapitre 0 Introduction à la cinématique Plan Vitesse, accélération Coordonnées polaires Exercices corrigés Vitesse, Accélération La cinématique est l étude du mouvement Elle suppose donc l existence à
TOUT CE QU IL FAUT SAVOIR POUR LE BREVET
TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par
ACCESSIBILITÉ AFEB COMMISSION PROFESSIONNELLE RECAPITULATIF DES EXIGENCES APPLICABLES AUX ESCALIERS EN BOIS
ACCESSIBILITÉ RECAPITULATIF DES EXIGENCES APPLICABLES AUX ESCALIERS EN BOIS Le présent document établi par la Commission Professionnelle de l'afeb récapitule et précise certaines exigences applicables
ANNEXE J POTEAUX TESTÉS SELON UN CHARGEMENT STATIQUE ET TESTÉS SELON UN CHARGEMENT CYCLIQUE ET STATIQUE
562 ANNEXE J POTEAUX TESTÉS SELON UN CHARGEMENT STATIQUE ET TESTÉS SELON UN CHARGEMENT CYCLIQUE ET STATIQUE 563 TABLE DES MATIÈRES ANNEXE J... 562 POTEAUX TESTÉS SELON UN CHARGEMENT STATIQUE ET TESTÉS
Fonctions de plusieurs variables
Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme
Circuits RL et RC. Chapitre 5. 5.1 Inductance
Chapitre 5 Circuits RL et RC Ce chapitre présente les deux autres éléments linéaires des circuits électriques : l inductance et la capacitance. On verra le comportement de ces deux éléments, et ensuite
Hervé Oudin. HAL Id: cel-00341772 https://cel.archives-ouvertes.fr/cel-00341772v1
Méthode des éléments finis Hervé Oudin To cite this version: Hervé Oudin. Méthode des éléments finis. École d ingénieur. Ecole Centrale de Nantes, 2008, pp.63. HAL Id: cel-00341772 https://cel.archives-ouvertes.fr/cel-00341772v1
Seconde Généralités sur les fonctions Exercices. Notion de fonction.
Seconde Généralités sur les fonctions Exercices Notion de fonction. Exercice. Une fonction définie par une formule. On considère la fonction f définie sur R par = x + x. a) Calculer les images de, 0 et
Programmation linéaire
1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit
Manuel d utilisation 26 juin 2011. 1 Tâche à effectuer : écrire un algorithme 2
éducalgo Manuel d utilisation 26 juin 2011 Table des matières 1 Tâche à effectuer : écrire un algorithme 2 2 Comment écrire un algorithme? 3 2.1 Avec quoi écrit-on? Avec les boutons d écriture........
Généralités. Aperçu. Introduction. Précision. Instruction de montage. Lubrification. Conception. Produits. Guides à brides FNS. Guides standards GNS
Généralités Aperçu Introduction Précision Instruction de montage Lubrification Conception page............................. 4............................. 5............................. 6.............................
Fonctions de deux variables. Mai 2011
Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs
Pour l épreuve d algèbre, les calculatrices sont interdites.
Les pages qui suivent comportent, à titre d exemples, les questions d algèbre depuis juillet 003 jusqu à juillet 015, avec leurs solutions. Pour l épreuve d algèbre, les calculatrices sont interdites.
Cours 02 : Problème général de la programmation linéaire
Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =
Manuel de validation Fascicule v4.25 : Thermique transitoire des structures volumiques
Titre : TTLV100 - Choc thermique dans un tuyau avec condit[...] Date : 02/03/2010 Page : 1/10 Manuel de Validation Fascicule V4.25 : Thermique transitoire des structures volumiques Document : V4.25.100
Chapitre 5: Oscillations d un pendule élastique horizontal
1 re B et C 5 Oscillations d'un pendule élastique horizontal 40 Chapitre 5: Oscillations d un pendule élastique horizontal 1. Définitions a) Oscillateur écanique * Un systèe écanique qui effectue un ouveent
CHAPITRE VIII : Les circuits avec résistances ohmiques
CHAPITRE VIII : Les circuits avec résistances ohmiques VIII. 1 Ce chapitre porte sur les courants et les différences de potentiel dans les circuits. VIII.1 : Les résistances en série et en parallèle On
CONCEPTION PARASISMIQUE DES BATIMENTS (STRUCTURES) INTRODUCTION A LA DYNAMIQUE DES STRUCTURES
COURS DE CONSTRUCTION PARASISMIQUE VOLUME 2 CONCEPTION PARASISMIQUE DES BATIMENTS (STRUCTURES) INTRODUCTION A LA DYNAMIQUE DES STRUCTURES Introduction à la conception PS des structures - Approche qualitative
C.F.A.O. : Conception et Fabrication Assistées par Ordinateur.
C.F.A.O. : Conception et Fabrication Assistées par Ordinateur. La CFAO réunit dans une même démarche informatique les actions de conception et de fabrication d un objet. La technique utilisée permet à
Système formé de deux points
MPSI - 2005/2006 - Mécanique II - Système formé de deux points matériels page /5 Système formé de deux points matériels Table des matières Éléments cinétiques. Éléments cinétiques dans R.......................2
EXAMEN CRITIQUE D UN DOSSIER TECHNIQUE
EXAMEN CRITIQUE D UN DOSSIER TECHNIQUE (Préparation : 5 heures -- Exposé et Questions : 1 heure) Rapport établi par : P.J. BARRE, E. JEAY, D. MARQUIS, P. RAY, A. THIMJO 1. PRESENTATION DE L EPREUVE 1.1.
Le point de vue du contrôleur technique
Le point de vue du contrôleur technique mars 2010 P-E Thévenin Contrôle technique en zone sismique le contrôle technique missions et finalité contrôle technique obligatoire les attestations PS de contrôle
LE PROCESSUS ( la machine) la fonction f. ( On lit : «fonction f qui à x associe f (x)» )
SYNTHESE ( THEME ) FONCTIONS () : NOTIONS de FONCTIONS FONCTION LINEAIRE () : REPRESENTATIONS GRAPHIQUES * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
CASERNE NIEL Quai des Queyries à Bordeaux DIAGNOSTIC POUR LA CONSERVATION D UNE CHARPENTE METALLIQUE
CASERNE NIEL Quai des Queyries à Bordeaux DIAGNOSTIC POUR LA CONSERVATION D UNE CHARPENTE METALLIQUE S O M M A I R E CHAPITRE 1 - PRÉSENTATION GÉNÉRALE... 2 CHAPITRE 2 - SÉCURITÉ DES PERSONNES VIS A VIS
Programmes des classes préparatoires aux Grandes Ecoles
Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme
PPHM Structures. nouvelle génération. Un service commercial et technique dédié aux PPHM. www.lacroix-signalisation.fr
Un service commercial et technique dédié aux PPHM tél. : +33 (0)6 11 17 38 36 email : [email protected] 8, impasse du Bourrelier - BP 30004 44801 Saint-Herblain cedex tél. : +33 (0)2 40 92 37 30
Les Difficultés Inhérentes aux Réseaux Sans Fil. Des Solutions aux Scénarios de Problèmes
Les Difficultés Inhérentes aux Réseaux Sans Fil Des Solutions aux Scénarios de Problèmes Problème 1: La liaison à un toit voisin n est pas bonne. Exemple Solution 1: Ajoutez un autre nœud voisin pour atteindre
Quantité de mouvement et moment cinétique
6 Quantité de mouvement et moment cinétique v7 p = mv L = r p 1 Impulsion et quantité de mouvement Une force F agit sur un corps de masse m, pendant un temps Δt. La vitesse du corps varie de Δv = v f -
DÉVERSEMENT ÉLASTIQUE D UNE POUTRE À SECTION BI-SYMÉTRIQUE SOUMISE À DES MOMENTS D EXTRÉMITÉ ET UNE CHARGE RÉPARTIE OU CONCENTRÉE
Revue Construction étallique Référence DÉVERSEENT ÉLASTIQUE D UNE POUTRE À SECTION BI-SYÉTRIQUE SOUISE À DES OENTS D EXTRÉITÉ ET UNE CHARGE RÉPARTIE OU CONCENTRÉE par Y. GALÉA 1 1. INTRODUCTION Que ce
Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme
Fonctions linéaires et affines 3eme 1 Fonctions linéaires 1.1 Vocabulaire Définition 1 Soit a un nombre quelconque «fixe». Une fonction linéaire associe à un nombre x quelconque le nombre a x. a s appelle
Comparaison de fonctions Développements limités. Chapitre 10
PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?
L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ
L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et
SMARTAIR, le contrôle d accès évolutif
SMARTAIR, le contrôle d accès évolutif 1 1 Le concept SMARTAIR : un système évolutif Les caractéristiques générales communes La version SMARTAIR STAND ALONE La version SMARTAIR OFF LINE La version SMARTAIR
Cours de résistance des matériaux
ENSM-SE RDM - CPMI 2011-2012 1 Cycle Préparatoire Médecin-Ingénieur 2011-2012 Cours de résistance des matériau Pierre Badel Ecole des Mines Saint Etienne Première notions de mécanique des solides déformables
Eteindre. les. lumières MATH EN JEAN 2013-2014. Mme BACHOC. Elèves de seconde, première et terminale scientifiques :
MTH EN JEN 2013-2014 Elèves de seconde, première et terminale scientifiques : Lycée Michel Montaigne : HERITEL ôme T S POLLOZE Hélène 1 S SOK Sophie 1 S Eteindre Lycée Sud Médoc : ROSIO Gauthier 2 nd PELGE
Analyse en Composantes Principales
Analyse en Composantes Principales Anne B Dufour Octobre 2013 Anne B Dufour () Analyse en Composantes Principales Octobre 2013 1 / 36 Introduction Introduction Soit X un tableau contenant p variables mesurées
RÉPUBLIQUE ET CANTON DE GENÈVE Echelle des traitements 2015 Valable dès le 01.01.2015 Office du personnel de l'etat Indexation de 0.
04 00 52 378.00 4 029.10 0.00 25.20 23.25 1.95 207.50 44.35 1.70 36.30 3 739.25 01 52 960.00 4 073.85 582.00 25.50 23.55 1.95 209.85 44.85 1.70 36.70 3 780.75 02 53 542.00 4 118.65 582.00 25.75 23.80 1.95
TS Physique Satellite à la recherche de sa planète Exercice résolu
P a g e 1 Phsique atellite à la recherche de sa planète Exercice résolu Enoncé Le centre spatial de Kourou a lancé le 1 décembre 005, avec une fusée Ariane 5, un satellite de météorologie de seconde génération
données en connaissance et en actions?
1 Partie 2 : Présentation de la plateforme SPSS Modeler : Comment transformer vos données en connaissance et en actions? SPSS Modeler : l atelier de data mining Large gamme de techniques d analyse (algorithmes)
Grandes lignes ASTRÉE. Logiciels critiques. Outils de certification classiques. Inspection manuelle. Definition. Test
Grandes lignes Analyseur Statique de logiciels Temps RÉel Embarqués École Polytechnique École Normale Supérieure Mercredi 18 juillet 2005 1 Présentation d 2 Cadre théorique de l interprétation abstraite
INITIATION AU LANGAGE C SUR PIC DE MICROSHIP
COURS PROGRAMMATION INITIATION AU LANGAGE C SUR MICROCONTROLEUR PIC page 1 / 7 INITIATION AU LANGAGE C SUR PIC DE MICROSHIP I. Historique du langage C 1972 : naissance du C dans les laboratoires BELL par
et Groupe Eyrolles, 2006, ISBN : 2-212-11747-7
Tsoft et Groupe Eyrolles, 2006, ISBN : 2-212-11747-7 OEM Console Java OEM Console HTTP OEM Database Control Oracle Net Manager 6 Module 6 : Oracle Enterprise Manager Objectifs Contenu A la fin de ce module,
Echafaudages Caractéristiques générales
Echafaudages Caractéristiques générales Mise à jour Octobre 2009 Echafaudage multidirectionnel, multiniveaux 12 7 22 20 14 11 23 21 6 15 13 10 4 5 18 17 16 19 3 9 8 2 1 1 Cale-bois 2 Socle réglable 3 Poteau
SOCIETE NATIONALE DES CHEMINS DE FER BELGES SPECIFICATION TECHNIQUE L-70
SOCIETE NATIONALE DES CHEMINS DE FER BELGES SPECIFICATION TECHNIQUE L-70 PIECES EN CAOUTCHOUC POUR ORGANES DE SUSPENSION, DE TRANSMISSION ET D ENTRAINEMENT EDITION: 2005 Version 12/07/2005 ST L70 -Version
Voyez la réponse à cette question dans ce chapitre. www.hometownroofingcontractors.com/blog/9-reasons-diy-rednecks-should-never-fix-their-own-roof
Une échelle est appuyée sur un mur. S il n y a que la friction statique avec le sol, quel est l angle minimum possible entre le sol et l échelle pour que l échelle ne glisse pas et tombe au sol? www.hometownroofingcontractors.com/blog/9-reasons-diy-rednecks-should-never-fix-their-own-roof
Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, 672 59 10 11 m 3 kg 1 s 2
Introduction Page xxi (milieu de page) G = 6, 672 59 1 11 m 3 kg 1 s 2 Erratum de MÉCANIQUE, 6ème édition Page xxv (dernier tiers de page) le terme de Coriolis est supérieur à 1% du poids) Chapitre 1 Page
Consolidation de fondamentaux
Consolidation de fondamentaux Introduction aux Sciences de l Information et de la Communication Consolidation - Stéphanie MARTY - 2009/2010 1 Consolidation de fondamentaux Démarche en sciences humaines
Premier principe de la thermodynamique - conservation de l énergie
Chapitre 5 Premier principe de la thermodynamique - conservation de l énergie 5.1 Bilan d énergie 5.1.1 Énergie totale d un système fermé L énergie totale E T d un système thermodynamique fermé de masse
Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point (x 0,y 0,z 0 ) donné :
Enoncés : Stephan de Bièvre Corrections : Johannes Huebschmann Exo7 Plans tangents à un graphe, différentiabilité Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point
I. Cas de l équiprobabilité
I. Cas de l équiprobabilité Enoncé : On lance deux dés. L un est noir et l autre est blanc. Calculer les probabilités suivantes : A «Obtenir exactement un as» «Obtenir au moins un as» C «Obtenir au plus
Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere
Module d Electricité 2 ème partie : Electrostatique Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere 1 Introduction Principaux constituants de la matière : - protons : charge
Travaux pratiques. Compression en codage de Huffman. 1.3. Organisation d un projet de programmation
Université de Savoie Module ETRS711 Travaux pratiques Compression en codage de Huffman 1. Organisation du projet 1.1. Objectifs Le but de ce projet est d'écrire un programme permettant de compresser des
STATIQUE Ivan Corminboeuf 3.5
STATIQUE Chargé de cours: Ivan Corminboeuf ingénieur civil ETS/EPF version 3.5 - août 2007 Chargé de cours Ivan Corminboeuf ingénieur civil diplômé ETS / EPF Né en 1963, M. Corminboeuf est originaire de
.4..ESCALIER. Critères d'accessibilité répondant aux besoins des personnes ayant une déficience visuelle. 4.1 Concept de base
énovation.4..escalie. 4.1 Concept de base S assurer que l emplacement des escaliers soit uniforme d un étage à l autre pour que leur localisation soit prévisible. egrouper l'escalier et les principaux
LA MESURE DE PRESSION PRINCIPE DE BASE
Page 1 / 6 LA MESURE DE PRESSION PRINCIPE DE BASE 1) Qu est-ce qu un sensor de pression? Tout type de sensor est composé de 2 éléments distincts : Un corps d épreuve soumit au Paramètre Physique φ à mesurer
UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux.
UEO11 COURS/TD 1 Contenu du semestre Cours et TDs sont intégrés L objectif de ce cours équivalent a 6h de cours, 10h de TD et 8h de TP est le suivant : - initiation à l algorithmique - notions de bases
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère
10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)
0 leçon 2 Leçon n 2 : Contact entre deu solides Frottement de glissement Eemples (PC ou er CU) Introduction Contact entre deu solides Liaisons de contact 2 Contact ponctuel 2 Frottement de glissement 2
RÉALISATION DE GRAPHIQUES AVEC OPENOFFICE.ORG 2.3
RÉALISATION DE GRAPHIQUES AVEC OPENOFFICE.ORG 2.3 Pour construire un graphique : On lance l assistant graphique à l aide du menu Insérer è Diagramme en ayant sélectionné au préalable une cellule vide dans
LES PROS DE L AFFICHAGE
26 DATEC-CONTROL MOBILE XS S M L XS LES PROS DE L AFFICHAGE LE PRODUIT La tête à la forme arrondie de la série de boîtiers DATEC-CONTROL permet la mise en place d afficheurs graphiques. Cette nouvelle
Glissière linéaire à rouleaux
LRX Guidage linéaire Introduction Rail de guidage Joint Graisseur Corps Rouleaux cylindriques Joint Cage Couvercle d extrémité Les guides linéaires à rouleaux de la série LRX offrent une haute fiabilité
CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES.
CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE EQUATIONS DIFFERENTIELLES Le but de ce chapitre est la résolution des deux types de systèmes différentiels linéaires
Chapitre 12. Bâtiments à ossature mixte en zone sismique.
12.1 Chapitre 12. Bâtiments à ossature mixte en zone sismique. 12.1. Introduction. Il existe des solutions mixtes acier-béton très diverses dans le domaine du bâtiment. A côté des classiques ossatures
a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b
I Définition d une fonction affine Faire l activité 1 «une nouvelle fonction» 1. définition générale a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe
Hervé Oudin. HAL Id: cel-00341772 https://cel.archives-ouvertes.fr/cel-00341772v3
Méthode des éléments finis Hervé Oudin To cite this version: Hervé Oudin. Méthode des éléments finis. École d ingénieur. Nantes, France. 2008, pp.74. HAL Id: cel-00341772 https://cel.archives-ouvertes.fr/cel-00341772v3
AUTRES ASPECTS DU GPS. Partie I : tolérance de Battement Partie II : tolérancement par frontières
AUTRES ASPECTS DU GPS Partie I : tolérance de Battement Partie II : tolérancement par frontières 1 Partie I Tolérance de battement Défaut de Battement Défautconjuguéde forme, orientation et position, constatélorsde
