Système formé de deux points

Save this PDF as:

Dimension: px
Commencer à balayer dès la page:

Download "Système formé de deux points"

Transcription

1 MPSI / Mécanique II - Système formé de deux points matériels page /5 Système formé de deux points matériels Table des matières Éléments cinétiques. Éléments cinétiques dans R Centre de masse Référentiel barycentrique Éléments cinétiques dans R Quantité de mouvement totale Moment cinétique total en G Énergie cinétique totale Dynamique du système 3 2. Forces intérieures et forces extérieures Théorème de la quantité de mouvement Théorème du moment cinétique Étude énergétique Théorème de l énergie cinétique Puissance des forces intérieures Énergie potentielle - Énergie mécanique Système isolé de deux points matériels 4 3. Lois de conservation Conservation de la quantité de mouvement Conservation du moment cinétique Conservation de l énergie mécanique Réduction du problème à deux corps à un problème à un corps Mobile fictif - Masse réduite Éléments cinétiques Soit le système formé par deux points matériels M de masse m, de vitesse v, soumis à des forces de résultante F et M 2 de masse m 2, de vitesse v 2, soumis à des forces de résultante F 2. On notera m la somme Par défaut, les vitesses et les accélérations sont calculées par rapport à un référentiel R galiléen Éléments cinétiques. Éléments cinétiques dans R p = p i = m i v i = m v + m 2 v 2 i i est la quantité de mouvement totale ou résultante cinétique du système dans R L O = i L Oi = i OM i m i v i = OM m v + OM 2 m 2 v 2 est le moment cinétique total du système en O dans R E c = i E ci = i 2 m iv 2 i = 2 m v m 2v 2 2 est l énergie cinétique totale du système dans R.2 Centre de masse Le centre de masse du système (ou encore centre d inertie, centre de gravité, barycentre) est le point G défini par ( )OG = m OM + m 2 OM 2 O étant un point quelconque de R ; si O = G Choisissons un point O fixe dans R m GM + m 2 GM 2 = 0 v G = dog = m v + m 2 v 2 est la vitesse du centre de masse G par rapport à R

2 MPSI / Mécanique II - Système formé de deux points matériels page 2/5.3 Référentiel barycentrique Le référentiel barycentrique ou référentiel du centre de masse, noté R, est le référentiel en translation par rapport à R dans lequel le centre de masse G est fixe (souvent pris comme origine de R ) Attention : pour que R soit galiléen, il faut bien sûr que R soit galiléen mais aussi que v G = cte étant en translation par rapport à R, on peut dériver indifféremment par rapport à R ou R, la composition des vitesses s écrit R L G = (GO + OM ) m v + (GO + OM 2 ) m 2 v 2 = GO (m v + m 2 v 2) + OM m v + OM 2 m 2 v 2 = 0 + OM m (v v G ) + OM 2 m 2 (v 2 v G ) = OM m v + OM 2 m 2 v 2 (m OM + m 2 OM 2 ) v G = L O OG mv G Cette relation, qui sera étudiée en 2 e année, est appelée théorème de Koenig relatif au moment cinétique L O = L G + OG mv G v = v + v e = v + v G la composition des accélérations.4.3 Énergie cinétique totale a = a + a e = a + a G.4 Éléments cinétiques dans R E c = i E c i = i 2 m iv i 2 = 2 m v m 2v Quantité de mouvement totale E c = 2 m v m 2v 2 2 p = i p i = i m i v i = m v + m 2 v 2 = 2 m (v v G ) m 2(v 2 v G ) 2 p = m (v v G ) + m 2 (v 2 v G ) = 0 = 2 m v m 2v 2 2 (m v + m 2 v 2 ).v G + 2 ( )v 2 G = E c mv 2 G + 2 mv2 G La quantité de mouvement totale du système dans R est nulle p = 0 = E c 2 mv2 G.4.2 Moment cinétique total en G Cette relation, qui sera étudiée en 2 e année, est appelée théorème de Koenig relatif à l énergie cinétique L G = i L G i = i GM i m i v i = GM m v + GM 2 m 2 v 2 E c = E c + 2 mv2 G

3 MPSI / Mécanique II - Système formé de deux points matériels page 3/5 2 Dynamique du système 2. Forces intérieures et forces extérieures Décomposons F en F ext +F 2 où F ext est la force exercée par l extérieur sur M et F 2 la force exercée par M 2 sur M. De même F 2 = F ext 2 + F 2 Les forces F 2 et F 2 s exerçant entre M et M 2 sont appelées forces intérieures au système, les autres forces étant les forces extérieures au système 2.2 Théorème de la quantité de mouvement ou théorème de la résultante cinétique R étant galiléen, on peut appliquer le principe fondamental de la dynamique à M = F = F ext + F 2 2 = F 2 = F ext 2 + F 2 en ajoutant membre à membre on fait apparaître la quantité de mouvement totale d(p + p 2 ) = F + F 2 = F ext + F ext 2 + F 2 + F 2 en utilisant la 3 e loi de Newton ou principe de l action et de la réaction = F ext où p est la quantité de mouvement totale et F ext la résultante des forces extérieures qui s exercent sur le système Le mouvement de G est identique à celui d un point matériel de masse m = soumis à une force égale à la résultante des forces extérieures 2.3 Théorème du moment cinétique Soit O un point fixe de R galiléen Appliquons le théorème du moment cinétique en O à M dl O dl O2 = OM F = OM F ext + OM F 2 = OM 2 F 2 = OM 2 F ext 2 + OM 2 F 2 en ajoutant membre à membre on fait apparaître le moment cinétique total d(l O + L O2 ) = OM F ext + OM 2 F ext 2 + M M 2 F 2 en utilisant la 3 e loi de Newton ou principe de l action et de la réaction dl O = M Oext où L O est le moment cinétique total en O et M Oext le moment résultant en O des forces extérieures qui s exercent sur le système 2.4 Étude énergétique 2.4. Théorème de l énergie cinétique R étant galiléen, on peut appliquer le théorème de l énergie cinétique à M p = m v + m 2 v 2 = mv G = m dv G = ma G = F ext 2 = F.v = F ext.v + F 2.v = F 2.v 2 = F ext 2.v 2 + F 2.v 2

4 MPSI / Mécanique II - Système formé de deux points matériels page 4/5 en ajoutant membre à membre on fait apparaître l énergie cinétique totale d(e c + E c2 ) = F ext.v + F ext 2.v 2 + F 2.v + F 2.v 2 Contrairement aux deux cas précédents, il n y a, a priori, aucune raison que les termes faisant apparaître les forces intérieures disparaissent 3. Lois de conservation 3.. Conservation de la quantité de mouvement = 0 p = mv G = cte Le référentiel barycentrique est donc galiléen = P ext + P int 3..2 Conservation du moment cinétique où E c est l énergie cinétique totale, P ext la puissance des forces extérieures et P int la puissance des forces intérieures Puissance des forces intérieures Remarquons que la puissance des forces intérieures est indépendante du référentiel P int = F 2.v + F 2.v 2 = F 2.(v 2 v ) = F 2.(v 2 v ) En particulier, pour un système rigide, P int = Énergie potentielle - Énergie mécanique Si toutes les forces sont conservatives ou ne travaillent pas = de p où E p est l énergie potentielle totale, alors l énergie mécanique totale E = E c +E p se conserve 3 Système isolé de deux points matériels Si le système est isolé, F ext = 0 et F ext 2 = 0, alors F ext = 0, M Oext = 0 et P ext = 0 dl O = 0 L O = cte R et R étant en translation l un par rapport à l autre, on peut dériver indifféremment; comme L G = L O OG mv G dl G = dl O v G mv G OG m dv G dl G = 0 L G = cte = dl O On aurait pu aussi appliquer le théorème du moment cinétique en G (fixe dans R ) dans R galiléen 3..3 Conservation de l énergie mécanique = P int Dans le cadre du programme les forces intérieures qui s exercent entre M et M 2 sont conservatives (par exemple interaction gravitationnelle ou électrostatique) de = 0 E = cte R et R étant en translation l un par rapport à l autre, on peut dériver indifféremment; comme E c = E c 2 mv2 G de c = mv G. dv G = = P int = P int = de p

5 MPSI / Mécanique II - Système formé de deux points matériels page 5/5 de = 0 E = cte 3.2 Réduction du problème à deux corps à un problème à un corps 3.2. Mobile fictif - Masse réduite Reprenons m a = F 2 a = a 2 a = F 2 m 2 F 2 m m 2 a 2 = F 2 = F 2 m 2 avec µ = m + m 2, µ appelé masse réduite + F 2 m a = a 2 a = d2 OM 2 2 d2 OM 2 = d2 M M 2 2 Soit P appelé mobile fictif et défini par GP = M M 2 = re r = F 2 µ La relation µa = F 2 peut donc être considérée comme le PFD appliqué dans le référentiel barycentrique (a = a et dérivation indifférente) à un mobile équivalent P de masse µ et soumis à une force F 2 La vitesse du mobile fictif d où v = dgp = dm M 2 = dom 2 dom v = m 2 v v 2 = + m v = v 2 v = v 2 v d autre part, les relations m GM + m 2 GM 2 = 0 et GP = M M 2 = GM 2 GM conduisent à GM = m 2 GP GM 2 = + m GP calculons alors l énergie cinétique et le moment cinétique E c = 2 m ( m ) 2 2 v + ( 2 m 2 + m ) 2 v = 2 µv2 L G = GM m v + GM 2 m 2 v2 = m ( 2 GP m m ) 2 m m v + GP m 2 v = GP µv En général, La force F 2 est conservative, portée par M M 2 et ne dépend que de la distance relative entre M et M 2 F 2 = F(r)e r Tout se passe donc comme si le mobile équivalent P ressentait la force centrale conservative créée par le centre de force fixe G Éléments cinétiques La quantité de mouvement totale dans R est nulle par définition de R p = m v + m 2 v 2 = 0

Chapitre 3 : Dynamique du point matériel

Chapitre 3 : Dynamique du point matériel Cours de Mécanique du Point matériel Chapitre 3 : Dynamique SMPC1 Chapitre 3 : Dynamique du point matériel I Lois fondamentales de la dynamiques I.1)- Définitions Le Référentiel de Copernic: Le référentiel

Plus en détail

Chapitre 4 : Etude Energétique

Chapitre 4 : Etude Energétique Cours de Mécanique du Point matériel Chapitre 4 : Energétique SMPC1 Chapitre 4 : Etude Energétique I Travail et Puissance d une force I.1)- Puissance d une force Soit un point matériel M de vitesse!!/!,

Plus en détail

Chapitre 3: Dynamique

Chapitre 3: Dynamique Introduction Le mot dynamique désigne ou qualifie ce qui est relatif au mouvement. Il est l opposé du mot statique. Le mouvement d un point matériel est liée à son interaction avec le monde extérieur ce

Plus en détail

Relations fondamentales de la dynamique des milieux continus déformables

Relations fondamentales de la dynamique des milieux continus déformables Relations fondamentales de la dynamique des milieux continus déformables Lois universelles de la physique des milieux continus conservation de la masse bilan de quantité de mouvement bilan de moment cinétique

Plus en détail

Chapitre 7 Leschangementsde référentiels

Chapitre 7 Leschangementsde référentiels Chapitre 7 Leschangementsde référentiels 59 7.1. Introduction 7.1.1. Position du problème L étude des trajectoires di ère selon le référentiel dans lequel on se place. Par exemple, observons la valve d

Plus en détail

M6 MOMENT CINÉTIQUE D UN POINT MATÉRIEL

M6 MOMENT CINÉTIQUE D UN POINT MATÉRIEL M6 MOMENT CINÉTIQUE D UN POINT MATÉRIEL OBJECTIFS Jusqu à présent, nous avons rencontré deux méthodes pour obtenir l équation du mouvement d un point matériel : - l utilisation du P.F.D. - et celle du

Plus en détail

5 Principes de Newton

5 Principes de Newton 5 Principes de Newton En 1687, Newton 3 énonce ses fameuses trois lois fondamentales de la mécanique concernant les mouvements des corps. 5.1 Première loi de Newton : le principe d inertie Dans la section

Plus en détail

Cours de mécanique M14-travail-énergies

Cours de mécanique M14-travail-énergies Cours de mécanique M14-travail-énergies 1 Introduction L objectif de ce chapitre est de présenter les outils énergétiques utilisés en mécanique pour résoudre des problèmes. En effet, parfois le principe

Plus en détail

1 ère S La petite voiture Physique Mécanique

1 ère S La petite voiture Physique Mécanique Page 1 sur 5 1 ère S Physique Mécanique - Enoncé - Remarques préliminaires : - n prendra g = 9,8 N.kg -1. - n traaille dans un référentiel terrestre supposé galiléen. Un jouet, une «petite oiture», est

Plus en détail

CH12 : Solide en mouvement de translation

CH12 : Solide en mouvement de translation BTS électrotechnique 1 ère année - Sciences physiques appliquées CH12 : Solide en mouvement de translation Motorisation des systèmes Enjeu : Problématique : En tant que technicien supérieur, il vous revient

Plus en détail

Notes du Cours de Mécanique 1 er semestre, année 2011/2012

Notes du Cours de Mécanique 1 er semestre, année 2011/2012 Ecole Polytechnique de l Université de Nice - Sophia Antipolis CiP1 Notes du Cours de Mécanique 1 er semestre, année 2011/2012 Patrizia Vignolo Jean-Michel Chauveau Thibault Gayral Sommaire : Introduction

Plus en détail

Quantité de mouvement et moment cinétique

Quantité de mouvement et moment cinétique 6 Quantité de mouvement et moment cinétique v7 p = mv L = r p 1 Impulsion et quantité de mouvement Une force F agit sur un corps de masse m, pendant un temps Δt. La vitesse du corps varie de Δv = v f -

Plus en détail

Premier principe : bilans d énergie

Premier principe : bilans d énergie MPSI - Thermodynamique - Premier principe : bilans d énergie page 1/5 Premier principe : bilans d énergie Table des matières 1 De la mécanique à la thermodynamique : formes d énergie et échanges d énergie

Plus en détail

Chapitre 2 : Caractéristiques du mouvement d un solide

Chapitre 2 : Caractéristiques du mouvement d un solide Chapitre 2 : Caractéristiques du mouvement d un solide I Rappels : Référentiel : Le mouvement d un corps est décris par rapport à un corps de référence et dépend du choix de ce corps. Ce corps de référence

Plus en détail

2 Le champ électrostatique E

2 Le champ électrostatique E Licence 3 Sciences de la Terre, de l Univers et de l Environnement Université Joseph-Fourier : Outil Physique et Géophysique 2 Le champ électrostatique E k Daniel.Brito@ujf-grenoble.fr E MAISON DES GÉOSCIENCES

Plus en détail

Cours de Mécanique du point matériel

Cours de Mécanique du point matériel Cours de Mécanique du point matériel SMPC1 Module 1 : Mécanique 1 Session : Automne 2014 Prof. M. EL BAZ Cours de Mécanique du Point matériel Chapitre 1 : Complément Mathématique SMPC1 Chapitre 1: Rappels

Plus en détail

STI2D : Enseignements Technologiques Transversaux

STI2D : Enseignements Technologiques Transversaux 1) Notion de moment d une force : Les effets d une force sur un solide dépendent de la position de la force par rapport au corps. Pour traduire avec précision les effets d une force, il est nécessaire

Plus en détail

Construction d un cercle tangent à deux cercles donnés.

Construction d un cercle tangent à deux cercles donnés. Préparation au CAPES Strasbourg, octobre 2008 Construction d un cercle tangent à deux cercles donnés. Le problème posé : On se donne deux cercles C et C de centres O et O distincts et de rayons R et R

Plus en détail

DYNAMIQUE Corrigé de l'exercice L ensemble {Homme + Moto} page suivante a une masse totale m = 340 kg. Pour tout le problème, on prendra

DYNAMIQUE Corrigé de l'exercice L ensemble {Homme + Moto} page suivante a une masse totale m = 340 kg. Pour tout le problème, on prendra L ensemble {Homme + Moto} page suivante a une masse totale m = 340 kg. Pour tout le problème, on prendra 2 g = 10 m. s. RÉPARTITION DES CHARGES A L ARRÊT I.1) Isolez l ensemble {Homme + Moto} à l arrêt

Plus en détail

Corrigé des exercices «Principe fondamental de la dynamique»

Corrigé des exercices «Principe fondamental de la dynamique» «Principe fondamental de la dynamique» Exercice 1 a. Un véhicule parcourt 72 km en 50 minutes. Calculer sa vitesse moyenne et donner le résultat en km/h puis en m/s. La vitesse v est donnée en fonction

Plus en détail

Electrocinétique et magnétostatique

Electrocinétique et magnétostatique Chapitre 3 Electrocinétique et magnétostatique 3.1 Electrocinétique - Vecteur densité de courant Un courant électrique correspond à des charges électriques mobiles. On appelle vecteur densité de courant

Plus en détail

La gravitation universelle

La gravitation universelle La gravitation universelle Pourquoi les planètes du système solaire restent-elles en orbite autour du Soleil? 1) Qu'est-ce que la gravitation universelle? activité : Attraction universelle La cohésion

Plus en détail

TS Physique Satellite à la recherche de sa planète Exercice résolu

TS Physique Satellite à la recherche de sa planète Exercice résolu P a g e 1 Phsique atellite à la recherche de sa planète Exercice résolu Enoncé Le centre spatial de Kourou a lancé le 1 décembre 005, avec une fusée Ariane 5, un satellite de météorologie de seconde génération

Plus en détail

Chapitre 6P : ENERGIE CINETIQUE ET ENERGIE POTENTIELLE

Chapitre 6P : ENERGIE CINETIQUE ET ENERGIE POTENTIELLE Chapitre 6P : ENERGIE CINETIQUE ET ENERGIE POTENTIELLE Dans le chapitre précèdent, nous avons étudié l expression du travail et de la puissance d une force constante. Ce travail correspond à un transfert

Plus en détail

ACTION DES CHAMPS ELECTRIQUE ET MAGNETIQUE SUR LE MOUVEMENT DES ELECTRONS. MESURE DU RAPPORT e/m

ACTION DES CHAMPS ELECTRIQUE ET MAGNETIQUE SUR LE MOUVEMENT DES ELECTRONS. MESURE DU RAPPORT e/m EEl 1 ACTION DES CHAMPS ELECTRIQUE ET MAGNETIQUE SUR LE MOUVEMENT DES ELECTRONS MESURE DU RAPPORT e/m 1. THEORIE 1.1. Effet d un champ électrique sur une charge électrique Dans un champ électrique E une

Plus en détail

Test : principe fondamental de la dynamique et aspect énergétique

Test : principe fondamental de la dynamique et aspect énergétique Durée : 45 minutes Objectifs Test : principe fondamental de la dynamique et aspect énergétique Projection de forces. Calcul de durée d'accélération / décélération ou d'accélération / décélération ou de

Plus en détail

M M (maxi) + MS MS (maxi) 189Nm nominal 16.2Nm pour 10 000km. 639Nm nominal 54Nm pour 10 000km

M M (maxi) + MS MS (maxi) 189Nm nominal 16.2Nm pour 10 000km. 639Nm nominal 54Nm pour 10 000km HepcoMotion SBD Calcul de la durée de vie La durée de vie d une unité SBD est définie par le nombre de kilomètres qui peut être accompli avant que le guidage à billes atteigne sa durée de vie théorique.

Plus en détail

TP force centrifuge. Ce TP est évalué à l'aide d'un questionnaire moodle.

TP force centrifuge. Ce TP est évalué à l'aide d'un questionnaire moodle. TP force centrifuge Ce TP est évalué à l'aide d'un questionnaire moodle. Objectif : Étudier la force centrifuge dans le cas d un objet ponctuel en rotation uniforme autour d un axe fixe. 1 Présentation

Plus en détail

Factorisation Factoriser en utilisant un facteur commun Fiche méthode

Factorisation Factoriser en utilisant un facteur commun Fiche méthode Factorisation Factoriser en utilisant un facteur commun Fiche méthode Rappel : Distributivité simple Soient les nombres, et. On a : Factoriser, c est transformer une somme ou une différence de termes en

Plus en détail

Chap 8 - TEMPS & RELATIVITE RESTREINTE

Chap 8 - TEMPS & RELATIVITE RESTREINTE Chap 8 - TEMPS & RELATIVITE RESTREINTE Exercice 0 page 9 On considère deux évènements E et E Référentiel propre, R : la Terre. Dans ce référentiel, les deux évènements ont lieu au même endroit. La durée

Plus en détail

I- Transfert d énergie par travail mécanique Doc 1. Un homme pousse sa voiture en panne Doc 2. Un parachutiste saute en chute libre

I- Transfert d énergie par travail mécanique Doc 1. Un homme pousse sa voiture en panne Doc 2. Un parachutiste saute en chute libre Chapitre P 9 : Travail d une force constante et énergie Correction Dans le chapitre précédent, nous avons étudié l évolution temporelle de différents systèmes mécaniques en exploitant la seconde loi de

Plus en détail

Comment mesure-t-on la masse des planètes?

Comment mesure-t-on la masse des planètes? Comment mesure-t-on la masse des planètes? Evidemment, les planètes ne sont pas mises sur une balance. Ce sont les mathématiques et les lois physiques qui nous permettent de connaître leur masse. Encore

Plus en détail

Energie Travail Puissance Cours

Energie Travail Puissance Cours Energie Travail Puissance Cours. Introduction Les problèmes liés à l énergie sont d une grande importance : l énergie est en effet à l origine de tous les mouvements du monde de la technologie. Il existe

Plus en détail

Hygiène et Sécurité HS 1

Hygiène et Sécurité HS 1 Hygiène et Sécurité HS 1 Leçon N 2 : L équilibre d un solide Question du jour : qu est-ce qui maintient un objet en équilibre? I. ctions mécaniques : caractéristiques d une force ctivité 1 Effectuer les

Plus en détail

1 Définition. 2 Modélisation des actions mécaniques. On appelle action mécanique toute cause susceptible de : - maintenir un corps au repos

1 Définition. 2 Modélisation des actions mécaniques. On appelle action mécanique toute cause susceptible de : - maintenir un corps au repos 1 Définition On appelle action mécanique toute cause susceptible de : - maintenir un corps au repos - créer ou modifier un mouvement - déformer un corps odélisation des actions mécaniques.1. Notion de

Plus en détail

Transformations nucléaires

Transformations nucléaires I Introduction Activité p286 du livre Transformations nucléaires II Les transformations nucléaires II.a Définition La désintégration radioactive d un noyau est une transformation nucléaire particulière

Plus en détail

APPLICATION DU THEOREME DES TRAVAUX VIRTUELS AU CALCUL DES STRUCTURES ISOSTATIQUES

APPLICATION DU THEOREME DES TRAVAUX VIRTUELS AU CALCUL DES STRUCTURES ISOSTATIQUES Cours de Mécanique APPLICATION DU THEOREME DES TRAVAUX VIRTUELS AU CALCUL DES STRUCTURES ISOSTATIQUES Philippe Lawrence Octobre 2012 Table des matières 1 Rappels 2 1.1 Structure isostatique.........................

Plus en détail

Cours préparatoires de physique

Cours préparatoires de physique Cours préparatoires de physique Août 2012 L. Dreesen LA DYNAMIQUE, LES LOIS DE NEWTON Août 2012 L. Dreesen 1 Table des matières Introduction Force La première loi de Newton La troisième loi de Newton La

Plus en détail

B - LE CHAMP ELECTRIQUE

B - LE CHAMP ELECTRIQUE B - L CHAP LCTRIQU B - 1 - L VCTUR CHAP LCTRIQU L'orientation du vecteur champ électrique dépend de la nature (positive ou négative) de la charge qui le produit. L effet de ce champ (attraction ou répulsion)

Plus en détail

Cours MF101 Contrôle de connaissances: Corrigé

Cours MF101 Contrôle de connaissances: Corrigé Cours MF101 Contrôle de connaissances: Corrigé Exercice I Nous allons déterminer par analyse dimensionnelle la relation entre la Trainée D et les autres paramètres. F D, g,, V, ρ, ν) = 0 1) où D représente

Plus en détail

Modèle d une automobile.

Modèle d une automobile. Modèle d une automobile. On modélise une automobile par deux disques homogènes identiques de masse m de rayon a, de moment d inertie J = (1/) m a par rapport à leurs axes respectifs, de centre C, en contact

Plus en détail

On peut mesurer l intensité (ou la «valeur») d une force à l aide d un dynamomètre. L intensité d une force s exprime en newton, symbole : N

On peut mesurer l intensité (ou la «valeur») d une force à l aide d un dynamomètre. L intensité d une force s exprime en newton, symbole : N CH5 FORCES ET PRINCIPE D INERTIE A) POURQUOI LE MOUVEMENT D UN OBJET EST-IL MODIFIE? POURQUOI SE DEFORME-T-IL? I - RAPPELS. L existence d une force est conditionnée à l identification d une interaction,

Plus en détail

un repère orthonormé de l espace.

un repère orthonormé de l espace. Terminale S GEOMETRIE Ch 13 DANS L ESPACE. Soit ( O ; i, j, k ) un repère orthonormé de l espace. I) Droites et plans dans l espace : Propriété 1 : Soient A et B deux points de l espace. AB est l ensemble

Plus en détail

Interprétation d une analyse de variance avec mesures répétées

Interprétation d une analyse de variance avec mesures répétées Approche quantitative Interprétation d une analyse de variance avec mesures répétées «Les faits sont têtus. Il est plus facile de s arranger avec les statistiques.» Mark Twain L objectif de ce document

Plus en détail

Exercices corrigés sur E m, E p, E c et la sécurité routière

Exercices corrigés sur E m, E p, E c et la sécurité routière Exercices corrigés sur E m, E p, E c et la sécurité routière Exercice 1 : Conversion d énergie Sa2 h (altitude) goutte d eau Ec énergie cinétique Ep énergie de position 0 On étudie la chute d une goutte

Plus en détail

Mobile autoporteur et plan incliné

Mobile autoporteur et plan incliné Mobile autoporteur et plan incliné Exercice : Un mobile autoporteur, de masse m = 400 g, est abandonné avec une vitesse initiale de 394 mm/s sur une table inclinée d un angle α = 12 par rapport à l horizontale.

Plus en détail

Etude du système de deux points

Etude du système de deux points Mécanique 8 Etude du système de deux points Même s'il est vrai qu'après l'étude mécanique d'un point matériel il est logique de passer à celle de deux points matériels, l'importance du problème à deux

Plus en détail

Rappels et compléments :

Rappels et compléments : CHAPITRE 6 MECANIQUE DES FLUIDES VISQUEUX Pr. M. ABD-LEFDIL Université Mohammed V- Agdal Département de Physique Année universitaire 05-06 SVI-STU Rappels et compléments : Un fluide est un milieu matériel

Plus en détail

Le modèle du gaz parfait

Le modèle du gaz parfait Table des matières 1 : énergie interne, équation d état 1.1 Hypothèses........................................... 1. Énergie interne d un GPM................................... 1.3 Équation d état du GPM....................................

Plus en détail

Comment les forces agissent sur le mouvement?

Comment les forces agissent sur le mouvement? SP. 5 forces et principe d inertie cours Comment les forces agissent sur le mouvement? 1) notion d action et de force : a) Actions exercées sur un système : Actions de contact : Solide posé sur une table

Plus en détail

Repérage d un point - Vitesse et

Repérage d un point - Vitesse et PSI - écanique I - Repérage d un point - Vitesse et accélération page 1/6 Repérage d un point - Vitesse et accélération Table des matières 1 Espace et temps - Référentiel d observation 1 2 Coordonnées

Plus en détail

4.1 Charges en mouvement - Courant et intensité électriques

4.1 Charges en mouvement - Courant et intensité électriques Chapitre 4 Distributions de courants En électrostatique, les charges restent immobiles. Leur déplacement est à l origine des courants électriques qui sont la source du champ magnétique que nous étudierons

Plus en détail

X X X. Verre. Remarque : Les interactions à distance peuvent être :

X X X. Verre. Remarque : Les interactions à distance peuvent être : Physique : 2 nde Chapitre.7 : Forces et mouvements I. Modèles et interactions 1. Interactions entre deux objets : L énoncé suivant s applique à des objets au repos ou en mouvement. Quand un objet agit

Plus en détail

Théorie et codage de l information

Théorie et codage de l information Théorie et codage de l information Les codes linéaires - Chapitre 6 - Principe Définition d un code linéaire Soient p un nombre premier et s est un entier positif. Il existe un unique corps de taille q

Plus en détail

EXERGIE ET EFFICACITÉ ÉNERGÉTIQUE EXEMPLE DE COGÉNÉRATION

EXERGIE ET EFFICACITÉ ÉNERGÉTIQUE EXEMPLE DE COGÉNÉRATION EXERGIE ET EFFICACITÉ ÉNERGÉTIQUE EXEMPLE DE COGÉNÉRATION DÉFINITIONS L exergie d un système dans des conditions (T, S, U ) données correspond au travail utile maximal que ce système pourrait fournir en

Plus en détail

LA STATIQUE MODELISATION DES ACTIONS MECANIQUES

LA STATIQUE MODELISATION DES ACTIONS MECANIQUES I- Introduction L MECNIQUE C est la science mise à notre disposition afin de déterminer : les efforts, les caractéristiques d un mouvement, les dimensions, les déformations, les conditions de fonctionnement

Plus en détail

2. Déplacement d une charge ponctuelle dans un champ magnétique uniforme stationnaire

2. Déplacement d une charge ponctuelle dans un champ magnétique uniforme stationnaire Chapitre VII Forces électromagnétiques VII.a. Force de Lorentz La force à laquelle est soumis, à un instant t, un point matériel de charge q, situé en M et se déplaçant à une vitesse v(t) par rapport à

Plus en détail

Etude du mouvement de la pierre de curling

Etude du mouvement de la pierre de curling Activité expérimentale Etude du mouvement de la pierre de curling Compétences attendues : Effet d une force sur le mouvement d un corps : modification de la vitesse, modification de la trajectoire. Savoir

Plus en détail

Chapitre II : La force centripète

Chapitre II : La force centripète 33 Chapitre II : La force centripète = une force un peu particulière! 1. Explication 1 Il convient de savoir ce que ces deux termes expriment : force et centripète. Une force est, familièrement, la sensation

Plus en détail

1 Systèmes triphasés symétriques

1 Systèmes triphasés symétriques 1 Systèmes triphasés symétriques 1.1 Introduction Un système triphasé est un ensemble de grandeurs (tensions ou courants) sinusoïdales de même fréquence, déphasées les unes par rapport aux autres. Le système

Plus en détail

Compte rendu de LA37 B, TP numéro 1. Evolution de la température et du degrée d'hydratation

Compte rendu de LA37 B, TP numéro 1. Evolution de la température et du degrée d'hydratation 4 6 8 2 4 8 22 26 3 34 38 42 46 5 54 58 62 66 7 74 78 83 89 96 8 44 Bertin Morgan Compte rendu de LA37 B, TP numéro. Les essais effectués par le laboratoire des ponts et chaussés nous ont fournis la température

Plus en détail

Bases de la programmation orientée objet en Java

Bases de la programmation orientée objet en Java Bases de la programmation orientée objet en Java Jean-Baptiste Vioix (jean-baptiste.vioix@iut-dijon.u-bourgogne.fr) IUT de Dijon-Auxerre - LE2I http://jb.vioix.free.fr 1-33 Avant propos Difficultés...

Plus en détail

ENERGETIQUE. Référence au programme S.T.I Référence au module 4- Energétique et dynamique. Module 14 15 : :Energétique 4-1 Energétique

ENERGETIQUE. Référence au programme S.T.I Référence au module 4- Energétique et dynamique. Module 14 15 : :Energétique 4-1 Energétique ENERGETIQUE ET DYNAMIQUE ENERGETIQUE Mécanique Référence au programme S.T.I Référence au module 4- Energétique et dynamique. Module 14 15 : :Energétique 4-1 Energétique 1- Objectifs de la séquence : Calculer

Plus en détail

Plan du cours : électricité 1

Plan du cours : électricité 1 Semestre : S2 Module Physique II 1 Electricité 1 2 Optique géométrique Plan du cours : électricité 1 Partie A : Electrostatique (discipline de l étude des phénomènes liés aux distributions de charges stationnaires)

Plus en détail

Taux d évolution moyen.

Taux d évolution moyen. Chapitre 1 Indice Taux d'évolution moyen Terminale STMG Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Indice simple en base 100. Passer de l indice au taux d évolution, et réciproquement.

Plus en détail

Introduction. Comment actualiser des montants d argent? Pour en savoir. Pour quitter. Introduction. La mécanique des intérêts

Introduction. Comment actualiser des montants d argent? Pour en savoir. Pour quitter. Introduction. La mécanique des intérêts Comment Est ce que ça pourrait vouloir dire par exemple que je serais capable de planifier l achat d une voiture? Objectifs Connaître l impact des intérêts dans le temps Savoir trouver la valeur actuelle

Plus en détail

Son et Lumière. L optique géométrique

Son et Lumière. L optique géométrique Son et Lumière Leçon N 3 L optique géométrique Introdution Nous allons au cours de cette leçon poser les bases de l optique géométrique en en rappelant les principes fondamentaux pour ensuite nous concentrer

Plus en détail

Hydraulique des terrains

Hydraulique des terrains Hydraulique des terrains Séance 3 : Hypothèses de l écoulement en conduite Guilhem MOLLON GEO3 2012-2013 Plan de la séance A. Cinématique d écoulement -Lignes caractéristiques -Vitesses et débits B. Hypothèse

Plus en détail

LES COLLISIONS FRONTALES ENTRE VÉHICULES

LES COLLISIONS FRONTALES ENTRE VÉHICULES LES COLLISIONS FRONTALES ENTRE VÉHICULES Quel est le rôle de la masse dans un choc frontal entre deux véhicules? Quel est le rôle de la vitesse? Quelle est la force délivrée par chacun des deux véhicules?

Plus en détail

Physique générale I Examen Janvier 2014 Prof. J-Ph. Ansermet. A. L anneau et le ressort (4/10 points) 20 janvier 2014-12h15-15h15

Physique générale I Examen Janvier 2014 Prof. J-Ph. Ansermet. A. L anneau et le ressort (4/10 points) 20 janvier 2014-12h15-15h15 Physique générae I Examen Janvier 014 Prof. J-Ph. Ansermet 0 janvier 014-1h15-15h15 Nom : Prénom : N Sciper : A. L anneau et e ressort (4/10 points) Un objet de masse m, considéré comme un point matérie

Plus en détail

TD d après CCP TSI 2012 CI 4 - TEC

TD d après CCP TSI 2012 CI 4 - TEC Contexte de l étude La nécessité de diminuer le coût de transport des marchandises embarquées sur les bateaux porte-conteneurs impose de limiter au maximum le temps d immobilisation des navires à quai.

Plus en détail

EXAMENS PROPOSES EN STATIQUE ET CINEMATIQUE DES SOLIDES

EXAMENS PROPOSES EN STATIQUE ET CINEMATIQUE DES SOLIDES EXAMENS PROPOSES EN STATIQUE ET CINEMATIQUE DES SOLIDES L1 Page 41 Institut Supérieur des Etudes Technologique de Nabeul Département de Génie Mécanique EXAMEN DE MECANIQUE GENERALE Année universitaire

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Electricité et magnétisme - TD n 10 Induction

Electricité et magnétisme - TD n 10 Induction Electricité et magnétisme - TD n 1 Induction 1. Inductance mutuelle - transformateur On considère un solénoïde de section circulaire, de rayon R 1, de longueur, et constitué de N 1 spires. A l intérieur

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

Module et argument d un nombre complexe. Interprétation géométrique, lignes de niveau associées. Applications

Module et argument d un nombre complexe. Interprétation géométrique, lignes de niveau associées. Applications Module et argument d un nombre complexe. Interprétation géométrique, lignes de niveau associées. Applications Introduction : Cette leçon s inscrit dans la continuité de la précédente. On supposera connu

Plus en détail

CHAPITRE 1 CINÉTIQUE. 1.1 Masse et inertie. 1.1.1 Notions d inertie

CHAPITRE 1 CINÉTIQUE. 1.1 Masse et inertie. 1.1.1 Notions d inertie TABLE DE MATIÈRE 1 Cinétique 1 1.1 Masse et inertie................................ 1 1.1.1 Notions d inertie........................... 1 1.1.2 Masse.................................. 2 1.1.3 Centre d

Plus en détail

Chapitre 5. Le ressort. F ext. F ressort

Chapitre 5. Le ressort. F ext. F ressort Chapitre 5 Le ressort Le ressort est un élément fondamental de plusieurs mécanismes. Il existe plusieurs types de ressorts (à boudin, à lame, spiral etc.) Que l on comprime ou étire un ressort, tel que

Plus en détail

association adilca www.adilca.com LES RÉFÉRENTIELS

association adilca www.adilca.com LES RÉFÉRENTIELS LES RÉFÉRENTIELS La force centrifuge est encore aujourd hui le concept le plus représentatif de l esprit sécurité routière. En 1999, un article publié dans la revue Formation & Sécurité démontrait qu une

Plus en détail

Chapitre 7 : Intégration sur un intervalle quelconque

Chapitre 7 : Intégration sur un intervalle quelconque Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 2013-2014 Chapitre 7 : Intégration sur un intervalle quelconque 1 Fonctions intégrables Définition 1 Soit I R un intervalle et soit f : I R + une fonction

Plus en détail

Oscillations libres des systèmes à deux degrés de liberté

Oscillations libres des systèmes à deux degrés de liberté Chapitre 4 Oscillations libres des systèmes à deux degrés de liberté 4.1 Introduction Les systèmes qui nécessitent deux coordonnées indépendantes pour spécifier leurs positions sont appelés systèmes à

Plus en détail

Bases de la biomécanique. Intervenant 99.9.2099

Bases de la biomécanique. Intervenant 99.9.2099 Bases de la biomécanique Intervenant 99.9.2099 Qu est-ce que la biomécanique 1 Par biomécanique on entend la mécanique du corps humain en faisant du sport. 2 Qu est-ce que la biomécanique 2 Les mouvements

Plus en détail

SEANCE 4 : MECANIQUE THEOREMES FONDAMENTAUX

SEANCE 4 : MECANIQUE THEOREMES FONDAMENTAUX SEANCE 4 : MECANIQUE THEOREMES FONDAMENTAUX 1. EXPERIENCE 1 : APPLICATION DE LA LOI FONDAMENTALE DE LA DYNAMIQUE a) On incline d un angle α la table à digitaliser (deuxième ou troisième cran de la table).

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Orthoptiste / stage i-prépa intensif -

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Orthoptiste / stage i-prépa intensif - POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Section Orthoptiste / stage i-prépa intensif - 1 Suite énoncé des exos du Chapitre 14 : Noyaux-masse-énergie I. Fission nucléaire induite (provoquée)

Plus en détail

Puissance = 7.4 La puissance mécanique

Puissance = 7.4 La puissance mécanique Nous avons vu comment le travail effectué par une force peut faire varier l énergie cinétique d un objet. La puissance mécanique développée par une force est une autre grandeur physique qui est reliée

Plus en détail

1. La notion de force

1. La notion de force 1. La notion de force livre page 6 & 7 a) introduction Tu as déjà sûrement entendu le terme de force, c est en effet un mot utilisé fréquemment dans le langage commun : on parle de la force publique, de

Plus en détail

Primitives Cours maths Terminale S

Primitives Cours maths Terminale S Primitives Cours maths Terminale S Dans ce module est introduite la notion de primitive d une fonction sur un intervalle. On définit cette notion puis on montre qu une fonction admet une infinité de primitives

Plus en détail

- cas d une charge isolée en mouvement et par extension d un ensemble de

- cas d une charge isolée en mouvement et par extension d un ensemble de Notion de courant de particule ; conservation du courant = expression du courant de particules chargées ; charges; j = q k k - cas d une charge isolée en mouvement et par extension d un ensemble de v k

Plus en détail

Comparaison de fonctions Développements limités. Chapitre 10

Comparaison de fonctions Développements limités. Chapitre 10 PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?

Plus en détail

Chapitre 9 : Applications des lois de Newton et Kepler à l'étude du mouvement des planètes et des satellites

Chapitre 9 : Applications des lois de Newton et Kepler à l'étude du mouvement des planètes et des satellites I- Les trois lois de Kepler : Chapitre 9 : Applications des lois de Newton et Kepler à l'étude du mouvement des planètes et des satellites Les lois de Kepler s'applique aussi bien pour une planète en mouvement

Plus en détail

108y= 1 où x et y sont des entiers

108y= 1 où x et y sont des entiers Polynésie Juin 202 Série S Exercice Partie A On considère l équation ( ) relatifs E :x y= où x et y sont des entiers Vérifier que le couple ( ;3 ) est solution de cette équation 2 Déterminer l ensemble

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Sections : L1 Santé - 1 Olivier CAUDRELIER oc.polyprepas@orange.fr Chapitre 1 : Equations aux dimensions 1. Equation aux dimensions a) Dimension

Plus en détail

Hydraulique industrielle Correction TD 3

Hydraulique industrielle Correction TD 3 Hydraulique industrielle Correction TD 3 1 Etude d un limiteur de pression 1.1 Identification des fonctions Les différents élements assurant le fonctionnement du composant sont listés ci dessous : - Orifice

Plus en détail

La fonction exponentielle

La fonction exponentielle La fonction exponentielle Christophe ROSSIGNOL Année scolaire 2015/2016 Table des matières 1 Existence et unicité de la fonction exponentielle 2 1.1 Deux résultats préliminaires.......................................

Plus en détail

Chapitre 6. Fonction réelle d une variable réelle

Chapitre 6. Fonction réelle d une variable réelle Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette

Plus en détail

Corrigé du baccalauréat S Pondichéry 12 avril 2007

Corrigé du baccalauréat S Pondichéry 12 avril 2007 Corrigé du baccalauréat S Pondichéry 1 avril 7 EXERCICE 1 Commun à tous les candidats 4 points 1 a Les vecteurs AB et AC ont pour coordonnées AB ; ; ) et AC 1 ; 4 ; 1) Ils ne sont manifestement pas colinéaires

Plus en détail

FORCE ET ÉNERGIE FORMATION GÉNÉRALE. Version bêta PHY-5043. DEVOIR 1 Chapitres 1 et 2. Nom de l élève : Résultat : Devoir #1 PHY-5043

FORCE ET ÉNERGIE FORMATION GÉNÉRALE. Version bêta PHY-5043. DEVOIR 1 Chapitres 1 et 2. Nom de l élève : Résultat : Devoir #1 PHY-5043 FORCE ET ÉNERGIE FORMATION GÉNÉRALE Version bêta PHY-5043 DEVOIR 1 Chapitres 1 et 2 Nom de l élève : Résultat : Yves Robitaille Commission Scolaire de Sorel-Tracy septembre 2006 Devoir #1 PHY-5043 page

Plus en détail

Physique, chapitre 3 : La gravitation universelle

Physique, chapitre 3 : La gravitation universelle Physique, chapitre 3 : La gravitation universelle 1. Interaction gravitationnelle 1.1 Le système solaire Le système solaire est composé de l ensemble des astres autour du Soleil. Un étoile est une boule

Plus en détail

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere Module d Electricité 2 ème partie : Electrostatique Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere 1 Introduction Principaux constituants de la matière : - protons : charge

Plus en détail

L oscillateur OSCILLATEUR HARMONIQUE. Chapitre 1. I. Introduction, définitions. I.1. Exemple. I.2. Caractérisation du mouvement

L oscillateur OSCILLATEUR HARMONIQUE. Chapitre 1. I. Introduction, définitions. I.1. Exemple. I.2. Caractérisation du mouvement Chapitre 1 OSCILLATEUR HARMONIQUE harmonique étudié dans ce chapitre est un oscillateur mécanique constitué d un ressort et d une masse. Cet exemple simple permettra L oscillateur d introduire le concept

Plus en détail