LE CHAPEAU A PAILLETTES
|
|
|
- Camille Briand
- il y a 9 ans
- Total affichages :
Transcription
1 LE CHAPEAU A PAILLETTES Table des matières Fiche professeur... 2 Fiche élève... 4 Narration de séance et productions d élèves
2 Fiche professeur LE CHAPEAU A PAILLETTES Niveaux et objectifs pédagogiques 6 e : introduction à la notion d aire d un triangle quelconque. 5 e : consolidation et entretien de cette notion. Modalités de gestion possibles Appropriation individuelle, puis travail en groupes. Degré de prise en main de la part du professeur Premier degré. Situation Léa a acheté pour une fête costumée un chapeau triangulaire. Elle voudrait recouvrir entièrement de paillettes la face avant (côté visage), mais hésite sur le nombre de tubes à acheter. Sur un tube de paillettes, on peut lire : «Paillettes pour 45 cm²». Supports et ressources de travail Instruments de géométrie, papier blanc, ciseaux, colle, un schéma du chapeau avec ses dimensions, un modèle de chapeau. Consignes données à l élève Peux-tu aider Léa à savoir combien de tubes de paillettes elle doit acheter? La réponse sera donnée sous forme d un texte présentant la démarche et les arguments, des figures pourront illustrer le raisonnement. Dans le document d aide au suivi de l acquisition des connaissances et des capacités du socle commun Pratiquer une démarche scientifique ou technologique, résoudre des problèmes Réaliser, manipuler, mesurer, calculer, appliquer des consignes Raisonner, argumenter, pratiquer une démarche expérimentale ou technologique, démontrer Présenter la démarche suivie, les résultats obtenus, communiquer à l aide d un langage adapté Capacités susceptibles d être évaluées en situation Calculer. Utiliser un instrument de mesure. Proposer une méthode de calcul. Valider ou invalider une conjecture. Présenter une démarche, un résultat par un texte écrit et une figure. Savoir utiliser des connaissances et des compétences mathématiques Nombres et calculs Capacités susceptibles d être évaluées en situation Mener à bien un calcul à la main, instrumenté (multiplications de nombres décimaux, division décimale). 2
3 Savoir utiliser des connaissances et des compétences mathématiques Grandeurs et mesures Géométrie Capacités susceptibles d être évaluées en situation Calculer l aire d un rectangle. Réaliser des mesures, une figure en vraie grandeur ou à l échelle. Dans les programmes des niveaux visés Niveaux Connaissances Capacités 6 e Aires 5 e Aires Calculer l aire d un triangle rectangle, d un triangle quelconque dont une hauteur est tracée. Calculer l aire d un triangle connaissant un côté et la hauteur associée. Aides ou "coups de pouce" vérification d une bonne compréhension de la situation et de la consigne Quel est le travail à effectuer? De quels éléments dispose-t-on? A quelle question veut-on répondre? aide à la démarche de résolution Faire apparaître un ou plusieurs rectangles «cachés», dont on sait calculer l aire. apport de connaissances et de savoir-faire Calcul de l aire d un rectangle, d un triangle rectangle si les élèves ne s en souviennent pas. L exercice est donné pour introduire et motiver l aire d un triangle quelconque. Approfondissement et prolongement possibles Trouver la formule générale qui permet de calculer l aire d un triangle quelconque. Illustrer par une figure. 3
4 Fiche élève LE CHAPEAU A PAILLETTES Léa a acheté pour une fête costumée un chapeau triangulaire. Elle voudrait recouvrir entièrement de paillettes la face avant (côté visage), mais hésite sur le nombre de tubes à acheter. Sur un tube de paillettes, on peut lire : «Paillettes pour 45 cm²». Peux-tu aider Léa à savoir combien de tubes de paillettes elle doit acheter? La réponse sera donnée sous forme d un texte présentant la démarche et les arguments, des figures pourront illustrer le raisonnement. Chapeau en papier canson à décorer soi-même! 4
5 En classe de sixième Tâche complexe produite par l académie de Clermont-Ferrand Narration de séance et productions d élèves L activité a été donnée avec 4,5 cm 2 et non 45. Certains élèves essaient d étendre la formule du calcul de l aire d un rectangle à celle d un triangle. Ils pensent donc qu il faut, comme pour le rectangle, multiplier toutes les dimensions données, c'est-àdire les longueurs des 3 côtés. L élève, dont le travail est présenté ci-dessous, a réalisé une figure à l échelle ½. En effet, il se trouve devant la difficulté de tracer 25 cm avec sa règle graduée qui ne possède que 20 cm. Ainsi on peut repérer que cet élève a compris la notion d échelle et qu il a su tracer le triangle. De plus, même si la réponse proposée par cet élève à l exercice est fausse, on peut évaluer positivement la multiplication à la main des nombres décimaux. L élève sait multiplier des nombres décimaux («Nombres et calculs»). L élève a tracé un triangle à partir des longueurs des trois côtés («Réaliser», «Géométrie»). Il a réalisé une figure à l échelle ½ («Raisonner», «Organisation et gestion de données»). 5
6 Un autre élève essaie d approcher l aire du triangle par une multitude de rectangles. Il essaie de calculer l aire de chaque rectangle en mesurant ses côtés avec sa règle. Il inscrit la réponse dans chacun d eux et veut ensuite additionner toutes les aires. Les valeurs sont fausses car il ne sait pas multiplier les nombres décimaux. L élève a une démarche originale. On peut donc évaluer positivement «Proposer une démarche de résolution». L élève a su représenter la figure. On peut donc évaluer positivement «Représenter des figures géométriques». L élève ne s aperçoit pas que les résultats sont incohérents! On ne peut pas évaluer positivement «Evaluer mentalement un ordre de grandeur». 6
7 Pour un autre groupe d élèves, on peut relever les points suivants : Les élèves ont eux-mêmes créé des sous-questions, des étapes. Le texte est clair et précis. On peut évaluer positivement «Raisonner, argumenter, démontrer», «Présenter la démarche suivie, les résultats obtenus, communiquer à l aide d un langage adapté». Les calculs sont justes. On peut évaluer positivement «Mener à bien un calcul à la main». 7
Tâche complexe produite par l académie de Clermont-Ferrand. Mai 2012 LE TIR A L ARC. (d après une idée du collège des Portes du Midi de Maurs)
(d après une idée du collège des Portes du Midi de Maurs) Table des matières Fiche professeur... 2 Fiche élève... 5 1 Fiche professeur Niveaux et objectifs pédagogiques 5 e : introduction ou utilisation
LA BATTERIE DU PORTABLE
LA BATTERIE DU PORTABLE Table des matières Fiche professeur... 2 Fiche élève... 4 Narration de séance et productions d élèves... 5 1 Fiche professeur LA BATTERIE DU PORTABLE Niveaux et objectifs pédagogiques
SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique
SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique DOMAINE P3.C3.D1. Pratiquer une démarche scientifique et technologique, résoudre des
6 ème FONCTIONS. Pratiquer une démarche scientifique et technologique. Capacités
6 ème FONCTIONS Les exercices de ce chapitre permettent de travailler des compétences scientifiques du socle commun. Pratiquer une démarche scientifique et technologique Capacités Rechercher, extraire
EXERCICES DE REVISIONS MATHEMATIQUES CM2
EXERCICES DE REVISIONS MATHEMATIQUES CM2 NOMBRES ET CALCUL Exercices FRACTIONS Nommer les fractions simples et décimales en utilisant le vocabulaire : 3 R1 demi, tiers, quart, dixième, centième. Utiliser
NOM : Prénom : Date de naissance : Ecole : CM2 Palier 2
NOM : Prénom : Date de naissance : Ecole : CM2 Palier 2 Résultats aux évaluations nationales CM2 Annexe 1 Résultats de l élève Compétence validée Lire / Ecrire / Vocabulaire / Grammaire / Orthographe /
Priorités de calcul :
EXERCICES DE REVISION POUR LE PASSAGE EN QUATRIEME : Priorités de calcul : Exercice 1 : Calcule en détaillant : A = 4 + 5 6 + 7 B = 6 3 + 5 C = 35 5 3 D = 6 7 + 8 E = 38 6 3 + 7 Exercice : Calcule en détaillant
Document d aide au suivi scolaire
Document d aide au suivi scolaire Ecoles Famille Le lien Enfant D une école à l autre «Enfants du voyage et de familles non sédentaires» Nom :... Prénom(s) :... Date de naissance :... Ce document garde
Indications pour une progression au CM1 et au CM2
Indications pour une progression au CM1 et au CM2 Objectif 1 Construire et utiliser de nouveaux nombres, plus précis que les entiers naturels pour mesurer les grandeurs continues. Introduction : Découvrir
EVALUATIONS MI-PARCOURS CM2
Les enseignants de CM2 de la circonscription de METZ-SUD proposent EVALUATIONS MI-PARCOURS CM2 Mathématiques Livret enseignant NOMBRES ET CALCUL Circonscription de METZ-SUD Page 1 Séquence 1 : Exercice
Attestation de maîtrise des connaissances et compétences au cours moyen deuxième année
Attestation de maîtrise des connaissances et compétences au cours moyen deuxième année PALIER 2 CM2 La maîtrise de la langue française DIRE S'exprimer à l'oral comme à l'écrit dans un vocabulaire approprié
PROBLEME(12) Première partie : Peinture des murs et du plafond.
PROBLEME(12) Une entreprise doit rénover un local. Ce local a la forme d'un parallélépipède rectangle. La longueur est 6,40m, la largeur est 5,20m et la hauteur est 2,80m. Il comporte une porte de 2m de
S entraîner au calcul mental
E F C I - R E H S E S O S A PHOTOCOPIER S R U C Une collection dirigée par Jean-Luc Caron S entraîner au calcul mental CM Jean-François Quilfen Illustrations : Julie Olivier Sommaire Introduction au calcul
INFO 2 : Traitement des images
INFO 2 : Traitement des images Objectifs : Comprendre la différence entre image vectorielle et bipmap. Comprendre les caractéristiques d'une image : résolution, définition, nombre de couleurs, poids Etre
Bombyx, rallye mathématique de Ganges et de l académie de Montpellier.
Bombyx-Texte_Mise en page 1 21/04/15 06:32 Page184 184 Dossier : Rallyes et compétitions entre équipes Bombyx le rallye mathématique de Ganges et de l académie de Montpellier Jean Versac 1. Présentation
Janvier 2011 CHIMIE. Camille de BATTISTI. Acquérir la démarche expérimentale en chimie. ACADEMIE DE MONTPELLIER
CHIMIE Camille de BATTISTI Janvier 2011 Acquérir la démarche expérimentale en chimie. ACADEMIE DE MONTPELLIER TABLE DES MATIERES Pages 1. LES OBJECTIFS VISÉS ET LE SOCLE COMMUN 2 1.1. Objectifs disciplinaires
b) Fiche élève - Qu est-ce qu une narration de recherche 2?
Une tâche complexe peut-être traitée : Gestion d une tâche complexe A la maison : notamment les problèmes ouverts dont les connaissances ne sont pas forcément liées au programme du niveau de classe concerné
Organiser des séquences pédagogiques différenciées. Exemples produits en stage Besançon, Juillet 2002.
Cycle 3 3 ème année PRODUCTION D'ECRIT Compétence : Ecrire un compte rendu Faire le compte rendu d'une visite (par exemple pour l'intégrer au journal de l'école ) - Production individuelle Précédée d'un
a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b
I Définition d une fonction affine Faire l activité 1 «une nouvelle fonction» 1. définition générale a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe
Groupe de travail Tâches Complexes
Inspection pédagogique régionale de Mathématiques I.R.E.M. section Guyane Groupe de travail Tâches Complexes Document réalisé par Michel VOISIN, conseiller pédagogique de Mathématiques et professeur au
LES REPRESENTATIONS DES NOMBRES
LES CARTES A POINTS POUR VOIR LES NOMBRES INTRODUCTION On ne concevrait pas en maternelle une manipulation des nombres sans représentation spatiale. L enfant manipule des collections qu il va comparer,
Synthèse «Le Plus Grand Produit»
Introduction et Objectifs Synthèse «Le Plus Grand Produit» Le document suivant est extrait d un ensemble de ressources plus vastes construites par un groupe de recherche INRP-IREM-IUFM-LEPS. La problématique
Programme de calcul et résolution d équation
Programme de calcul et résolution d équation On appelle «programme de calcul» tout procédé mathématique qui permet de passer d un nombre à un autre suivant une suite d opérations déterminée. Un programme
LIVRET PERSONNEL DE COMPÉTENCES
Nom... Prénom... Date de naissance... Note aux parents Le livret personnel de compétences vous permet de suivre la progression des apprentissages de votre enfant à l école et au collège. C est un outil
Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007
Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007 page 1 / 10 abscisse addition additionner ajouter appliquer
Compétence 2 : Comparer, ranger, encadrer des nombres, les placer sur une droite graduée
1/5 Compétence 2 : Comparer, ranger, encadrer des nombres, les placer sur une droite graduée Étape 1 : associer la droite graduée à deux objets du quotidien : la règle graduée ici, celle de l'enseignant
BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES. EXEMPLE DE SUJET n 2
Exemple de sujet n 2 Page 1/7 BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES EXEMPLE DE SUJET n 2 Ce document comprend : Pour l examinateur : - une fiche descriptive du sujet page 2/7 - une fiche
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère
Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme
Fonctions linéaires et affines 3eme 1 Fonctions linéaires 1.1 Vocabulaire Définition 1 Soit a un nombre quelconque «fixe». Une fonction linéaire associe à un nombre x quelconque le nombre a x. a s appelle
Logiciel SCRATCH FICHE 02
1. Reprise de la fiche 1: 1.1. Programme Figure : Logiciel SCRATCH FICHE 02 SANS ORDINATEUR : Dessiner à droite le dessin que donnera l'exécution de ce programme : Unité : 50 pas : Remarque : vous devez
Culture scientifique et technologique
Socle commun de connaissances et de compétences Collège Culture scientifique et technologique - Banque de situations d apprentissage et d évaluation - Ce document peut être utilisé librement dans le cadre
Ch.G3 : Distances et tangentes
4 e - programme 2011 mathématiques ch.g3 cahier élève Page 1 sur 14 1 DISTC D U PIT À U DRIT Ch.G3 : Distances et tangentes 1.1 Définition ex 1 DÉFIITI 1 : Soit une droite et un point n'appartenant pas
Didactique des arts visuels :
Didactique des arts visuels : Principes et grandes lignes Du coté des instructions officielles Les objectifs de l'éducation artistique et culturelle à l'école L éducation artistique et culturelle a pleinement
Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point
03 Mai 2013 Collège Oasis Durée de L épreuve : 2 heures. apple Le sujet comporte 4 pages et est présenté en livret ; apple La calculatrice est autorisée ; apple 4 points sont attribués à la qualité de
C f tracée ci- contre est la représentation graphique d une
TLES1 DEVOIR A LA MAISON N 7 La courbe C f tracée ci- contre est la représentation graphique d une fonction f définie et dérivable sur R. On note f ' la fonction dérivée de f. La tangente T à la courbe
Lecture graphique. Table des matières
Lecture graphique Table des matières 1 Lecture d une courbe 2 1.1 Définition d une fonction.......................... 2 1.2 Exemple d une courbe........................... 2 1.3 Coût, recette et bénéfice...........................
Tombez en amour avec Charlie Brown et les
Tombez en amour avec Charlie Brown et les! Chère enseignante/cher enseignant, Vous connaissez et aimez fort probablement déjà les personnages intemporels de la bande de Peanuts. La bande dessinée la plus
Plan académique de formation. Le socle commun : formation, évaluation, validation
ACADÉMIE DE BORDEAUX Plan académique de formation Le socle commun : formation, évaluation, validation Nous devons valider les sept compétences du palier 3 du Livret personnel de compétences (LPC). Nous
Statistique : Résumé de cours et méthodes
Statistique : Résumé de cours et méthodes 1 Vocabulaire : Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère
Carré parfait et son côté
LE NOMBRE Carré parfait et son côté Résultat d apprentissage Description 8 e année, Le nombre, n 1 Démontrer une compréhension des carrés parfaits et des racines carrées (se limitant aux nombres entiers
Principes de mathématiques 12 SÉRIE DE PROBLÈMES. Septembre 2001. Student Assessment and Program Evaluation Branch
Principes de mathématiques 12 SÉRIE DE PROBLÈMES Septembre 2001 Student Assessment and Program Evaluation Branch REMERCIEMENTS Le Ministère de l Éducation tient à remercier chaleureusement les professionnels
Comparer des surfaces suivant leur aire en utilisant leurs propriétés géométriques Découverte et manipulation
Socle commun - palier 2 : Compétence 3 : les principaux éléments de mathématiques Grandeurs et mesures Compétences : Comparer des surfaces selon leurs aires (par pavage) Mesurer l aire d une surface par
Document ressource pour le socle commun dans l enseignement des mathématiques au collège
Document ressource pour le socle commun dans l enseignement des mathématiques au collège SOMMAIRE : I. Le programme de mathématiques et le socle... 3 1. Introduction... 3 1. La formation des élèves en
Apprendre à résoudre des problèmes numériques. Utiliser le nombre pour résoudre des problèmes
Apprendre à résoudre des problèmes numériques Utiliser le nombre pour résoudre des problèmes Ce guide se propose de faire le point sur les différentes pistes pédagogiques, qui visent à construire le nombre,
Deux disques dans un carré
Deux disques dans un carré Table des matières 1 Fiche résumé 2 2 Fiche élève Seconde - version 1 3 2.1 Le problème............................................... 3 2.2 Construction de la figure avec geogebra...............................
Problèmes de dénombrement.
Problèmes de dénombrement. 1. On se déplace dans le tableau suivant, pour aller de la case D (départ) à la case (arrivée). Les déplacements utilisés sont exclusivement les suivants : ller d une case vers
TSTI 2D CH X : Exemples de lois à densité 1
TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun
LA MAIN A LA PATE L électricité Cycle 3 L électricité.
LA MAIN A LA PATE L électricité Cycle 3 v L électricité. L électricité cycle 3 - doc Ecole des Mines de Nantes 1 LA MAIN A LA PATE L électricité Cycle 3 v L'électricité. PROGRESSION GENERALE Séance n 1
Proposition de programmes de calculs en mise en train
Proposition de programmes de calculs en mise en train Programme 1 : Je choisis un nombre, je lui ajoute 1, je calcule le carré du résultat, je retranche le carré du nombre de départ. Essai-conjecture-preuve.
La construction du nombre en petite section
La construction du nombre en petite section Éléments d analyse d Pistes pédagogiquesp 1 La résolution de problèmes, premier domaine de difficultés des élèves. Le calcul mental, deuxième domaine des difficultés
La tâche complexe, un enjeu de l'enseignement des mathématiques
La tâche complexe, un enjeu de l'enseignement des mathématiques Frédéric Barôme page 1 La tâche complexe, un enjeu de l'enseignement des mathématiques Enseigner en accord avec l'activité scientifique Pratiquer
AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =
LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste
Les TICE en cours de Mathématiques au collège. Quelques pistes de travail pour les classes de 6 ème, 5 ème et 4 ème
Les TICE en cours de Mathématiques au collège Quelques pistes de travail pour les classes de 6 ème, 5 ème et 4 ème Généralités page 2 Différents outils page 4 Classe de 6 ème page 5 Classe de 5 ème page
O b s e r v a t o i r e E V A P M. Taxonomie R. Gras - développée
O b s e r v a t o i r e E V A P M É q u i p e d e R e c h e r c h e a s s o c i é e à l ' I N R P Taxonomie R. Gras - développée Grille d'analyse des objectifs du domaine mathématique et de leurs relations
5.3. Bande numérique cartes numération et cartes à points pour apprendre les nombres de 0 à 99
5.3. Bande numérique cartes numération et cartes à points pour apprendre les nombres de 0 à 99 Niveau CP pistes pour le CE1 Modèle proposé : modèles de séance Hypothèse de la difficulté : pour les élèves
Exercice numéro 1 - L'escalier
Exercice numéro 1 - L'escalier On peut monter un escalier une ou deux marches à la fois. La figure de droite montre un exemple. 1. De combien de façons différentes peut-on monter un escalier de une marche?
PRENOM NOM DE L ENTREPRISE DATE DU STAGE METIER
NOM DATE DU STAGE METIER PRENOM NOM DE L ENTREPRISE L ENTREPRISE L ENTREPRISE Dates du stage :... Nom de l entreprise :.. Adresse de l entreprise :...... Que fait-on dans cette entreprise?. Combien de
Puissances d un nombre relatif
Puissances d un nombre relatif Activités 1. Puissances d un entier relatif 1. Diffusion d information (Activité avec un tableur) Stéphane vient d apprendre à 10h, la sortie d une nouvelle console de jeu.
OLYMPIADES ACADEMIQUES DE MATHEMATIQUES. 15 mars 2006 CLASSE DE PREMIERE ES, GMF
OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 15 mars 2006 CLASSE DE PREMIERE ES, GMF Durée : 4 heures Les quatre exercices sont indépendants Les calculatrices sont autorisées L énoncé comporte trois pages Exercice
Diviser un nombre décimal par 10 ; 100 ; 1 000
Diviser un nombre décimal par 10 ; 100 ; 1 000 Diviser un nombre décimal par 10 ; 100 ; 1 000. 23 1 et 2 Pauline collectionne les cartes «Tokéron» depuis plusieurs mois. Elle en possède 364 et veut les
AP 2nde G.T : «Organiser l information de manière visuelle et créative»
AP 2nde G.T : «Organiser l information de manière visuelle et créative» Les TICE, un mode d accès à mon autonomie bien sûr! «L'autonomie n'est pas un don! Elle ne survient pas par une sorte de miracle!
TOUT CE QU IL FAUT SAVOIR POUR LE BREVET
TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par
MAT2027 Activités sur Geogebra
MAT2027 Activités sur Geogebra NOTE: Il n est pas interdit d utiliser du papier et un crayon!! En particulier, quand vous demandez des informations sur les différentes mesures dans une construction, il
Fiche professeur. Rôle de la polarité du solvant : Dissolution de tâches sur un tissu
Fiche professeur TEME du programme : Comprendre ous-thème : Cohésion et transformations de la matière Rôle de la polarité du solvant : Dissolution de tâches sur un tissu Type d activité : Activité expérimentale
S3CP. Socle commun de connaissances et de compétences professionnelles
S3CP Socle commun de connaissances et de compétences professionnelles Référentiel Le présent socle décrit un ensemble de connaissances et compétences devant être apprécié dans un contexte professionnel.
BACCALAUREAT GENERAL MATHÉMATIQUES
BACCALAUREAT GENERAL FEVRIER 2014 MATHÉMATIQUES SERIE : ES Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) 7(spe ES) Les calculatrices électroniques de poche sont autorisées, conformement à la
Classe : 1 ère STL Enseignement : Mesure et Instrumentation. d une mesure. Titre : mesure de concentration par spectrophotométrie
Classe : 1 ère STL Enseignement : Mesure et Instrumentation THEME du programme : mesures et incertitudes de mesures Sous-thème : métrologie, incertitudes Extrait du BOEN NOTIONS ET CONTENUS Mesures et
REPRESENTER LA TERRE Cartographie et navigation
REPRESENTER LA TERRE Seconde Page 1 TRAVAUX DIRIGES REPRESENTER LA TERRE Cartographie et navigation Casterman TINTIN "Le trésor de Rackham Le Rouge" 1 TRIGONOMETRIE : Calcul du chemin le plus court. 1)
SOCLE COMMUN: LA CULTURE SCIENTIFIQUE ET TECHNOLOGIQUE. alain salvadori IA IPR Sciences de la vie et de la Terre 2009-2010 ALAIN SALVADORI IA-IPR SVT
SOCLE COMMUN: LA CULTURE SCIENTIFIQUE ET TECHNOLOGIQUE alain salvadori IA IPR Sciences de la vie et de la Terre 2009-2010 ALAIN SALVADORI IA-IPR SVT SOCLE COMMUN ET PROGRAMMES La référence pour la rédaction
Le menu du jour, un outil au service de la mise en mémoire
Le menu du jour, un outil au service de la mise en mémoire Type d outil : Outil pour favoriser la mise en mémoire et développer des démarches propres à la gestion mentale. Auteur(s) : Sarah Vercruysse,
Les nombres entiers. Durée suggérée: 3 semaines
Les nombres entiers Durée suggérée: 3 semaines Aperçu du module Orientation et contexte Pourquoi est-ce important? Dans le présent module, les élèves multiplieront et diviseront des nombres entiers concrètement,
CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!»
Corrigé Cours de Mr JULES v3.3 Classe de Quatrième Contrat 1 Page 1 sur 13 CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!» «Correction en rouge et italique.» I. Les nombres décimaux relatifs.
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre
Technique opératoire de la division (1)
Unité 17 Technique opératoire de la division (1) Effectuer un calcul posé : division euclidienne de deux entiers. 1 Trois camarades jouent aux cartes. Manu fait la distribution en donnant à chaque joueur
Livret de l évaluateur : Calcul niveau 2
Livret de l évaluateur : Calcul niveau 2 Ce livret de l évaluateur se divise en deux sections. La première section comprend : des instructions à l intention de l évaluateur sur la façon d administrer le
Eléments de Choix d Utilisation de l Informatique dans l Enseignement des Mathématiques en Classe de Cinquième
GUYOT Stéphanie Professeur stagiaire en mathématiques au collège Lo Trentanel de GIGNAC I.U.F.M. de l académie de Montpellier Site de Montpellier Eléments de Choix d Utilisation de l Informatique dans
Rencontre des personnes-ressources en déficience motrice et organique RÉCIT MST - RÉCIT Adaptation scolaire Pierre Couillard
Rencontre des personnes-ressources en déficience motrice et organique RÉCIT MST - RÉCIT Adaptation scolaire Pierre Couillard Pylote (http://pascal.peter.free.fr/?17/pylote) Logiciels d aide en mathématique
RÉSOLUTION DE SYSTÈMES À DEUX INCONNUES
RÉSOLUTION DE SYSTÈMES À DEUX INCONNUES Sommaire 1 Méthodes de résolution... 3 1.1. Méthode de Substitution... 3 1.2. Méthode des combinaisons linéaires... 6 La rubrique d'aide qui suit s'attardera aux
Prêt(e) pour le CE1. Tu es maintenant au CE1. Avant de commencer les leçons, nous allons réviser avec toi!
Jour Prêt(e) pour le CE Tu es maintenant au CE. vant de commencer les leçons, nous allons réviser avec toi! Géométrie Retrouver un itinéraire en tenant compte des informations. Lis les explications de
Comparer l intérêt simple et l intérêt composé
Comparer l intérêt simple et l intérêt composé Niveau 11 Dans la présente leçon, les élèves compareront divers instruments d épargne et de placement en calculant l intérêt simple et l intérêt composé.
Programme de la formation. Écrit : 72hdepréparation aux épreuves d admissibilité au CRPE
Programme de la formation Écrit : 72hdepréparation aux épreuves d admissibilité au CRPE o 36 h pour la préparation à l'épreuve écrite de français Cette préparation comprend : - un travail sur la discipline
Demande d admission au Centre pédagogique Lucien-Guilbault Secteur primaire
Date d envoi : Demande d admission au Centre pédagogique Lucien-Guilbault Secteur primaire QUESTIONNAIRE AU TITULAIRE Ce document doit être complété par le titulaire de classe et/ou par l orthopédagogue
PARTIE NUMERIQUE (18 points)
4 ème DEVOIR COMMUN N 1 DE MATHÉMATIQUES 14/12/09 L'échange de matériel entre élèves et l'usage de la calculatrice sont interdits. Il sera tenu compte du soin et de la présentation ( 4 points ). Le barème
Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire
CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image
PG208, Projet n 3 : Serveur HTTP évolué
PG208, Projet n 3 : Serveur HTTP évolué Bertrand LE GAL, Serge BOUTER et Clément VUCHENER Filière électronique 2 eme année - Année universitaire 2011-2012 1 Introduction 1.1 Objectif du projet L objectif
Cours Fonctions de deux variables
Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté
PRÉPARER LA PREMIÈRE ÉPREUVE ORALE D ADMISSION OPTION EPS. DEVOIRS SUPPLÉMENTAIRES 1 et 2
CONCOURS DE RECRUTEMENT DE PROFESSEURS DES ÉCOLES PRÉPARER LA PREMIÈRE ÉPREUVE ORALE D ADMISSION OPTION EPS DEVOIRS SUPPLÉMENTAIRES 1 et 2 Rédaction Jean-Pierre GUICHARD Conseiller pédagogique en EPS Ministère
OLYMPIADES ACADÉMIQUES DE MATHÉMATIQUES
OLYMPIADES ACADÉMIQUES DE MATHÉMATIQUES ACADÉMIE DE RENNES SESSION 2006 CLASSE DE PREMIERE DURÉE : 4 heures Ce sujet s adresse à tous les élèves de première quelle que soit leur série. Il comporte cinq
Usages pédagogiques des tablettes
Usages pédagogiques des tablettes 1. Qu est-ce qu une tablette? Bien que définie comme un «ordinateur portable et ultraplat, qui se présente comme un écran tactile et qui permet notamment d accéder à des
Équipe Académique Mathématiques - 2009
25 ans après l apparition des premiers PC dans les foyers, 10 ans après la disparition de l option informatique, l algorithmique prend une l prend une place non négligeable dans le programme de seconde.
Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.
ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle
Le jour et la nuit. Lecture : Le jour et la nuit, comment ça marche?, Collection les questions de Justine, BELIN
CE1 Le jour et la nuit Découverte du monde 3 séances Outils pour le PE : Le temps Cycle 2, Les dossiers Hachette de 2011. Education civique et découverte du monde, Cycle 2 Collection Magellan de 2008 La
Annexe 4 CONVENTION RELATIVE À L ORGANISATION DE STAGE D'APPLICATION EN MILIEU PROFESSIONNEL
2007 Annexe 4 CONVENTION RELATIVE À L ORGANISATION DE STAGE D'APPLICATION EN MILIEU PROFESSIONNEL Vu le code du travail, et notamment son article L.211-1; Vu le code de l éducation, et notamment ses articles
LES CARTES À POINTS : POUR UNE MEILLEURE PERCEPTION
LES CARTES À POINTS : POUR UNE MEILLEURE PERCEPTION DES NOMBRES par Jean-Luc BREGEON professeur formateur à l IUFM d Auvergne LE PROBLÈME DE LA REPRÉSENTATION DES NOMBRES On ne conçoit pas un premier enseignement
1. Présentation du TP
LP CHATEAU BLANC 45 CHALETTE/LOING BAC PRO SEN TR THÈME : INSTALLATION ET UTILISATION DE VMWARE ESX SERVER TP ACADÉMIE D ORLÉANS-TOURS NOM : CI 4 : PREPARATION DU POSTE DE TRAVAIL OBJECTIFS : METTRE EN
Compétences en fin de maternelle Comparer des quantités.
Le socle commun : Palier 1 - Compétence 3 «Les principaux éléments de mathématiques» Ecrire, nommer, comparer, ranger les nombres entiers naturels inférieurs à 1000. Les programmes : Compétences en fin
Le théorème de Thalès et sa réciproque
Le théorème de Thalès et sa réciproque I) Agrandissement et Réduction d une figure 1) Définition : Lorsque toutes les longueurs d une figure F sont multipliées par un même nombre k on obtient une autre
Angles orientés et trigonométrie
Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.
