Chapitre 5 Algèbre booléenne
|
|
|
- Louise Chaput
- il y a 9 ans
- Total affichages :
Transcription
1 L'informatique au lycée Chapitre 5 Chapitre 5 Algèbre booléenne George Boole ( ) 5.1. L'algèbre de Boole L'algèbre de Boole, ou calcul booléen, est la partie des mathématiques qui s'intéresse aux opérations et aux fonctions sur les variables logiques. Elle fut inventée par le mathématicien britannique George Boole. Aujourd'hui, l'algèbre de Boole trouve de nombreuses applications en informatique et dans la conception des circuits électroniques. On appelle B l'ensemble constitué de deux éléments appelés valeurs de vérité {FAUX, VRAI}. Cet ensemble est aussi noté B = {0, 1}, notation que l'on utilisera désormais. Sur cet ensemble on peut définir les lois ET et OU et une transformation appelée «complémentaire» (parfois «inversion» ou «contraire»). ET Elle est définie de la manière suivante : a ET b est VRAI si et seulement si a est VRAI et b est VRAI. Cette loi est aussi notée : a b a/\b (dans quelques notations algébriques, ou en APL) a&b ou a&&b (Perl, C, PHP,...) a AND b (Ada, Pascal, Python,...) OU Elle est définie de la manière suivante : a OU b est VRAI si et seulement si a est VRAI ou b est VRAI, ou si a et b sont vrais. Cette loi est aussi notée : NON a+b a\/b (dans quelques notations algébriques ou en APL) a b ou a b (Perl, C, PHP,...) a OR b (Ada, Pascal, Python,...) Le contraire de «a» est VRAI si et seulement si a est FAUX. Le contraire de a est noté : a a ~a (dans quelques notations algébriques ou en APL)!a (C, C++...) NOT a (ASM, Pascal,...) Didier Müller 5-1 octobre 2013
2 Algèbre booléenne 5.2. Fonctions logiques et tables de vérité Une table de vérité est un tableau qui représente des entrées (en colonne) et des états binaires (0 et 1). Le résultat, exprimé lui aussi sous forme binaire, se lit dans la dernière colonne. ET (AND) Symbole de la porte logique (voir 5.4) Opération booléenne A B Table de vérité A B A AND B OU (OR) A + B A B A OR B En électronique, une porte NON est plus communément appelée inverseur. Le cercle utilisé sur la représentation est appelé «bulle», et montre qu'une entrée ou une sortie est inversée. NON (NOT) NON-ET (NAND) A A B Entrée Sortie A NOT A A B A NAND B NON-OU (NOR) A B A B A NOR B OU exclusif (XOR) A B = A B A B A B A XOR B Didier Müller 5-2 octobre 2013
3 L'informatique au lycée Chapitre 5 Toutes ces propriétés peuvent être facilement démontrées à l'aide de tables de vérité. Quelques propriétés utiles Associativité Comme avec les opérations habituelles, certaines parenthèses sont inutiles : (a + b) + c = a + (b + c) = a + b + c (a b) c = a (b c) = a b c Commutativité L'ordre est sans importance : a + b = b + a a b = b a Distributivité Comme avec les opérations mathématiques habituelles, il est possible de distribuer : a (b + c) = a b + a c Attention : comportement différent par rapport aux opérateurs + et habituels : a + (b c) = (a + b) (a + c) Idempotence Élément neutre Élément nul Complémentarité a + a + a + [...] + a = a a a a [...] a = a a + 0 = a a 1 = a 0 a = a = 1 a = ( a) a + a = 1 a a = 0 Lois de De Morgan a b=a b a b=a b Augustus de Morgan ( ) Priorité Pour faciliter leur compréhension, il a été décidé que ces opérations seraient soumises aux mêmes règles que les opérations mathématiques. La fonction ET (multiplication logique) est ainsi prioritaire par rapport à la fonction OU (somme logique) ; on peut, pour s'aider, placer des parenthèses dans les opérations. Didier Müller 5-3 octobre 2013
4 Algèbre booléenne 5.3. Tables de Karnaugh Une table de Karnaugh est une méthode inventée par Maurice Karnaugh en 1954 et qui sert à simplifier des équations logiques ou à trouver l'équation logique correspondant à une table de vérité. La méthode utilisée est graphique. Elle fonctionne très bien avec 3 ou 4 variables, beaucoup moins bien avec 5 ou 6 variables, et plus du tout au-delà! Maurice Karnaugh (1924-) Principe Soit la table de vérité de S suivante avec les variables A, B, C et D : A B C D S La table de Karnaugh correspondante se présente ainsi : Par exemple, la case sur la ligne 10 et sur la colonne 01 correspond à la valeur de S pour laquelle A=1, B=0, C=0 et D= Méthode de recherche de l'équation de la table de vérité Pour trouver une équation logique, il faut regrouper les valeurs de S égales à 1 dans des rectangles ayant comme nombre de cases une puissance de 2 (16, 8, 4, 2 ou 1 cases). Didier Müller 5-4 octobre 2013
5 L'informatique au lycée Chapitre 5 Les groupes formés doivent être les moins nombreux possibles, mais ils doivent englober tous les 1. On peut faire des chevauchements. On a intérêt à dessiner des rectangles les plus grands possibles. On peut considérer cette table comme un tore : la dernière ligne est adjacente à la première et la première colonne est adjacente à la dernière. On peut ainsi regrouper des 1 se trouvant à ces emplacements. Pour les tables à 4 variables, il faut de préférence procéder dans l'ordre suivant : 1. les rectangles 8 cases, puis 2. les rectangles 4 cases, puis 3. les rectangles 2 cases, et enfin 4. les cases uniques. Dans l'exemple ci-contre : on peut former un rectangle de 8 cases (en bleu), puis un carré de 4 (en vert) et enfin on peut rassembler les deux 1 restants dans un groupe de 4 (en rouge). Mise en équation Le rectangle bleu correspond à l'équation «C», car dans ces deux colonnes C est toujours égal à 1. A, B et D prennent les valeurs 0 ou 1. Le carré vert correspond à l'équation «B et D», car dans ces cases B=1 et C=1, tandis que A et D valent soit 0, soit 1. L'équation du rectangle rouge est «B et D», car dans ces quatre cases, B=0 et D=0, alors que A et C valent soit 0, soit 1. On fait ensuite la somme des trois équations : «S = C ou (B et D) ou B et D», que l'on peut aussi écrire sous forme de l'équation «S = C + B D + B D». Exercice 5.1 Trouvez les équations des tables de vérité de S, T et U avec les variables A, B, C et D : A B C D S T U Vérifiez ensuite vos formules à l'aide d'un programme Python. Didier Müller 5-5 octobre 2013
6 Algèbre booléenne 5.4. Circuits logiques On appelle circuit logique (ou circuit combinatoire) un assemblage de portes logiques reliées entre elles pour schématiser une expression algébrique. Par exemple, l'expression algébrique S= A B A C sera schématisée comme suit : Les circuits logiques ont été dessinés grâce au programme Logicly. La porte NAND La porte NAND est la plus simple à réaliser du point de vue technologique. Il est possible de réaliser toutes les fonctions logiques en utilisant uniquement ce type de porte. Porte NON Porte ET Porte OU Porte OU exclusif Exercice 5.2 Reprenez les équations trouvées à l'exercice 5.1, simplifiez-les grâce aux propriétés des fonctions logiques, puis construisez les circuits logiques correspondants. Exercice 5.3 Réalisez une porte XOR avec des portes AND, OR et NOT. Exercice 5.4 On a trois interrupteurs pouvant être en position 0 ou 1 et trois ampoules pouvant être allumées ou éteintes. On veut créer un circuit logique où le nombre de lampes allumées correspond au nombre d'interrupteurs positionnés sur 1, mais on ne veut pas savoir quels interrupteurs le sont. 1. Établissez les tables de vérité de ce problème. 2. Trouvez l'équation la plus simple possible pour chaque table de vérité. 3. Dessinez le circuit logique correspondant. Didier Müller 5-6 octobre 2013
7 L'informatique au lycée Chapitre 5 Exercice 5.5 Soit le circuit ci-dessous : 1. Écrivez l'équation de ce circuit. 2. Établissez la table de vérité de ce circuit. Exercice 5.6 A quoi sert ce circuit? Indication : les quatre interrupteurs représentent un nombre en base 2. Exercice 5.7 Les afficheurs 7 segments sont un type d'afficheur numérique très présent sur les calculatrices et les montres à affichage numérique : les caractères (des chiffres, bien que quelques lettres soient utilisées pour l'affichage hexadécimal) s'écrivent en allumant ou en éteignant des segments, au nombre de sept. Quand les 7 segments sont allumés, on obtient le chiffre 8. Voici les 16 symboles représentés avec l'affichage à 7 segments : Didier Müller 5-7 octobre 2013
8 Algèbre booléenne Dans un afficheur 7 segments, les segments sont généralement désignés par les lettres allant de A à G (voir ci-dessous). On dispose de 4 interrupteurs qui représenteront les 4 bits d'un nombre exprimé en base 2 et compris entre 0 et 15. On veut que ce nombre en base 2 s'affiche en base 16. Les sept segments seront symbolisés par des ampoules. 1. Établissez les tables de vérité de ce problème. 2. Trouvez les équations les plus simples possible des tables de vérité. 3. Dessinez le circuit logique correspondant. Sources [1] Mange Daniel, Analyse et Synthèse des systèmes logiques, PPUR, 1995 [2] Wikipédia, «Portail de la logique», < Didier Müller 5-8 octobre 2013
MPI Activité.10 : Logique binaire Portes logiques
MPI Activité.10 : Logique binaire Portes logiques I. Introduction De nombreux domaines font appel aux circuits logiques de commutation : non seulement l'informatique, mais aussi les technologies de l'asservissement
Logique binaire. Aujourd'hui, l'algèbre de Boole trouve de nombreuses applications en informatique et dans la conception des circuits électroniques.
Logique binaire I. L'algèbre de Boole L'algèbre de Boole est la partie des mathématiques, de la logique et de l'électronique qui s'intéresse aux opérations et aux fonctions sur les variables logiques.
Algèbre binaire et Circuits logiques (2007-2008)
Université Mohammed V Faculté des Sciences Département de Mathématiques et Informatique Filière : SMI Algèbre binaire et Circuits logiques (27-28) Prof. Abdelhakim El Imrani Plan. Algèbre de Boole 2. Circuits
Système binaire. Algèbre booléenne
Algèbre booléenne Système binaire Système digital qui emploie des signaux à deux valeurs uniques En général, les digits employés sont 0 et 1, qu'on appelle bits (binary digits) Avantages: on peut utiliser
Architecture des ordinateurs TD1 - Portes logiques et premiers circuits
Architecture des ordinateurs TD1 - Portes logiques et premiers circuits 1 Rappel : un peu de logique Exercice 1.1 Remplir la table de vérité suivante : a b a + b ab a + b ab a b 0 0 0 1 1 0 1 1 Exercice
Les portes logiques. Voici les symboles des trois fonctions de base. Portes AND. Portes OR. Porte NOT
Les portes logiques Nous avons jusqu ici utilisé des boutons poussoirs et une lampe pour illustrer le fonctionnement des opérateurs logiques. En électronique digitale, les opérations logiques sont effectuées
Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.
1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le
Arithmétique binaire. Chapitre. 5.1 Notions. 5.1.1 Bit. 5.1.2 Mot
Chapitre 5 Arithmétique binaire L es codes sont manipulés au quotidien sans qu on s en rende compte, et leur compréhension est quasi instinctive. Le seul fait de lire fait appel au codage alphabétique,
IFT1215 Introduction aux systèmes informatiques
Introduction aux circuits logiques de base IFT25 Architecture en couches Niveau 5 Niveau 4 Niveau 3 Niveau 2 Niveau Niveau Couche des langages d application Traduction (compilateur) Couche du langage d
3 ème 2 DÉVELOPPEMENT FACTORISATIONS ET IDENTITÉS REMARQUABLES 1/5 1 - Développements
3 ème 2 DÉVELOPPEMENT FACTORISATIONS ET IDENTITÉS REMARQUABLES 1/5 1 - Développements Développer une expression consiste à transformer un produit en une somme Qu est-ce qu une somme? Qu est-ce qu un produit?
CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!»
Corrigé Cours de Mr JULES v3.3 Classe de Quatrième Contrat 1 Page 1 sur 13 CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!» «Correction en rouge et italique.» I. Les nombres décimaux relatifs.
TOUT CE QU IL FAUT SAVOIR POUR LE BREVET
TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par
AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =
LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste
Représentation d un entier en base b
Représentation d un entier en base b 13 octobre 2012 1 Prérequis Les bases de la programmation en langage sont supposées avoir été travaillées L écriture en base b d un entier est ainsi défini à partir
2.4 Représentation graphique, tableau de Karnaugh
2 Fonctions binaires 45 2.4 Représentation graphique, tableau de Karnaugh On peut définir complètement une fonction binaire en dressant son tableau de Karnaugh, table de vérité à 2 n cases pour n variables
6. Les différents types de démonstrations
LES DIFFÉRENTS TYPES DE DÉMONSTRATIONS 33 6. Les différents types de démonstrations 6.1. Un peu de logique En mathématiques, une démonstration est un raisonnement qui permet, à partir de certains axiomes,
Eteindre. les. lumières MATH EN JEAN 2013-2014. Mme BACHOC. Elèves de seconde, première et terminale scientifiques :
MTH EN JEN 2013-2014 Elèves de seconde, première et terminale scientifiques : Lycée Michel Montaigne : HERITEL ôme T S POLLOZE Hélène 1 S SOK Sophie 1 S Eteindre Lycée Sud Médoc : ROSIO Gauthier 2 nd PELGE
CHAPITRE VIII : Les circuits avec résistances ohmiques
CHAPITRE VIII : Les circuits avec résistances ohmiques VIII. 1 Ce chapitre porte sur les courants et les différences de potentiel dans les circuits. VIII.1 : Les résistances en série et en parallèle On
RESUME DE COURS ET CAHIER D'EXERCICES
ARCITECTURE INFO-UP REUME DE COUR ET CAIER D'EXERCICE EPITA F. GABON Architecture EPITA INFO-UP F. Gabon COUR LIVRE D ARCITECTURE 3 REUME D'ELECTRONIUE LOGIUE 4 YTEME DE NUMERATION 6 ALGEBRE DE BOOLE 6
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère
- Instrumentation numérique -
- Instrumentation numérique - I.Présentation du signal numérique. I.1. Définition des différents types de signaux. Signal analogique: Un signal analogique a son amplitude qui varie de façon continue au
Raisonnement par récurrence Suites numériques
Chapitre 1 Raisonnement par récurrence Suites numériques Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence. Limite finie ou infinie d une suite.
Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3
8 Systèmes de numération INTRODUCTION SYSTÈMES DE NUMÉRATION POSITIONNELS Dans un système positionnel, le nombre de symboles est fixe On représente par un symbole chaque chiffre inférieur à la base, incluant
Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11
Correction : EXERCICE : Calculer en indiquant les étapes: (-6 +9) ( ) ( ) B = -4 (-) (-8) B = - 8 (+ 6) B = - 8 6 B = - 44 EXERCICE : La visite médicale Calcul de la part des élèves rencontrés lundi et
Informatique Générale
Informatique Générale Guillaume Hutzler Laboratoire IBISC (Informatique Biologie Intégrative et Systèmes Complexes) [email protected] Cours Dokeos 625 http://www.ens.univ-evry.fr/modx/dokeos.html
FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines
FctsAffines.nb 1 Mathématiques, 1-ère année Edition 2007-2008 Fonctions affines Supports de cours de mathématiques de degré secondaire II, lien hpertete vers la page mère http://www.deleze.name/marcel/sec2/inde.html
Géométrie dans l espace Produit scalaire et équations
Chapitre 11. 2ème partie Géométrie dans l espace Produit scalaire et équations Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 2ème partie Produit scalaire Produit scalaire
Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.
ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle
Structures algébriques
Structures algébriques 1. Lois de composition s Soit E un ensemble. Une loi de composition interne sur E est une application de E E dans E. Soient E et F deux ensembles. Une loi de composition externe
MICROINFORMATIQUE NOTE D APPLICATION 1 (REV. 2011) ARITHMETIQUE EN ASSEMBLEUR ET EN C
Haute Ecole d Ingénierie et de Gestion Du Canton du Vaud MICROINFORMATIQUE NOTE D APPLICATION 1 (REV. 2011) ARITHMETIQUE EN ASSEMBLEUR ET EN C Programmation en mode simulation 1. DOCUMENTS DE RÉFÉRENCE...
modélisation solide et dessin technique
CHAPITRE 1 modélisation solide et dessin technique Les sciences graphiques regroupent un ensemble de techniques graphiques utilisées quotidiennement par les ingénieurs pour exprimer des idées, concevoir
Date : 18.11.2013 Tangram en carré page
Date : 18.11.2013 Tangram en carré page Titre : Tangram en carré Numéro de la dernière page : 14 Degrés : 1 e 4 e du Collège Durée : 90 minutes Résumé : Le jeu de Tangram (appelé en chinois les sept planches
Concevoir son microprocesseur
Concevoir son microprocesseur structure des systèmes logiques Jean-Christophe Buisson Collection Technosup Ellipses Avant-propos Ce livre s adresse aux étudiants en informatique de licence et maîtrise,
Factorisation Factoriser en utilisant un facteur commun Fiche méthode
Factorisation Factoriser en utilisant un facteur commun Fiche méthode Rappel : Distributivité simple Soient les nombres, et. On a : Factoriser, c est transformer une somme ou une différence de termes en
Livret - 1. Informatique : le matériel. --- Ordinateur, circuits, codage, système, réseau. Cours informatique programmation.
Livret - 1 Informatique : le matériel --- Ordinateur, circuits, codage, système, réseau. RM di scala Cours informatique programmation Rm di Scala - http://www.discala.net SOMMAIRE Introduction 2 Notations
Nombre de marches Nombre de facons de les monter 3 3 11 144 4 5 12 233 5 8 13 377 6 13 14 610 7 21 15 987 8 34 16 1597 9 55 17 2584 10 89
Soit un escalier à n marches. On note u_n le nombre de façons de monter ces n marches. Par exemple d'après l'énoncé, u_3=3. Pour monter n marches, il faut d'abord monter la première. Soit on la monte seule,
Cours Informatique Master STEP
Cours Informatique Master STEP Bases de la programmation: Compilateurs/logiciels Algorithmique et structure d'un programme Programmation en langage structuré (Fortran 90) Variables, expressions, instructions
Calculons avec Albert!
Calculons avec Albert! Par : Guy Lefebvre, 1257 rue Principale, St-Prime, G8J 1V2, 418-251-2170 Guillaume Rainville, 610 8 e rue, St-Prime, G8J 1P6, 418-251-8290 Résumé : Lefebvre G. et Rainville G., 2001,
Par combien de zéros se termine N!?
La recherche à l'école page 79 Par combien de zéros se termine N!? par d es co llèg es An dré Do ucet de Nanterre et Victor Hugo de Noisy le Grand en seignants : Danielle Buteau, Martine Brunstein, Marie-Christine
Cours d algorithmique pour la classe de 2nde
Cours d algorithmique pour la classe de 2nde F.Gaudon 10 août 2009 Table des matières 1 Avant la programmation 2 1.1 Qu est ce qu un algorithme?................................. 2 1.2 Qu est ce qu un langage
Algorithme. Table des matières
1 Algorithme Table des matières 1 Codage 2 1.1 Système binaire.............................. 2 1.2 La numérotation de position en base décimale............ 2 1.3 La numérotation de position en base binaire..............
Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007
Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007 page 1 / 10 abscisse addition additionner ajouter appliquer
Unité 2 Leçon 2 Les permutations et les combinaisons
Unité 2 Leçon 2 Les permutations et les combinaisons Qu'apprenons nous dans cette leçon? La différence entre un arrangement ordonné (une permutation) et un arrangement nonordonné (une combinaison). La
Représentation géométrique d un nombre complexe
CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres
Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année
Cours d électricité Circuits électriques en courant constant Mathieu Bardoux [email protected] IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie 1 re année Objectifs du chapitre
Carl-Louis-Ferdinand von Lindemann (1852-1939)
Par Boris Gourévitch "L'univers de Pi" http://go.to/pi314 [email protected] Alors ça, c'est fort... Tranches de vie Autour de Carl-Louis-Ferdinand von Lindemann (1852-1939) est transcendant!!! Carl Louis
Exercices de dénombrement
Exercices de dénombrement Exercice En turbo Pascal, un entier relatif (type integer) est codé sur 6 bits. Cela signifie que l'on réserve 6 cases mémoires contenant des "0" ou des "" pour écrire un entier.
Cours 1 : Introduction Ordinateurs - Langages de haut niveau - Application
Université de Provence Licence Math-Info Première Année V. Phan Luong Algorithmique et Programmation en Python Cours 1 : Introduction Ordinateurs - Langages de haut niveau - Application 1 Ordinateur Un
I.1- DÉFINITIONS ET NOTIONS DE BASE
I.1- DÉFINITIONS ET NOTIONS DE BASE Informatique Information Automatique Logiciels (Software) Matériels (Hardware) Définition de l information : On appelle une information tout ce qui est transmissible
MATHÉMATIQUES. Les préalables pour l algèbre MAT-P020-1 DÉFINITION DU DOMAINE D EXAMEN
MATHÉMATIQUES Les préalables pour l algèbre MAT-P020-1 DÉFINITION DU DOMAINE D EXAMEN Mars 2001 MATHÉMATIQUES Les préalables pour l algèbre MAT-P020-1 DÉFINITION DU DOMAINE D EXAMEN Mars 2001 Direction
Initiation à la programmation en Python
I-Conventions Initiation à la programmation en Python Nom : Prénom : Une commande Python sera écrite en caractère gras. Exemples : print 'Bonjour' max=input("nombre maximum autorisé :") Le résultat de
Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction
Antécédents d un nombre par une fonction 1) Par lecture graphique Méthode / Explications : Pour déterminer le ou les antécédents d un nombre a donné, on trace la droite (d) d équation. On lit les abscisses
VIII- Circuits séquentiels. Mémoires
1 VIII- Circuits séquentiels. Mémoires Maintenant le temps va intervenir. Nous avions déjà indiqué que la traversée d une porte ne se faisait pas instantanément et qu il fallait en tenir compte, notamment
Conversion d un entier. Méthode par soustraction
Conversion entre bases Pour passer d un nombre en base b à un nombre en base 10, on utilise l écriture polynomiale décrite précédemment. Pour passer d un nombre en base 10 à un nombre en base b, on peut
DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.
A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur
L AUTOMATISME LE SIGNAL
L AUTOMATISME LE SIGNAL Page 1 sur 7 Sommaire : 1- Champ de l automatisme définitions 2- Correspondance entre phénomènes physiques et signaux a. Capteur b. Exemple de capteur TOR c. Exemple de capteur
chapitre 4 Nombres de Catalan
chapitre 4 Nombres de Catalan I Dénitions Dénition 1 La suite de Catalan (C n ) n est la suite dénie par C 0 = 1 et, pour tout n N, C n+1 = C k C n k. Exemple 2 On trouve rapidement C 0 = 1, C 1 = 1, C
USTL - Licence ST-A 1ère année 2005-2006 Codage de l information TP 1 :
USTL - Licence ST-A 1ère année 2005-2006 Codage de l information TP 1 : Objectifs du TP Ce TP a pour but 1. de découvrir quelques opérations logiques sur les nombres 2. et quelques formats de fichiers.
Découverte du logiciel ordinateur TI-n spire / TI-n spire CAS
Découverte du logiciel ordinateur TI-n spire / TI-n spire CAS Mémento Ouvrir TI-Nspire CAS. Voici la barre d outils : L insertion d une page, d une activité, d une page où l application est choisie, pourra
Mesure d angles et trigonométrie
Thierry Ciblac Mesure d angles et trigonométrie Mesure de l angle de deux axes (ou de deux demi-droites) de même origine. - Mesures en degrés : Divisons un cercle en 360 parties égales définissant ainsi
Travaux pratiques. Compression en codage de Huffman. 1.3. Organisation d un projet de programmation
Université de Savoie Module ETRS711 Travaux pratiques Compression en codage de Huffman 1. Organisation du projet 1.1. Objectifs Le but de ce projet est d'écrire un programme permettant de compresser des
UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux.
UEO11 COURS/TD 1 Contenu du semestre Cours et TDs sont intégrés L objectif de ce cours équivalent a 6h de cours, 10h de TD et 8h de TP est le suivant : - initiation à l algorithmique - notions de bases
TP 1 : 1 Calculs en binaire, octal et hexadécimal
Univ. Lille 1 - Licence Informatique 2ème année 2013-14 Objectifs du TP Ce TP a pour but Codage de l'information TP 1 : 1. de découvrir quelques opérations logiques sur les nombres 2. et quelques formats
BAREME sur 40 points. Informatique - session 2 - Master de psychologie 2006/2007
BAREME ur 40 point Informatique - eion 2 - Mater de pychologie 2006/2007 Bae de donnée PRET de MATERIEL AUDIO VISUEL. Remarque : Le ujet comporte 7 page. Vérifier qu il et complet avant de commencer. Une
Evaluation diagnostique de CM1 Circonscription de Saint Just en Chaussée Livret du maître partie Français
Evaluation diagnostique de CM1 Circonscription de Saint Just en Chaussée Livret du maître partie Français Avant de débuter, demander aux élèves de préparer le matériel suivant : crayon à papier, gomme,
Angles orientés et trigonométrie
Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.
Chapitre 1 I:\ Soyez courageux!
Chapitre 1 I:\ Soyez courageux! Pour ne rien vous cacher, le langage d'assembleur (souvent désigné sous le terme "Assembleur", bien que ce soit un abus de langage, puisque "Assembleur" désigne le logiciel
RÉALISATION DE GRAPHIQUES AVEC OPENOFFICE.ORG 2.3
RÉALISATION DE GRAPHIQUES AVEC OPENOFFICE.ORG 2.3 Pour construire un graphique : On lance l assistant graphique à l aide du menu Insérer è Diagramme en ayant sélectionné au préalable une cellule vide dans
Représentation des Nombres
Chapitre 5 Représentation des Nombres 5. Representation des entiers 5.. Principe des représentations en base b Base L entier écrit 344 correspond a 3 mille + 4 cent + dix + 4. Plus généralement a n a n...
2. RAPPEL DES TECHNIQUES DE CALCUL DANS R
2. RAPPEL DES TECHNIQUES DE CALCUL DANS R Dans la mesure où les résultats de ce chapitre devraient normalement être bien connus, il n'est rappelé que les formules les plus intéressantes; les justications
Plus petit, plus grand, ranger et comparer
Unité 11 Plus petit, plus grand, ranger et comparer Combien y a-t-il de boules sur la tige A? Sur la tige B? A B Le nombre de boules sur la tige A est plus grand que sur la tige B. On écrit : > 2 On lit
Chapitre 7: Énergie et puissance électrique. Lequel de vous deux est le plus puissant? L'énergie dépensée par les deux est-elle différente?
CHAPITRE 7 ÉNERGIE ET PUISSANCE ÉLECTRIQUE 2.4.0 Découvrir les grandeurs physiques qui influencent l'énergie et la puissance en électricité. Vous faites le grand ménage dans le sous-sol de la maison. Ton
Le chiffre est le signe, le nombre est la valeur.
Extrait de cours de maths de 6e Chapitre 1 : Les nombres et les opérations I) Chiffre et nombre 1.1 La numération décimale En mathématique, un chiffre est un signe utilisé pour l'écriture des nombres.
ALGORITHMIQUE ET PROGRAMMATION En C
Objectifs ALGORITHMIQUE ET PROGRAMMATION Une façon de raisonner Automatiser la résolution de problèmes Maîtriser les concepts de l algorithmique Pas faire des spécialistes d un langage Pierre TELLIER 2
1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.
Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur
Priorités de calcul :
EXERCICES DE REVISION POUR LE PASSAGE EN QUATRIEME : Priorités de calcul : Exercice 1 : Calcule en détaillant : A = 4 + 5 6 + 7 B = 6 3 + 5 C = 35 5 3 D = 6 7 + 8 E = 38 6 3 + 7 Exercice : Calcule en détaillant
Fête de la science Initiation au traitement des images
Fête de la science Initiation au traitement des images Détection automatique de plaques minéralogiques à partir d'un téléphone portable et atelier propose de créer un programme informatique pour un téléphone
Annexe : La Programmation Informatique
GLOSSAIRE Table des matières La Programmation...2 Les langages de programmation...2 Java...2 La programmation orientée objet...2 Classe et Objet...3 API et Bibliothèque Logicielle...3 Environnement de
TUTORIEL IMPRESS. Ouvrir Impress cocher «présentation vierge», «suivant» cocher «écran», «suivant» cocher «standard», «créer»
TUTORIEL IMPRESS Ouvrir Impress cocher «présentation vierge», «suivant» cocher «écran», «suivant» cocher «standard», «créer» Une page impress s'ouvre : Le volet gauche contiendra toutes les diapositives
La correction des erreurs d'enregistrement et de traitement comptables
La correction des erreurs d'enregistrement et de traitement comptables Après l'étude des différents types d'erreurs en comptabilité (Section 1) nous étudierons la cause des erreurs (Section 2) et les techniques
Introduction au maillage pour le calcul scientifique
Introduction au maillage pour le calcul scientifique CEA DAM Île-de-France, Bruyères-le-Châtel [email protected] Présentation adaptée du tutorial de Steve Owen, Sandia National Laboratories, Albuquerque,
E.I.S : Un outil performant pour I'analyse du risque en Assurance
E.I.S : Un outil performant pour I'analyse du risque en Assurance Fabienne Hassan - Pascale Robin - Guy Valdois - Groupama Central Assurance France 1 - GROUPAMA ASSURANCE 1-1 Positionnement de l'entreprise
Une proposition de séquence relative à l étude des sons /an/, /on/ et de leurs graphies. Cadre général
Une proposition de séquence relative à l étude des sons /an/, /on/ et de leurs graphies Cadre général Analyse des difficultés : Ces phonèmes présentent une double difficulté : - au niveau de leur discrimination
Les fonctions logiques
1 Les fonctions logiques Le fonctionnement des ordinateurs tout comme d autres appareils électroniques repose sur l emploi des circuits électroniques de logique binaire ou électronique numérique. Dans
Présentation du cours de mathématiques de D.A.E.U. B, remise à niveau
i Présentation du cours de mathématiques de D.A.E.U. B, remise à niveau Bonjour, bienvenue dans votre début d étude du cours de mathématiques de l année de remise à niveau en vue du D.A.E.U. B Au cours
Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors
N I) Pour démontrer que deux droites (ou segments) sont parallèles (d) // (d ) (d) // (d ) deux droites sont parallèles à une même troisième les deux droites sont parallèles entre elles (d) // (d) deux
PLANIFICATION DE PROJET ET METHODES D ORDONNANCEMENT
P a g e 1 PLANIFICATION DE PROJET ET METHODES D ORDONNANCEMENT NOTION DE PROJET ET D ORDONNANCEMENT Lors de la réalisation d un projet industriel (construction d usine, d autoroute, recherche et développement
Manuel d utilisation 26 juin 2011. 1 Tâche à effectuer : écrire un algorithme 2
éducalgo Manuel d utilisation 26 juin 2011 Table des matières 1 Tâche à effectuer : écrire un algorithme 2 2 Comment écrire un algorithme? 3 2.1 Avec quoi écrit-on? Avec les boutons d écriture........
Chapitre 2. Eléments pour comprendre un énoncé
Chapitre 2 Eléments pour comprendre un énoncé Ce chapitre est consacré à la compréhension d un énoncé. Pour démontrer un énoncé donné, il faut se reporter au chapitre suivant. Les tables de vérité données
L équilibre Ressources Emplois de biens et services schématisé par une balance
IV) l équilibre ressources - emplois et son interprétation Cet article fait suite à ceux du 19 janvier et du 18 février 2013. Il en est le complément logique sur les fondamentaux macro- économiques d un
CHAPITRE VI ALEAS. 6.1.Généralités.
CHAPITRE VI ALEAS 6.1.Généralités. Lors de la synthèse des systèmes logique (combinatoires ou séquentiels), nous avons supposé, implicitement, qu une même variable secondaire avait toujours la même valeur
TD Architecture des ordinateurs. Jean-Luc Dekeyser
TD Architecture des ordinateurs Jean-Luc Dekeyser Fiche 1 Nombres de l informatique Exercice 1 Une entreprise désire réaliser la sauvegarde de ses données sur un site distant. Le volume de données à sauvegarder
Conception de circuits numériques et architecture des ordinateurs
Conception de circuits numériques et architecture des ordinateurs Frédéric Pétrot Année universitaire 2014-2015 Structure du cours C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 Codage des nombres en base 2, logique
VOS PREMIERS PAS AVEC TRACENPOCHE
Vos premiers pas avec TracenPoche page 1/16 VOS PREMIERS PAS AVEC TRACENPOCHE Un coup d'oeil sur l'interface de TracenPoche : La zone de travail comporte un script, une figure, un énoncé, une zone d analyse,
Chapitre 13 Numérisation de l information
DERNIÈRE IMPRESSION LE 2 septembre 2013 à 17:33 Chapitre 13 Numérisation de l information Table des matières 1 Transmission des informations 2 2 La numérisation 2 2.1 L échantillonage..............................
Chapitre 5. Calculs financiers. 5.1 Introduction - notations
Chapitre 5 Calculs financiers 5.1 Introduction - notations Sur un marché économique, des acteurs peuvent prêter ou emprunter un capital (une somme d argent) en contrepartie de quoi ils perçoivent ou respectivement
315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux
Exercice 1 : (3 points) Un sac contient 10 boules rouges, 6 boules noires et 4 boules jaunes. Chacune des boules a la même probabilité d'être tirée. On tire une boule au hasard. 1. Calculer la probabilité
Compter à Babylone. L écriture des nombres
Compter à Babylone d après l article de Christine Proust «Le calcul sexagésimal en Mésopotamie : enseignement dans les écoles de scribes» disponible sur http://www.dma.ens.fr/culturemath/ Les mathématiciens
Déroulement. Evaluation. Préambule. Définition. Définition. Algorithmes et structures de données 28/09/2009
Déroulement Algorithmes et structures de données Cours 1 et 2 Patrick Reuter http://www.labri.fr/~preuter/asd2009 CM mercredi de 8h00 à 9h00 (Amphi Bât. E, 3 ème étage) ED - Groupe 3 : mercredi, 10h30
De la tablette d'argile à la tablette tactile
FÉDÉRATION WALLONIE-BRUXELLES De la tablette d'argile à la tablette tactile Histoire des outils de communication ^}jfuséoljus Colorie ce messager 2 Colorie l'alphabet des animaux 3 Relie les numéros En
