Mathématiques Discrètes et Algorithmique

Dimension: px
Commencer à balayer dès la page:

Download "Mathématiques Discrètes et Algorithmique"

Transcription

1 Université François Rabelais de Tours Laboratoire de Mathématiques et Physique Théorique Mathématiques Discrètes et Algorithmique UE 5-4 Option Semestre 5 6. Théorie des graphes : Généralités 6.1. Graphes non-orientés. Pour définir un graphe, on a besoin de définir l ensemble de ses sommets et l ensemble de ses arêtes. Il faut aussi prendre en considération le nombre d arêtes reliant deux sommets. Soit V un ensemble. On notera P 2 (V ) l ensemble des sous-ensembles de V contenant un ou deux éléments. Afin d homogéniser les notations, on pose { {x} si x = y, [x, y] = {x, y} si x y. Définition 6.1. Un graphe G est un triplet (V, E, N) où V est l ensemble des sommets N un ensemble qui sert à étiqueter les arêtes E P 2 (V ) N, l ensemble des arêtes. Ainsi, une arête a s écrit a = ([x, y], n) où x et y sont les extrémités de a et n son étiquette. Si a = ([x, y], n) E on dira que a est incidente à x et y ; x et y sont adjacents ; a est une boucle si x = y. On dira que 2 arêtes sont adjacentes si elles ont un sommet en commun. On définit la fonction d incidence par ε : E V ([x, y], n) [x, y]. L ensemble N n est utile que si il y a plusieurs arêtes entre deux sommets donnés. Il permet de différencier ces arêtes. Exemple 6.2. Figure 1. Premier exemple de graphe Définition 6.3. Un graphe simple est un graphe sans boucle et dans lequel il y a au plus une arête reliant deux sommets est au plus 1. Dans le cas des graphes simples, on n a plus besoin de l ensemble N et nous noterons les arêtes de la manière suivante a = {x, y}. La notion de sous-graphe est naturelle. Elle nous sera très utile pour prouver des résultat sur les graphes par récurrence... Définition 6.4. Soit G = (V, E, N) un graphe. Un sous-graphe G = (V, E, N ) de G est un graphe tel que V V et E E (P 2 (V ) N ). Lorsque l ensemble des sommet V = V on dit que G est un graphe partiel de G. Lorsque E = {a E ε(a) P 2 (V )} pour un sous-ensemble V de V on dit que G est le sous-graphe induit par V (on garde toutes les arêtes de G entre deux sommets de V ). On le note G(V ). 1

2 2 Exemple 6.5. Figure 2. Un graphe et deux sous-graphes Degré d un sommet. Définition 6.6. Soit G = (V, E, N) un graphe. Le degré d un sommet x V est le nombre d arêtes incidentes à x. Une boucle incidente à x contribue 2 fois dans le calcul du degré. On notera d G (x) (ou simplement d(x)) le degré de x dans G. Un graphe est dit k-régulier si tous les sommets sont de degré k. Définition 6.7. Soit v V. On définit l ensemble des voisins de v par Soit A V. On définit les voisins de A par N(v) := {u V u et v sont adjacents} N(A) := N(v) Exemple 6.8. Soient G = (V, E) et H = (W, F ) les graphes définis dans la figure 1 (où l on a omis les étiquettes n N pour alléger les notations). v A Dans le graphe G on a Dans le graphe H on a Figure 3. Graphes G et H N(b) = {a, f, c, e}, deg(b) = 4 et deg(g) = 0 N(b) = {b, a, e, d, c}, deg(b) = 5 et deg(c) = 6 Lemme 6.9. Soit G = (V, E, N) un graphe. On a d(x) = 2Card(E) Un graphe a donc un nombre impair de sommets de degré impair. Démonstration. C est simple mais instructif à écrire proprement. On fait une récurrence sur Card(E). Initialisation. Si Card(E) = 0, c est clair, on a 0 = 0. Hypothèse de récurrence. Soit n 0. Supposons le résultat vrai pour tout graphe (V, E, N) tel que Card(E) = n. Hérédité. Soit G = (V, E, N) un graphe tel que Card(E) = n + 1 et soit a = ([x, y], n) E. Considérons le graphe partiel G = (V, E\{a}, N). Alors G contient n arêtes et on a d G (x) = d G (x) 1 et d G (y) = d G (y) 1 si x y ; d G (x) = d G (x) 2 si x = y ; d G (z) = d G (z) pour tout z V {x, y} On voit donc que d G (x) = d G (x) + 2 = 2Card(E ) + 2 = Card(E)

3 Chaînes et cycles. Définition Soit G = (V, E, N) un graphe et soit x, y V. Une chaîne de x à y est une suite finie d arêtes ([x, x 1 ], n 0 ), ([x 1, x 2 ]),..., ([x k 1, y], n k 1 ) Le nombre k est la longueur de la chaîne et on note l(c) = k. Une chaîne est simple si elle ne contient pas deux fois la même arête. Une chaîne est élémentaire si elle ne contient pas deux fois le même sommet. Une chaîne est fermée si ses deux extrémités coïncident. Un cycle est une chaine fermée simple. Définition un graphe est dit connexe si pour tout x, y V il existe une chaîne reliant x et y. On dit alors que x et y sont connectés. Les composantes connexes d un graphe sont les sous-graphes induits par les classes d équivalence de V de la relation R définie par Exemple xry x = y ou (x et y sont connectés). Figure 4. Un graphe et ses trois composantes connexes H 1, H 2, H 3 Définition Soit G = (V, E, N) un graphe. On définit la distance entre x et y par 0 si x = y d(x, y) = + si x et y ne sont pas reliés la longueur minimale d une chaîne reliant x à y sinon Le diamètre d un graphe est défini par d(g) = sup{d(x, y) x, y V } N {+ }. Exemple (1) La diamètre du graphe H dans la figure 1 est 2. (2) Le Rubik s cube est une illustration spéctaculaire de la notion de diamètre : on représente le problème par un graphe dont les sommets sont les 8! 12! (soit environ 4, ) configurations du Rubik s cube. On place une arête entre deux configurations x et y si l on peut passer de l une à l autre par un "mouvement" (un "mouvement" est une rotation d une face d angle π/2, π, 3π/2 et de centre le centre de cette face). Chaque sommet est donc de degré 18 (3 rotations par faces 6 faces). Par des considérations algorithmiques sophistiquées, Rokicki,Ciemba, Davidson et Dethridge ont montré en Juillet 2010 que le diamètre de ce graphe est 20! Cela signifie qu à partir de n importe quelle configuration, on peut, en moins de 20 mouvements, retrouver le cube ayant chaque face de la même couleur Graphes orientés. Définition Un graphe orienté G est un triplet (V, E, N) où V est l ensemble des sommets ; E V V N, l ensemble des arcs ; N un ensemble qui sert à étiqueter les arcs. Ainsi, un arc a s écrit a = (x, y, n). On écrira parfois a = ((x, y), n). On définit les deux applications d incidence suivantes : Soit a = ((x, y), n) E : i(a) = x est appelé le sommet initial de a ; t(a) = y est appelé le sommet terminal de a ; i : E V et t : E V (x, y, n) x (x, y, n) y

4 4 l arrête a est incidente à x et y ; x et y sont adjacents Une boucle est un arc a tel que i(a) = t(a). Soit x V. On pose d G (x) = Card{a E i(a) = x} d + G (x) = Card{a E t(a) = x} Le degré de x est défini par d(x) = d + (x) + d (x). On a comme dans le cas des graphes non-orientés : Lemme Soit G = (V, E) un graphe. On a d + (x) = d (x). (le degré sortant) (le degré entrant) Définition Soit G = (V, E, N) un graphe orienté et soit x, y V. Une chemin de x à y est une suite finie de la forme (x 0, a 0, x 1,..., x k 1, a k 1, y) où i(a j ) = x j et t(a j ) = x j+1. Le nombre k est la longueur de la chaîne et on note l(c) = k. Une chemin est simple s il ne contient pas deux fois le même arc. Une chemin est élémentaire s il ne contient pas deux fois le même sommet. Une chemin est fermé si ses deux extrémités coïncident. Un circuit est une chemin fermé simple. On écrit x y s il x = y ou s il existe un chemin de x à y. On dit qu un graphe est fortement connexe si pour tout x et y dans V, on a x y et y x. Les composantes fortement connexes de G sont les sous-graphes induits par les classes d équivalence de V de la relation R définie par xry x y et y x. Exemple Un graphe orienté et ses composantes fortement connexes. Figure 5. Composantes fortement connexes C 1, C 2, C 3, C Graphes simples. On rappelle qu un graphe simple G = (V, E, N) (orienté ou non) est un graphe dans lequel il n y a pas de boucle et tel que pour tout (x, y) V 2, il y a au plus une arête (respectivement un arc) reliant x à y. Dans le cas d un graphe orienté, il est possible d avoir un arc de x à y et un arc de y à x. On remarque que l ensemble N est inutile pour un graphe simple et on écrira simplement G = (V, E). Exemple Le graphe complet K n est l unique graphe simple possédant n sommets tous reliés deux à deux par une arête. Figure 6. Graphes complets K 1 K 6. Proposition Soit G = (V, E) un graphe simple à n sommets. 1. G possède au plus ( n 2) arêtes ; 2. Si G est connexe alors G possède au moins n 1 arêtes ; 3. Si G est acyclique alors G possède au plus n 1 arêtes.

5 Démonstration. 1. C est clair : il y a ( n 2) possibilités pour choisir 2 sommets de V. On peut mettre au plus une arête entre chaque paire de sommet. 2. On va prouver le résultat par récurrence sur le nombre n de sommets. Le résultat est clair pour n = 1. Il y a un sommet et pas d arête possible puisque les boucles sont interdites. Soit n 1 et supposons le résultat vrai pour tout graphe contenant moins (au sens large) de n sommets. Soit G un graphe simple connexe contenant n + 1 sommets et soit x V. Soit G le sous-graphe induit par V \{x} et soit G 1, G 2,..., G k ses composantes connexes. On désigne par n k le nombre de sommets de G k. On a donc n i = n 1. En appliquant l hypothèse de récurrence à G i, on voit que chaque composante connexe possède au moins n k 1 arêtes. Comme G est connexe, le sommet x est nécessairement relié à chacune des composantes connexes G i. Le nombre d arêtes dans G est donc au moins k (n i 1) + k 1 = n 1. i=1 3. Exercice. 5

Introduction à la théorie des graphes. Solutions des exercices

Introduction à la théorie des graphes. Solutions des exercices CAHIERS DE LA CRM Introduction à la théorie des graphes Solutions des exercices Didier Müller CAHIER N O 6 COMMISSION ROMANDE DE MATHÉMATIQUE 1 Graphes non orientés Exercice 1 On obtient le graphe biparti

Plus en détail

Théorie des Graphes Cours 3: Forêts et Arbres II / Modélisation

Théorie des Graphes Cours 3: Forêts et Arbres II / Modélisation IFIPS S7 - informatique Université Paris-Sud 11 1er semestre 2009/2010 Théorie des Graphes Cours 3: Forêts et Arbres II / 1 Forêts et arbres II Théorème 1.1. Les assertions suivantes sont équivalentes

Plus en détail

La NP-complétude. Johanne Cohen. PRISM/CNRS, Versailles, France.

La NP-complétude. Johanne Cohen. PRISM/CNRS, Versailles, France. La NP-complétude Johanne Cohen PRISM/CNRS, Versailles, France. Références 1. Algorithm Design, Jon Kleinberg, Eva Tardos, Addison-Wesley, 2006. 2. Computers and Intractability : A Guide to the Theory of

Plus en détail

Chapitre 5 : Flot maximal dans un graphe

Chapitre 5 : Flot maximal dans un graphe Graphes et RO TELECOM Nancy A Chapitre 5 : Flot maximal dans un graphe J.-F. Scheid 1 Plan du chapitre I. Définitions 1 Graphe Graphe valué 3 Représentation d un graphe (matrice d incidence, matrice d

Plus en détail

Eléments de Théorie des Graphes et Programmation Linéaire

Eléments de Théorie des Graphes et Programmation Linéaire INSTITUT NATIONAL POLYTECHNIQUE DE LORRAINE Ecole Nationale Supérieure d Electricité et de Mécanique Eléments de Théorie des Graphes et Programmation Linéaire Didier Maquin Professeur à l INPL Version

Plus en détail

MIS 102 Initiation à l Informatique

MIS 102 Initiation à l Informatique MIS 102 Initiation à l Informatique Responsables et cours : Cyril Gavoille Catherine Pannier Matthias Robine Marc Zeitoun Planning : 6 séances de cours 5 séances de TD (2h40) 4 séances de TP (2h40) + environ

Plus en détail

I. Cas de l équiprobabilité

I. Cas de l équiprobabilité I. Cas de l équiprobabilité Enoncé : On lance deux dés. L un est noir et l autre est blanc. Calculer les probabilités suivantes : A «Obtenir exactement un as» «Obtenir au moins un as» C «Obtenir au plus

Plus en détail

Eteindre. les. lumières MATH EN JEAN 2013-2014. Mme BACHOC. Elèves de seconde, première et terminale scientifiques :

Eteindre. les. lumières MATH EN JEAN 2013-2014. Mme BACHOC. Elèves de seconde, première et terminale scientifiques : MTH EN JEN 2013-2014 Elèves de seconde, première et terminale scientifiques : Lycée Michel Montaigne : HERITEL ôme T S POLLOZE Hélène 1 S SOK Sophie 1 S Eteindre Lycée Sud Médoc : ROSIO Gauthier 2 nd PELGE

Plus en détail

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e

Plus en détail

Objectifs du cours d aujourd hui. Informatique II : Cours d introduction à l informatique et à la programmation objet. Complexité d un problème (2)

Objectifs du cours d aujourd hui. Informatique II : Cours d introduction à l informatique et à la programmation objet. Complexité d un problème (2) Objectifs du cours d aujourd hui Informatique II : Cours d introduction à l informatique et à la programmation objet Complexité des problèmes Introduire la notion de complexité d un problème Présenter

Plus en détail

MABioVis. Bio-informatique et la

MABioVis. Bio-informatique et la MABioVis Modèles et Algorithmes pour la Bio-informatique et la Visualisation Visite ENS Cachan 5 janvier 2011 MABioVis G GUY MELANÇON (PR UFR Maths Info / EPI GRAVITE) (là, maintenant) - MABioVis DAVID

Plus en détail

Représentation d un entier en base b

Représentation d un entier en base b Représentation d un entier en base b 13 octobre 2012 1 Prérequis Les bases de la programmation en langage sont supposées avoir été travaillées L écriture en base b d un entier est ainsi défini à partir

Plus en détail

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au

Plus en détail

6. Les différents types de démonstrations

6. Les différents types de démonstrations LES DIFFÉRENTS TYPES DE DÉMONSTRATIONS 33 6. Les différents types de démonstrations 6.1. Un peu de logique En mathématiques, une démonstration est un raisonnement qui permet, à partir de certains axiomes,

Plus en détail

Algorithmes récursifs

Algorithmes récursifs Licence 1 MASS - Algorithmique et Calcul Formel S. Verel, M.-E. Voge www.i3s.unice.fr/ verel 23 mars 2007 Objectifs de la séance 3 écrire des algorithmes récursifs avec un seul test rechercher un élément

Plus en détail

Problèmes de Mathématiques Filtres et ultrafiltres

Problèmes de Mathématiques Filtres et ultrafiltres Énoncé Soit E un ensemble non vide. On dit qu un sous-ensemble F de P(E) est un filtre sur E si (P 0 ) F. (P 1 ) (X, Y ) F 2, X Y F. (P 2 ) X F, Y P(E) : X Y Y F. (P 3 ) / F. Première Partie 1. Que dire

Plus en détail

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur

Plus en détail

Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1

Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1 Exemples de problèmes et d applications INF6953 Exemples de problèmes Sommaire Quelques domaines d application Quelques problèmes réels Allocation de fréquences dans les réseaux radio-mobiles Affectation

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux.

UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux. UEO11 COURS/TD 1 Contenu du semestre Cours et TDs sont intégrés L objectif de ce cours équivalent a 6h de cours, 10h de TD et 8h de TP est le suivant : - initiation à l algorithmique - notions de bases

Plus en détail

Modèles à Événements Discrets. Réseaux de Petri Stochastiques

Modèles à Événements Discrets. Réseaux de Petri Stochastiques Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés

Plus en détail

CH.6 Propriétés des langages non contextuels

CH.6 Propriétés des langages non contextuels CH.6 Propriétés des langages non contetuels 6.1 Le lemme de pompage 6.2 Les propriétés de fermeture 6.3 Les problèmes de décidabilité 6.4 Les langages non contetuels déterministes utomates ch6 1 6.1 Le

Plus en détail

Feuille TD n 1 Exercices d algorithmique éléments de correction

Feuille TD n 1 Exercices d algorithmique éléments de correction Master Sciences, Technologies, Santé Mention Mathématiques, spécialité Enseignement des mathématiques Algorithmique et graphes, thèmes du second degré Feuille TD n 1 Exercices d algorithmique éléments

Plus en détail

Optimisation Discrète

Optimisation Discrète Prof F Eisenbrand EPFL - DISOPT Optimisation Discrète Adrian Bock Semestre de printemps 2011 Série 7 7 avril 2011 Exercice 1 i Considérer le programme linéaire max{c T x : Ax b} avec c R n, A R m n et

Plus en détail

L exclusion mutuelle distribuée

L exclusion mutuelle distribuée L exclusion mutuelle distribuée L algorithme de L Amport L algorithme est basé sur 2 concepts : L estampillage des messages La distribution d une file d attente sur l ensemble des sites du système distribué

Plus en détail

INF 232: Langages et Automates. Travaux Dirigés. Université Joseph Fourier, Université Grenoble 1 Licence Sciences et Technologies

INF 232: Langages et Automates. Travaux Dirigés. Université Joseph Fourier, Université Grenoble 1 Licence Sciences et Technologies INF 232: Langages et Automates Travaux Dirigés Université Joseph Fourier, Université Grenoble 1 Licence Sciences et Technologies Année Académique 2013-2014 Année Académique 2013-2014 UNIVERSITÉ JOSEPH

Plus en détail

Peut-on imiter le hasard?

Peut-on imiter le hasard? 168 Nicole Vogel Depuis que statistiques et probabilités ont pris une large place dans les programmes de mathématiques, on nous propose souvent de petites expériences pour tester notre perception du hasard

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée

Plus en détail

Rappel sur les bases de données

Rappel sur les bases de données Rappel sur les bases de données 1) Généralités 1.1 Base de données et système de gestion de base de donnés: définitions Une base de données est un ensemble de données stockées de manière structurée permettant

Plus en détail

Algèbre binaire et Circuits logiques (2007-2008)

Algèbre binaire et Circuits logiques (2007-2008) Université Mohammed V Faculté des Sciences Département de Mathématiques et Informatique Filière : SMI Algèbre binaire et Circuits logiques (27-28) Prof. Abdelhakim El Imrani Plan. Algèbre de Boole 2. Circuits

Plus en détail

Consolidation de fondamentaux

Consolidation de fondamentaux Consolidation de fondamentaux Introduction aux Sciences de l Information et de la Communication Consolidation - Stéphanie MARTY - 2009/2010 1 Consolidation de fondamentaux Démarche en sciences humaines

Plus en détail

Microsoft Excel : tables de données

Microsoft Excel : tables de données UNIVERSITE DE LA SORBONNE NOUVELLE - PARIS 3 Année universitaire 2000-2001 2ème SESSION SLMD2 Informatique Les explications sur la réalisation des exercices seront fournies sous forme de fichiers informatiques.

Plus en détail

Sur certaines séries entières particulières

Sur certaines séries entières particulières ACTA ARITHMETICA XCII. 2) Sur certaines séries entières particulières par Hubert Delange Orsay). Introduction. Dans un exposé à la Conférence Internationale de Théorie des Nombres organisée à Zakopane

Plus en détail

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007 Vision industrielle et télédétection - Détection d ellipses Guillaume Martinez 17 décembre 2007 1 Table des matières 1 Le projet 3 1.1 Objectif................................ 3 1.2 Les choix techniques.........................

Plus en détail

Mathématique et Automatique : de la boucle ouverte à la boucle fermée. Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans

Mathématique et Automatique : de la boucle ouverte à la boucle fermée. Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans Mathématique et Automatique : de la boucle ouverte à la boucle fermée Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans Maitine.Bergounioux@labomath.univ-orleans.fr Plan 1. Un peu de

Plus en détail

Raisonnement par récurrence Suites numériques

Raisonnement par récurrence Suites numériques Chapitre 1 Raisonnement par récurrence Suites numériques Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence. Limite finie ou infinie d une suite.

Plus en détail

Resolution limit in community detection

Resolution limit in community detection Introduction Plan 2006 Introduction Plan Introduction Introduction Plan Introduction Point de départ : un graphe et des sous-graphes. But : quantifier le fait que les sous-graphes choisis sont des modules.

Plus en détail

Manuel d utilisation 26 juin 2011. 1 Tâche à effectuer : écrire un algorithme 2

Manuel d utilisation 26 juin 2011. 1 Tâche à effectuer : écrire un algorithme 2 éducalgo Manuel d utilisation 26 juin 2011 Table des matières 1 Tâche à effectuer : écrire un algorithme 2 2 Comment écrire un algorithme? 3 2.1 Avec quoi écrit-on? Avec les boutons d écriture........

Plus en détail

BAREME sur 40 points. Informatique - session 2 - Master de psychologie 2006/2007

BAREME sur 40 points. Informatique - session 2 - Master de psychologie 2006/2007 BAREME ur 40 point Informatique - eion 2 - Mater de pychologie 2006/2007 Bae de donnée PRET de MATERIEL AUDIO VISUEL. Remarque : Le ujet comporte 7 page. Vérifier qu il et complet avant de commencer. Une

Plus en détail

Cours d algorithmique pour la classe de 2nde

Cours d algorithmique pour la classe de 2nde Cours d algorithmique pour la classe de 2nde F.Gaudon 10 août 2009 Table des matières 1 Avant la programmation 2 1.1 Qu est ce qu un algorithme?................................. 2 1.2 Qu est ce qu un langage

Plus en détail

Plus courts chemins, programmation dynamique

Plus courts chemins, programmation dynamique 1 Plus courts chemins, programmation dynamique 1. Plus courts chemins à partir d un sommet 2. Plus courts chemins entre tous les sommets 3. Semi-anneau 4. Programmation dynamique 5. Applications à la bio-informatique

Plus en détail

FICHE UE Licence/Master Sciences, Technologies, Santé Mention Informatique

FICHE UE Licence/Master Sciences, Technologies, Santé Mention Informatique NOM DE L'UE : Algorithmique et programmation C++ LICENCE INFORMATIQUE Non Alt Alt S1 S2 S3 S4 S5 S6 Parcours : IL (Ingénierie Logicielle) SRI (Systèmes et Réseaux Informatiques) MASTER INFORMATIQUE Non

Plus en détail

INTRODUCTION. 1 k 2. k=1

INTRODUCTION. 1 k 2. k=1 Capes externe de mathématiques : session 7 Première composition INTRODUCTION L objet du problème est l étude de la suite (s n n définie par : n, s n = Dans une première partie, nous nous attacherons à

Plus en détail

Cours de Recherche Opérationnelle IUT d Orsay. Nicolas M. THIÉRY. E-mail address: Nicolas.Thiery@u-psud.fr URL: http://nicolas.thiery.

Cours de Recherche Opérationnelle IUT d Orsay. Nicolas M. THIÉRY. E-mail address: Nicolas.Thiery@u-psud.fr URL: http://nicolas.thiery. Cours de Recherche Opérationnelle IUT d Orsay Nicolas M. THIÉRY E-mail address: Nicolas.Thiery@u-psud.fr URL: http://nicolas.thiery.name/ CHAPTER 1 Introduction à l optimisation 1.1. TD: Ordonnancement

Plus en détail

Cours de Master Recherche

Cours de Master Recherche Cours de Master Recherche Spécialité CODE : Résolution de problèmes combinatoires Christine Solnon LIRIS, UMR 5205 CNRS / Université Lyon 1 2007 Rappel du plan du cours 16 heures de cours 1 - Introduction

Plus en détail

LA PHYSIQUE DES MATERIAUX. Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE

LA PHYSIQUE DES MATERIAUX. Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE LA PHYSIQUE DES MATERIAUX Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE Pr. A. Belayachi Université Mohammed V Agdal Faculté des Sciences Rabat Département de Physique - L.P.M belayach@fsr.ac.ma 1 1.Le réseau

Plus en détail

LE PROBLEME DU PLUS COURT CHEMIN

LE PROBLEME DU PLUS COURT CHEMIN LE PROBLEME DU PLUS COURT CHEMIN Dans cette leçon nous définissons le modèle de plus court chemin, présentons des exemples d'application et proposons un algorithme de résolution dans le cas où les longueurs

Plus en détail

Quelques algorithmes simples dont l analyse n est pas si simple

Quelques algorithmes simples dont l analyse n est pas si simple Quelques algorithmes simples dont l analyse n est pas si simple Michel Habib habib@liafa.jussieu.fr http://www.liafa.jussieu.fr/~habib Algorithmique Avancée M1 Bioinformatique, Octobre 2008 Plan Histoire

Plus en détail

Compression Compression par dictionnaires

Compression Compression par dictionnaires Compression Compression par dictionnaires E. Jeandel Emmanuel.Jeandel at lif.univ-mrs.fr E. Jeandel, Lif CompressionCompression par dictionnaires 1/25 Compression par dictionnaire Principe : Avoir une

Plus en détail

Faculté des sciences Département de mathématiques. Théorie des graphes

Faculté des sciences Département de mathématiques. Théorie des graphes Faculté des sciences Département de mathématiques Théorie des graphes Deuxièmes bacheliers en sciences mathématiques Année académique 2009 2010 Michel Rigo Table des matières Introduction 1 Chapitre I.

Plus en détail

Algorithmes de recherche

Algorithmes de recherche Algorithmes de recherche 1 Résolution de problèmes par recherche On représente un problème par un espace d'états (arbre/graphe). Chaque état est une conguration possible du problème. Résoudre le problème

Plus en détail

Introduction à la théorie des graphes

Introduction à la théorie des graphes CAHIERS DE LA CRM Introduction à la théorie des graphes Didier Müller CAHIER N O 6 COMMISSION ROMANDE DE MATHÉMATIQUE Table des matières Avant-propos But de ce fascicule................................

Plus en détail

Pourquoi l apprentissage?

Pourquoi l apprentissage? Pourquoi l apprentissage? Les SE sont basés sur la possibilité d extraire la connaissance d un expert sous forme de règles. Dépend fortement de la capacité à extraire et formaliser ces connaissances. Apprentissage

Plus en détail

Equipement. électronique

Equipement. électronique MASTER ISIC Les générateurs de fonctions 1 1. Avant-propos C est avec l oscilloscope, le multimètre et l alimentation stabilisée, l appareil le plus répandu en laboratoire. BUT: Fournir des signau électriques

Plus en détail

Bleu comme un Schtroumpf Démarche d investigation

Bleu comme un Schtroumpf Démarche d investigation TP Bleu comme un Schtroumpf Démarche d investigation Règles de sécurité Blouse, lunettes de protection, pas de lentilles de contact, cheveux longs attachés. Toutes les solutions aqueuses seront jetées

Plus en détail

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Alain Rakotomamonjy - Gilles Gasso. INSA Rouen -Département ASI Laboratoire PSI Introduction au Data-Mining p. 1/25 Data-Mining : Kèkecé? Traduction : Fouille de données. Terme

Plus en détail

Le Master Mathématiques et Applications

Le Master Mathématiques et Applications Le Master Mathématiques et Applications Franck BOYER franck.boyer@univ-amu.fr Institut de Mathématiques de Marseille Aix-Marseille Université Marseille, 20 Mai 2014 1/ 16 Structure générale Vue d ensemble

Plus en détail

L apprentissage automatique

L apprentissage automatique L apprentissage automatique L apprentissage automatique L'apprentissage automatique fait référence au développement, à l analyse et à l implémentation de méthodes qui permettent à une machine d évoluer

Plus en détail

3. SPÉCIFICATIONS DU LOGICIEL. de l'expression des besoins à la conception. Spécifications fonctionnelles Analyse fonctionnelle et méthodes

3. SPÉCIFICATIONS DU LOGICIEL. de l'expression des besoins à la conception. Spécifications fonctionnelles Analyse fonctionnelle et méthodes PLAN CYCLE DE VIE D'UN LOGICIEL EXPRESSION DES BESOINS SPÉCIFICATIONS DU LOGICIEL CONCEPTION DU LOGICIEL LA PROGRAMMATION TESTS ET MISE AU POINT DOCUMENTATION CONCLUSION C.Crochepeyre Génie Logiciel Diapason

Plus en détail

Une forme générale de la conjecture abc

Une forme générale de la conjecture abc Une forme générale de la conjecture abc Nicolas Billerey avec l aide de Manuel Pégourié-Gonnard 6 août 2009 Dans [Lan99a], M Langevin montre que la conjecture abc est équivalente à la conjecture suivante

Plus en détail

Calcul intégral élémentaire en plusieurs variables

Calcul intégral élémentaire en plusieurs variables Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement

Plus en détail

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques Université de Provence Topologie 2 Cours3. Applications continues et homéomorphismes 1 Rappel sur les images réciproques Soit une application f d un ensemble X vers un ensemble Y et soit une partie P de

Plus en détail

Jean-Philippe Préaux http://www.i2m.univ-amu.fr/~preaux

Jean-Philippe Préaux http://www.i2m.univ-amu.fr/~preaux Colonies de fourmis Comment procèdent les colonies de fourmi pour déterminer un chemin presque géodésique de la fourmilière à un stock de nourriture? Les premières fourmis se déplacent au hasard. Les fourmis

Plus en détail

PHYSIQUE-CHIMIE. Partie I - Spectrophotomètre à réseau

PHYSIQUE-CHIMIE. Partie I - Spectrophotomètre à réseau PHYSIQUE-CHIMIE L absorption des radiations lumineuses par la matière dans le domaine s étendant du proche ultraviolet au très proche infrarouge a beaucoup d applications en analyse chimique quantitative

Plus en détail

Système de Gestion de Fichiers

Système de Gestion de Fichiers Chapitre 2 Système de Gestion de Fichiers Le système de gestion de fichiers est un outil de manipulation des fichiers et de la structure d arborescence des fichiers sur disque et a aussi le rôle sous UNIX

Plus en détail

Glossaire des nombres

Glossaire des nombres Glossaire des nombres Numérisation et sens du nombre (4-6) Imprimeur de la Reine pour l'ontario, 008 Nombre : Objet mathématique qui représente une valeur numérique. Le chiffre est le symbole utilisé pour

Plus en détail

La médiatrice d un segment

La médiatrice d un segment EXTRT DE CURS DE THS DE 4E 1 La médiatrice d un segment, la bissectrice d un angle La médiatrice d un segment Définition : La médiatrice d un segment est l ae de smétrie de ce segment ; c'est-à-dire que

Plus en détail

Fondements de l informatique Logique, modèles, et calculs

Fondements de l informatique Logique, modèles, et calculs Fondements de l informatique Logique, modèles, et calculs Cours INF423 de l Ecole Polytechnique Olivier Bournez Version du 20 septembre 2013 2 Table des matières 1 Introduction 9 1.1 Concepts mathématiques........................

Plus en détail

Rappels sur les suites - Algorithme

Rappels sur les suites - Algorithme DERNIÈRE IMPRESSION LE 14 septembre 2015 à 12:36 Rappels sur les suites - Algorithme Table des matières 1 Suite : généralités 2 1.1 Déition................................. 2 1.2 Exemples de suites............................

Plus en détail

Bachelor Informatique et Systèmes de Communication

Bachelor Informatique et Systèmes de Communication INFORMATIQUE ET SYSCOM Bachelor Informatique et Systèmes de Communication Prof.E.Telatar,SylvianeDalMas, Cecilia Bigler et Martine Emery 1 SUJETS ABORDÉS Rappel conditions passage en 3 ème Branches de

Plus en détail

Logiciel Libre Cours 3 Fondements: Génie Logiciel

Logiciel Libre Cours 3 Fondements: Génie Logiciel Logiciel Libre Cours 3 Fondements: Génie Logiciel Stefano Zacchiroli zack@pps.univ-paris-diderot.fr Laboratoire PPS, Université Paris Diderot 2013 2014 URL http://upsilon.cc/zack/teaching/1314/freesoftware/

Plus en détail

Jade. Projet Intelligence Artificielle «Devine à quoi je pense»

Jade. Projet Intelligence Artificielle «Devine à quoi je pense» Jade Projet Intelligence Artificielle «Devine à quoi je pense» Réalisé par Djénéba Djikiné, Alexandre Bernard et Julien Lafont EPSI CSII2-2011 TABLE DES MATIÈRES 1. Analyse du besoin a. Cahier des charges

Plus en détail

Système de sécurité de périmètre INTREPID

Système de sécurité de périmètre INTREPID TM Système de sécurité de périmètre INTREPID La nouvelle génération de systèmes de sécurité de périmètre MicroPoint Cable combine la technologie brevetée de Southwest Microwave, la puissance d un micro

Plus en détail

Exclusion Mutuelle. Arnaud Labourel Courriel : arnaud.labourel@lif.univ-mrs.fr. Université de Provence. 9 février 2011

Exclusion Mutuelle. Arnaud Labourel Courriel : arnaud.labourel@lif.univ-mrs.fr. Université de Provence. 9 février 2011 Arnaud Labourel Courriel : arnaud.labourel@lif.univ-mrs.fr Université de Provence 9 février 2011 Arnaud Labourel (Université de Provence) Exclusion Mutuelle 9 février 2011 1 / 53 Contexte Epistémologique

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

GE Security. KILSEN série KSA700 Centrale de détection et d alarme Incendie analogique adressable. Manuel d utilisation

GE Security. KILSEN série KSA700 Centrale de détection et d alarme Incendie analogique adressable. Manuel d utilisation GE Security KILSEN série KSA700 Centrale de détection et d alarme Incendie analogique adressable Manuel d utilisation g ination imag at work Kilsen is a brand name of GE Security. www.gesecurity.net COPYRIGHT

Plus en détail

UFR d Informatique. FORMATION MASTER Domaine SCIENCES, TECHNOLOGIE, SANTE Mention INFORMATIQUE 2014-2018

UFR d Informatique. FORMATION MASTER Domaine SCIENCES, TECHNOLOGIE, SANTE Mention INFORMATIQUE 2014-2018 UFR d Informatique FORMATION MASTER Domaine SCIENCES, TECHNOLOGIE, SANTE Mention INFORMATIQUE 2014-2018 Objectif L UFR d informatique propose au niveau du master, deux spécialités sous la mention informatique

Plus en détail

Informatique Générale

Informatique Générale Informatique Générale Guillaume Hutzler Laboratoire IBISC (Informatique Biologie Intégrative et Systèmes Complexes) guillaume.hutzler@ibisc.univ-evry.fr Cours Dokeos 625 http://www.ens.univ-evry.fr/modx/dokeos.html

Plus en détail

Statistique : Résumé de cours et méthodes

Statistique : Résumé de cours et méthodes Statistique : Résumé de cours et méthodes 1 Vocabulaire : Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère

Plus en détail

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient

Plus en détail

GUIDE DU CANDIDAT BAC S CONCOURS AVENIR 2015 GUIDE DU CANDIDAT BAC «S» 2015. Page 1 sur 6

GUIDE DU CANDIDAT BAC S CONCOURS AVENIR 2015 GUIDE DU CANDIDAT BAC «S» 2015. Page 1 sur 6 GUIDE DU CANDIDAT BAC «S» 2015 Page 1 sur 6 CANDIDATURE Eligibilité : Peuvent s inscrire au Concours AVENIR : - Les élèves en terminale S (quelle que soit la spécialité), inscrits dans un lycée français

Plus en détail

L E Ç O N. Marches aléatoires. Niveau : Terminale S Prérequis : aucun

L E Ç O N. Marches aléatoires. Niveau : Terminale S Prérequis : aucun 9 L E Ç O N Marches aléatoires Niveau : Terminale S Prérequis : aucun 1 Chaînes de Markov Définition 9.1 Chaîne de Markov I Une chaîne de Markov est une suite de variables aléatoires (X n, n N) qui permet

Plus en détail

Chapitre 6. Fonction réelle d une variable réelle

Chapitre 6. Fonction réelle d une variable réelle Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette

Plus en détail

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Gilles Gasso, Stéphane Canu INSA Rouen -Département ASI Laboratoire LITIS 8 septembre 205. Ce cours est librement inspiré du cours DM de Alain Rakotomamonjy Gilles Gasso, Stéphane

Plus en détail

Grandes lignes ASTRÉE. Logiciels critiques. Outils de certification classiques. Inspection manuelle. Definition. Test

Grandes lignes ASTRÉE. Logiciels critiques. Outils de certification classiques. Inspection manuelle. Definition. Test Grandes lignes Analyseur Statique de logiciels Temps RÉel Embarqués École Polytechnique École Normale Supérieure Mercredi 18 juillet 2005 1 Présentation d 2 Cadre théorique de l interprétation abstraite

Plus en détail

Algorithmique et structures de données I

Algorithmique et structures de données I Algorithmique et structures de données I Riadh Ben Messaoud Université 7 novembre à Carthage Faculté des Sciences Économiques et de Gestion de Nabeul 1ère année Licence Fondamentale IAG 1ère année Licence

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

DISQUE DUR. Figure 1 Disque dur ouvert

DISQUE DUR. Figure 1 Disque dur ouvert DISQUE DUR Le sujet est composé de 8 pages et d une feuille format A3 de dessins de détails, la réponse à toutes les questions sera rédigée sur les feuilles de réponses jointes au sujet. Toutes les questions

Plus en détail

Organisation du parcours M2 IR Les unités d enseignements (UE) affichées dans la partie tronc commun sont toutes obligatoires, ainsi que le stage et

Organisation du parcours M2 IR Les unités d enseignements (UE) affichées dans la partie tronc commun sont toutes obligatoires, ainsi que le stage et Organisation du parcours M2 IR Les unités d enseignements (UE) affichées dans la partie tronc commun sont toutes obligatoires, ainsi que le stage et l'anglais. L'étudiant a le choix entre deux filières

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

OPTION SCIENCES BELLE-ISLE-EN-TERRE

OPTION SCIENCES BELLE-ISLE-EN-TERRE Serge Combet Professeur Mathématiques Collège de Belle-Isle-En-Terre OPTION SCIENCES BELLE-ISLE-EN-TERRE 2011-2012 Mathématiques & Informatique Sommaire I. Introduction... 5 II. Choix des logiciels...

Plus en détail

Algorithmes de Transmission et de Recherche de l Information dans les Réseaux de Communication. Philippe Robert INRIA Paris-Rocquencourt

Algorithmes de Transmission et de Recherche de l Information dans les Réseaux de Communication. Philippe Robert INRIA Paris-Rocquencourt Algorithmes de Transmission et de Recherche de l Information dans les Réseaux de Communication Philippe Robert INRIA Paris-Rocquencourt Le 2 juin 2010 Présentation Directeur de recherche à l INRIA Institut

Plus en détail

Faculté des Sciences Mathématiques, Physiques et Naturelles de Tunis

Faculté des Sciences Mathématiques, Physiques et Naturelles de Tunis UNIVERSITE TUNIS EL MANAR Faculté des Sciences Mathématiques, Physiques et Naturelles de Tunis Campus Universitaire-2092-EL MANAR2 Tél: 71 872 600 Fax: 71 885 350 Site web: www.fst.rnu.tn Présentation

Plus en détail

Statistiques Descriptives à une dimension

Statistiques Descriptives à une dimension I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des

Plus en détail

Chapitre 02. La lumière des étoiles. Exercices :

Chapitre 02. La lumière des étoiles. Exercices : Chapitre 02 La lumière des étoiles. I- Lumière monochromatique et lumière polychromatique. )- Expérience de Newton (642 727). 2)- Expérience avec la lumière émise par un Laser. 3)- Radiation et longueur

Plus en détail

Intelligence Artificielle Planification

Intelligence Artificielle Planification Intelligence Artificielle Planification Bruno Bouzy http://web.mi.parisdescartes.fr/~bouzy bruno.bouzy@parisdescartes.fr Licence 3 Informatique UFR Mathématiques et Informatique Université Paris Descartes

Plus en détail

LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN

LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN Les contenues de ce document sont la propriété exclusive de la société REVER. Ils ne sont transmis qu à titre d information et ne peuvent en aucun cas

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

Master d Informatique M1 Université Paris 7 - Denis Diderot Travail de Recherche Encadré Surf Bayesien

Master d Informatique M1 Université Paris 7 - Denis Diderot Travail de Recherche Encadré Surf Bayesien Master d Informatique M1 Université Paris 7 - Denis Diderot Travail de Recherche Encadré Surf Bayesien Denis Cousineau Sous la direction de Roberto di Cosmo Juin 2005 1 Table des matières 1 Présentation

Plus en détail

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12 Probabilités. I - Rappel : trois exemples. Exemple 1 : Dans une classe de 25 élèves, il y a 16 filles. Tous les élèves sont blonds ou bruns. Parmi les filles, 6 sont blondes. Parmi les garçons, 3 sont

Plus en détail