Principes de la conversion d énergie

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Principes de la conversion d énergie"

Transcription

1 CHAPITRE 4 Principes de la conversion d énergie Gérard-André CAPOLIO Conversion d'énergie 1

2 Machines tournantes Construction de base Les principales parties d une machine tournante sont: Corps de la machine: deux flasques supportant les roulements à billes une pièce centrale supportant le stator Stator: fer feuilleté et circulaire avec des encoches Enroulement statorique: bobines placées dans des encoches Rotor, fer feuilleté, enroulement ou cage, arbre, roulements à billes Rotor Des machines ont des pôles sur le stator ou le rotor Machine à induction Conversion d'énergie Corps du stator Bobinage stator 2

3 Machines tournantes Classification de base des machines électriques Machine à induction (asynchrone) utilisée essentiellement en moteur (monophasé et triphasé) vitesse dépendant de la charge Machine synchrone utilisée essentiellement en générateur (alternateur) génère la puissance sur le réseau électrique fonctionne à vitesse constante Machine à courant continu utilisée en moteur ou en générateur vitesse variable technologie de moins en moins utilisée (coût, maintenance) Conversion d'énergie 3

4 Concept: Les générateurs convertissent l énergie mécanique en énergie électrique Les moteurs convertissent l énergie électrique en énegie mécanique La construction des moteurs et des générateurs est équivalente. Un générateur peut fonctionner comme un moteur et vice versa L équilibre des puissances s exprime par: Générateur: puissance mécanique = puissance électrique + pertes Moteur: puissance électrique = puissance mécanique + pertes Conversion d'énergie 4

5 Concept: Equation de l équilibre des puissances: V I cos φ = T ω m + pertes électriques + pertes mécaniques où: ω m = 2 π n/60 est la vitesse angulaire en rad/sec n = vitesse de rotation en tr/min T = couple en *m pertes électriques = pertes fer et pertes cuivre ou aluminium pertes mécaniques = frottement, ventilation Conversion d'énergie 5

6 Conversion d énergie: (générateur) mécanique vers électrique Le champ magnétique est généré par un aimant ou un bobinage parcouru par un courant continu. Un bobinage circulaire tourne dans ce champ magnétique. Le flux dans la bobine change avec la rotation. Cette variation de flux induit une tension dans la bobine. Concept générateur Aimant Champ magnétique Bobine S Aimant Conversion d'énergie 6

7 Flux maximum Φ = B (D L) α = 0 r = nombre de spires B =induction Flux réduit Φ = B (D L) cos α D = diamètre de spire α L = longueur B S B S Conversion d'énergie 7

8 Flux nul Φ = 0 α = 90 B S Conversion d énergie: (générateur) mécanique vers électrique Le module du flux vaut: λ = ΦΝ r = B r D L cos α La spire tourne à une vitesse angulaire ω L angle α varie avec le temps α = ω t La tension induite est: E(t) = dλ / dt = - B D r L ω sin ω t Si le flux vaut Φ = B D L, la valeur efficace de la tension induite vaut: E = ωφ 2 r = 4.44 f Φ r Conversion d'énergie 8

9 Conversion d énergie: (générateur) mécanique vers électrique Si une résistance est connectée aux bornes de la spire tournante, la tension induite génère un courant alternatif dans la spire. Sa valeur efficace est: I ac = E / R Si les pertes sont négligées, la puissance électrique et la puissance mécanique sont identiques: P m = E I ac = I ac2 R = E 2 / R = ω T m = T m 2 π n / 60 Le couple nécessaire est tiré de l équation précédente: T m = I ac E / ω où : ω = 2 π n / 60 Conversion d'énergie 9

10 Conversion d énergie: (générateur) mécanique vers électrique Le champ magnétique vaut: H = B / µ o Le champ magnétique peut être généré par des aimants permanents ou par des bobines à p spires. La bobine est fixe sur chaque pôle et alimentée par un courant continu. Le courant nécessaire peut être calculé par le théorème d Ampere. Le trajet dans le fer est négligé, on ne tient compte que de l air. H (2. e) = I dc 2 p I dc = (2.e) H / 2 p Conversion d'énergie 10

11 Conversion d énergie : (générateur) mécanique vers électrique Exemple numérique: Le générateur de la figure a un bobinage r = 100 spires sur le rotor L entrefer est e = 0.2 cm. Le diamètre du rotor est D = 50 cm et sa longueur est L = 1 m Le rotor tourne à la vitesse de 3000 tr/min Le stator a deux pôles avec p spires et une induction B = 1.5 T Générateur élémentaire STATOR Pôle sud, p = 300 Entrefer D ROTOR Pôle nord, p = 300 Bobine, =100 S Conversion d'énergie 11

12 Conversion d énergie: Exemple numérique: Le bobinage rotor est chargé par une résistance de 90 Ω. Générateur élémentaire STATOR Pôle sud, p = 300 Entrefer Calculer a) le flux et le champ magnétique b) la puissance mécanique et le couple c) le courant continu équivalent nécessaire au stator pour avoir une induction B = 1.5 T S ROTOR Pôle nord, p = 300 Bobine, =100 Conversion d'énergie 12

13 Conversion d énergie: Exemple numérique: Flux et champ magnétique φ = B D L = 1.5 T 0.5 m 1m = 0.75 Wb H = B / µ 0 = 1.5 T / 4 π 10-7 H/m = A/m Tension induite dans le bobinage rotor, fréquence et valeur efficace f = n/60 = 3000/ 60 = 50 Hz E = 4.44 f r φ = =16.65kV Courant de charge I s = E / R = kv / 90 Ω = 185 A Conversion d'énergie 13

14 Conversion d énergie: Exemple numérique: Puissance et couple P = E I = 16.65k V 185A = 3.08MW ω = 2π n / 60 = 2π 3000 / 60 = 314rd/sec T = P / ω = 3.08MW/ 314rd/sec = 9800 m Courant nécessaire au stator I dc = H 2*e / p = ( Amp/m m) / (2 300) = 7.93 A Conversion d'énergie 14

15 Conversion d énergie : (moteur) électrique vers mécanique Le champ magnétique est généré par un aimant permanent ou une bobine alimentée par un courant continu. Une autre bobine est alimentée par un courant alternatif. L interaction entre le flux et le courant produit une force des deux côtés de la bobine rotor. Les deux forces produisent un couple T = F.D qui permet au rotor de tourner jusqu à alignement dans le champ. Génération de force I+ α F B F S I- Conversion d'énergie 15

16 Conversion d énergie : (moteur) électrique vers mécanique Quand le champ magnétique du rotor est aligné avec le pôle, le couple est nul. C est le point neutre. Le changement de direction du courant change le sens du couple qui mainteint la rotation. B Si le rotor tourne déjà, l inertie l entraîne au delà de cette ligne neutre. I+ S Si la rotation est synchrone du courant alternatif, la direction du courant alternatif change à la ligne neutre. I- Conversion d'énergie 16

17 Conversion d énergie : (moteur) électrique vers mécanique La vitesse du rotor est déterminée par la fréquence de la tension d alimentation. Ce moteur ne peut pas démarrer, mais il continue à tourner à vitesse constante après synchronisation. La force de chaque côté de la bobine rotor est: F = B L (i r ) Le couple est: T= F D = B L D r i = φ Ν r i La tension induite est: v = r (d φ /dt) = r φ ω sin (ωt). En substituant la tension dans l équation du couple, il vient: T = (v i) / ω = P / ω Chaque moteur peut fonctionner en générateur et vice versa. Les équations en générateur peuvent être utilisées en moteur. Ce moteur élémentaire explique le concept de conversion d énergie. Conversion d'énergie 17

MACHINES à COURANT CONTINU

MACHINES à COURANT CONTINU CHAPITRE 5 MACHINES à COURANT Gérard-André CAPOLINO 1 Construction de la machine Description Le principal avantage de la machine à courant continu est le contrôle simple du couple et de la vitesse Le stator

Plus en détail

Travaux Dirigés d électronique de puissance et d électrotechnique

Travaux Dirigés d électronique de puissance et d électrotechnique Travaux Dirigés d électronique de puissance et d électrotechnique Exercice 1: redresseur triphasé non commandé On étudie les montages suivants, alimentés par un système de tensions triphasé équilibré.

Plus en détail

MACHINES à INDUCTION. Gérard-André CAPOLINO. Machines à induction

MACHINES à INDUCTION. Gérard-André CAPOLINO. Machines à induction MACHINES à INDUCTION Gérard-André CAPOLINO 1 Généralités La machine à induction est utilisée en moteur ou en générateur Toutefois, l utilisation en moteur est plus fréquente. C est le moteur le plus utilisé

Plus en détail

GENERALITES SUR LES MACHINES SYNCHRONES

GENERALITES SUR LES MACHINES SYNCHRONES GENERALITES SUR LES MACHINES SYNCHRONES 1. Constitution 1-1. Rotor = inducteur Il est constitué d un enroulement parcouru par un courant d excitation Ie continu créant un champ magnétique 2p polaire. Il

Plus en détail

APPLICATIONS DIRECTES

APPLICATIONS DIRECTES PSI FEUILLE D EXERCICES DE SCIENCES PHYSIQUES N 23 11/02/2017 2016/2017 Thème: Conversion électro-magnéto-mécanique (1) APPLICATIONS DIRECTES 1. Electroaimant de levage On considère l électroaimant représenté

Plus en détail

Circuits triphasés 1

Circuits triphasés 1 Circuits triphasés 1 Création d'un système de tensions triphasées N2 e3 e2 N1 Soit 3 bobines fixes de N spires (N1=N2=N3=N) (stator) et un aimant (rotor) entraîné àla vitesse ω. En canalisant le flux par

Plus en détail

Chapitre 2 Moteur Asynchrone triphasé

Chapitre 2 Moteur Asynchrone triphasé Chapitre 2 Moteur Asynchrone triphasé 1) création d'un champ tournant Considérons un ensemble de trois bobines coplanaires et dont les axes concourent en un même point O. Ces axes forment entre eux des

Plus en détail

3) Généralisation La force électromagnétique s exerçant sur la partie mobile d un circuit magnétique peut

3) Généralisation La force électromagnétique s exerçant sur la partie mobile d un circuit magnétique peut Introduction : Phénomène d induction : Conversion de puissance Chapitre 2 Conversion électro-magnéto-mécanique énergie mécanique énergie électrique Principales propriétés de la conversion Étude d un contacteur

Plus en détail

Machines à courant continu

Machines à courant continu Machines à courant continu Une autre famille de machines électriques utilisent pour le stator un champ magnétique indépendant du temps (et non tournant comme les machines synchrones). Ce champ magnétique

Plus en détail

Cours de Physique appliquée. La machine synchrone triphasée. Terminale STI Génie Electrotechnique Fabrice Sincère ; version 1.0.5

Cours de Physique appliquée. La machine synchrone triphasée. Terminale STI Génie Electrotechnique Fabrice Sincère ; version 1.0.5 Cours de Physique appliquée La machine synchrone triphasée Terminale STI Génie Electrotechnique Fabrice Sincère ; version 1.0.5 1 Sommaire 1- Constitution 1-1- Rotor 1-2- Stator 2- Types de fonctionnement

Plus en détail

TD ELECTROTECHNIQUE 1 ère année Module MC2-2. V. Chollet - TD-Trotech07-28/08/2006 page 1

TD ELECTROTECHNIQUE 1 ère année Module MC2-2. V. Chollet - TD-Trotech07-28/08/2006 page 1 TD ELECTROTECHNIQUE 1 ère année Module MC2-2 V. Chollet - TD-Trotech07-28/08/2006 page 1 IUT BELFORT MONTBELIARD Dpt Mesures Physiques TD ELECTROTECHNIQUE n 1 Avec l aide du cours, faire une fiche faisant

Plus en détail

Variable Nom Unité Formule E Force électromotrice (fem) Volt (V) K Constante définie lors de la fabrication de la machine

Variable Nom Unité Formule E Force électromotrice (fem) Volt (V) K Constante définie lors de la fabrication de la machine I- Généralités Le point commun des méthodes de production d électricité par éolienne, centrale hydraulique ou centrale nucléaire est la transformation (ou conversion) mécanique/électrique. Elle est présente

Plus en détail

VI.1 Présentation de Machine Synchrone (MS)

VI.1 Présentation de Machine Synchrone (MS) Chapitre IV Modélisation et Simulation des Machines Synchrones 9 VI. Présentation de Machine Synchrone (MS) La machine synchrone, appelée ALTERNATEUR si elle fonctionne en génératrice, fournit un courant

Plus en détail

CONVERSION D ENERGIE

CONVERSION D ENERGIE CONVERSION D ENERGIE 1- Mise en situation Les principales sources d énergie mises en oeuvre industriellement sont l énergie électrique et l énergie mécanique. Disposant, en général, de l une ou de l autre

Plus en détail

Étude de la MACHINE A COURANT CONTINU

Étude de la MACHINE A COURANT CONTINU Étude de la MACHINE A COURANT CONTINU Plan de la présentation Introduction Constitution d une MCC Le Stator Le Collecteur Le Rotor Modèles et caractéristiques d une MCC Caractéristique Couple / Vitesse

Plus en détail

Chapitre 5 : magnétisme et champs tournants

Chapitre 5 : magnétisme et champs tournants Chapitre 5 : magnétisme et champs tournants A Rappels sur le magnétisme I mise en évidence expérimentale de l induction électromagnétique II Application : alternateur III loi de Lenz IV flux magnétique

Plus en détail

Machine à courant continu

Machine à courant continu Sciences de l ngénieur PAGE 172 Machine à courant continu 1 - Magnétisme 1-1 aimant permanent Un aimant permanent est un corps qui a la propriété d'attirer le fer. On distingue Les aimants naturels tels

Plus en détail

Chapitre 9. Conversion d énergie électromécanique. 9.1 Introduction. 9.2 Système à simple excitation

Chapitre 9. Conversion d énergie électromécanique. 9.1 Introduction. 9.2 Système à simple excitation Chapitre 9 Conversion d énergie électromécanique 9.1 Introduction La conversion d énergie électromécanique est une partie intégrale de la vie de tous les jours. Que ce soit les grandes centrales hydoélectriques

Plus en détail

N.L.Technique FONCTION CONVERTIR : MOTEUR ASYNCHRONE S.CHARI

N.L.Technique FONCTION CONVERTIR : MOTEUR ASYNCHRONE S.CHARI I. Description Le moteur asynchrone est constitué de deux parties distinctes : le stator et le rotor. I.. Stator (partie fixe du moteur) I... Présentation Il est identique à celui des machines synchrones,

Plus en détail

LA MACHINE ASYNCHRONE

LA MACHINE ASYNCHRONE Objectif terminal : A la fin de la séquence, l élève sera capable de : _ justifier le choix du convertisseur d énergie FONCTION CONVERTIR L ENERGIE LA MACHINE ASYNCHRONE Objectif intermédiaire : _ identifier

Plus en détail

Electromécanique I Conversion électromécanique II

Electromécanique I Conversion électromécanique II Electromécanique I Conversion électromécanique II 14 Moteur à courant continu Christian Koechli Objectifs du cours Structure d un moteur à courant continu Principe de fonctionnement Equations caractéristiques

Plus en détail

et calculer sa valeur, b. l'expression littérale et la valeur de l'intensité nominale I 2N = 0,90. Toujours pour une intensité de fonctionnement I 2

et calculer sa valeur, b. l'expression littérale et la valeur de l'intensité nominale I 2N = 0,90. Toujours pour une intensité de fonctionnement I 2 BTS 2004 - L'installation électrique d'un atelier de teinture de tissus est alimenté par l'intermédiaire d'un transformateur monophasé (1), de rapport de transformation m = 0, 15 et de puissance nominale

Plus en détail

LE MOTEUR ASYNCHRONE TRIPHASE

LE MOTEUR ASYNCHRONE TRIPHASE LE MOTEUR ASYNCHRONE TRIPHASE DUFOUR GRACZYK Page 1/5 I- Réseau triphasé Il s agit d un réseau de 3 tensions alternatives de même fréquence déphasées dans le temps d un angle de 120 (2. /3 rad) Trois sources

Plus en détail

Transformateurs monophasés

Transformateurs monophasés CHAPITRE 2 Transformateurs monophasés Gérard-André CAPOLINO Transformateur 1PH 1 Analyse du circuit magnétique Le circuit magnétique est constitué d un noyau en fer feuilleté et d enroulements. Le courant

Plus en détail

Champ tournant, création de couple électromagnétique

Champ tournant, création de couple électromagnétique Champ tournant, création de couple électromagnétique SIMON SELLEM simon.sellem@ens-cachan.fr Motivation Toute machine tournante classique comporte un stator et un rotor. Il est nécessaire d étudier la

Plus en détail

1 Ah = 3600 C. I = Q t + _. La tension se désigne par la lettre U L unité est le volt : V

1 Ah = 3600 C. I = Q t + _. La tension se désigne par la lettre U L unité est le volt : V RAPPEL CORS ELECTRO TELEEC. Notion de base Quantité d électricité La quantité d électricité correspond au nombre d électrons transportés par un courant électrique ou emmagasinés dans une source. La quantité

Plus en détail

Circuit mobile dans un champ magnétique stationnaire

Circuit mobile dans un champ magnétique stationnaire Circuit mobile dans un champ magnétique stationnaire II. Conversion de puissance mécanique en puissance électrique 1. Retour sur les rails de Laplace ( générateur ) Les rails de Laplace vus dan des chapitres

Plus en détail

LA MACHINE SYNCHRONE

LA MACHINE SYNCHRONE LA MACHNE YNCHRONE. GÉNÉRALTÉ UR LA MACHNE YNCHRONE. Puissance mécanique Alternateur ou génératrice synchrone Puissance électrique Moteur synchrone La machine synchrone est une machine réversible. Elle

Plus en détail

Couplage des générateurs triphasés. Création d une tension induite. Bobine traversée par un champ magnétique ~ Équivalent à. Flux magnétique variable

Couplage des générateurs triphasés. Création d une tension induite. Bobine traversée par un champ magnétique ~ Équivalent à. Flux magnétique variable CHAPITRE III : Les systèmes triphasés Couplage des générateurs triphasés Bobine traversée par un champ magnétique ~ Flux magnétique variable Équivalent à J E Création d une tension induite Tension induite

Plus en détail

CONVERSION DE PUISSANCE

CONVERSION DE PUISSANCE Spé ψ 010-011 Devoir n 5 CONVERSION DE PUISSANCE Une locomotive électrique moderne est capable de circuler avec deux types de tension d alimentation rencontrés sur le réseau ferroviaire : 5 kv à 50 Hz

Plus en détail

OM questionnaire moteur tri.doc Page 1. Questionnaire

OM questionnaire moteur tri.doc Page 1. Questionnaire 26.03.2004 OM questionnaire moteur tri.doc Page 1 Questionnaire 1) Quelles sont les parties d'un moteur asynchrone? 2) Quelle est le nom de la partie fixe? 3) Si les tôles permettent une magnétisation

Plus en détail

Machine Synchrone. Alternateur synchrone

Machine Synchrone. Alternateur synchrone Machine ynchrone Alternateur synchrone Champ tournant Alternateur : principe de fonctionnement tructure du rotor (induit) tructure du stator (inducteur) Alternateur en charge «Champ tournant» Théorème

Plus en détail

Rappels: Les machines asynchrones

Rappels: Les machines asynchrones C hapitre I Rappels: Les machines asynchrones triphasés Contenu I. INTRODUCTION... 2 II. CONSTITUTION... 2 II.1. STATOR... 2 II.2. ROTOR... 3 II.2.1. Rotor à cage d'écureuil:... 3 II.2.2. Rotor bobiné

Plus en détail

BTS2006: Redressement d'un courant

BTS2006: Redressement d'un courant BTS2006: Redressement d'un courant 1. L'oscillogramme ci- dessous représente une tension, e(t) délivrée par une source de tension sinusoïdale. Les sensibilités verticale et horizontale de l'oscilloscope

Plus en détail

M 3 COURS : STRUCTURE ET FONCTIONNEMENT D'UN MOTEUR ASYNCHRONE 1 PRÉSENTATION 3 SYMBOLE 4 RAPPELS SUR LE RÉSEAU TRIPHASÉ

M 3 COURS : STRUCTURE ET FONCTIONNEMENT D'UN MOTEUR ASYNCHRONE 1 PRÉSENTATION 3 SYMBOLE 4 RAPPELS SUR LE RÉSEAU TRIPHASÉ COURS : STRUCTURE ET FONCTIONNEMENT D'UN MOTEUR ASYNCHRONE 1 PRÉSENTATION 3 SYMBOLE Le Moteur ASynchrone (MAS) est l'un des principaux actionneurs électriques utilisés dans l'industrie. D'une puissance

Plus en détail

10 Exercices corrigés sur le moteur asynchrone

10 Exercices corrigés sur le moteur asynchrone 10 Exercices corrigés sur le moteur asynchrone Exercice 1: Un moteur asynchrone tourne à 965 tr/min avec un glissement de 3,5 %. Déterminer le nombre de pôles du moteur sachant que la fréquence du réseau

Plus en détail

8 Exercices corrigés sur l alternateur

8 Exercices corrigés sur l alternateur 8 Exercices corrigés sur l alternateur Exercice 1: Un alternateur hexapolaire tourne à 1000 tr/min. Calculer la fréquence des tensions produites. Même question pour une vitesse de rotation de 100 tr/min.

Plus en détail

TECHNOLOGIE D ELECTRICITE MOTEURS SPECIAUX GJC. Lycée L.RASCOL 10, rue de la République BP ALBI CEDEX

TECHNOLOGIE D ELECTRICITE MOTEURS SPECIAUX GJC. Lycée L.RASCOL 10, rue de la République BP ALBI CEDEX TECHNOLOGIE D ELECTRICITE MOTEURS SPECIAUX GJC Lycée L.RASCOL 10, rue de la République BP 218. 81012 ALBI CEDEX SOMMAIRE Moteurs alternatifs Moteurs universels Moteurs asynchrones à induction et rotor

Plus en détail

V.1 Présentation de la Machine à Courant Continu (MCC)

V.1 Présentation de la Machine à Courant Continu (MCC) Chapitre V Modélisation et Simulation de la Machine à Courant Continu 36 V.1 Présentation de la Machine à Courant Continu (MCC) V.1 Généralités Les MCC de conception usuelle sont réalisées pour différentes

Plus en détail

Principe de fonctionnement. Donc :

Principe de fonctionnement. Donc : Principe de fonctionnement La variation de l induction magnétique sur le barreau entraine l apparition des courants induits dans celui-ci (courants de Foucault). D après la loi de Lenz, le barreau se met

Plus en détail

Machines alternatives

Machines alternatives Machines alternatives Si on déplace un aimant, on crée un champ magnétique donc la direction change au cours du temps. Le déplacement de cet aimant au voisinage d une aiguille aimantée (de boussole par

Plus en détail

LA MACHINE A COURANT CONTINU

LA MACHINE A COURANT CONTINU LA MACHINE A COURANT CONTINU I) Définition : Une machine à courant continu est une machine électrique tournante mettant en jeu des tensions et des courants continus. II) Principe de fonctionnement : Dans

Plus en détail

Machines à courant continu

Machines à courant continu Plan du cours Constitution Principe de fonctionnement en génératrice Principe de fonctionnement en moteur La réaction d induit Etude des transferts de puissance 1 Constitution bobine inducteur Une machine

Plus en détail

CONVERSION DE PUISSANCE

CONVERSION DE PUISSANCE Spé ψ 8-9 Devoir n 6 CONVERSION DE PUISSANCE UTILISATION DE L ENERGIE EOLIENNE Un aéromoteur entraîne une génératrice électrique destinée à alimenter une installation électrique. Pour les aéromoteurs de

Plus en détail

MOTEUR A COURANT CONTINU SHUNT

MOTEUR A COURANT CONTINU SHUNT MOTEUR A COURANT CONTINU SHUNT 1 / Rôle Les moteurs à courant continu, jadis très répandus, sont actuellement utilisés pour des applications nécessitant un fort couple ou une régulation vitesse très fine.

Plus en détail

Variation de de flux flux magnétique dans dans une une bobine = force électromotrice induite (f.e.m. = tension)

Variation de de flux flux magnétique dans dans une une bobine = force électromotrice induite (f.e.m. = tension) Chapitre IV : Électromagnétisme IV.7 Loi de LENZ Expérience : Champ magnétique variable Tension induite Bobine de n spires Variation de de flux flux magnétique dans dans une une bobine force électromotrice

Plus en détail

La machine à courant continu

La machine à courant continu La machine à courant continu 1 Généralités Historique : 1ere machine industrielle de l histoire Utilisation principalement en moteur de toute puissance (Commande et Vitesse variable simple). => tendance

Plus en détail

LE MOTEUR ASYNCHRONE TRIPHASE

LE MOTEUR ASYNCHRONE TRIPHASE LE MOTEUR ASYNCHRONE TRIPHASE Les moteurs asynchrones triphasés représentent plus de 80 % du parc moteur électrique. Ils sont utilisés pour transformer l énergie électrique en énergie mécanique grâce à

Plus en détail

PHYSIQUE II. Partie I - Moteur à aimant inducteur. r 1. Figure 1

PHYSIQUE II. Partie I - Moteur à aimant inducteur. r 1. Figure 1 PHYSIQUE II On se propose d examiner quelques principes de fonctionnement de deux types de moteurs électriques, à la fois sous les aspects électromagnétique et dynamique Les trois parties de ce problème

Plus en détail

CH24 : L alternateur synchrone

CH24 : L alternateur synchrone BTS électrotechnique 1 ère année - Sciences physiques appliquées CH24 : L alternateur synchrone Production d énergie électrique Problématique : Des essais ont été réalisés sur un alternateur synchrone

Plus en détail

Chapitre 5 : Moteur asynchrone

Chapitre 5 : Moteur asynchrone Chapitre 5 : Moteur asynchrone Introduction I / constitution du moteur asynchrone triphasé. 1. Stator ou inducteur 2. rotor ou induit 3. Symboles 4. plaque signalétique II / Principe de fonctionnement

Plus en détail

1.1) Stator ( inducteur )

1.1) Stator ( inducteur ) 1 ) Constitution Ces moteurs sont robustes, faciles à construire et peu coûteux. Ils sont intéressants, lorsque la vitesse du dispositif à entraîner n'a pas à être rigoureusement constante. 1.1) Stator

Plus en détail

Moteurs synchrones. 6

Moteurs synchrones. 6 Master Mécatronique 1. Cours Moteurs. J Diouri. 2010 Moteurs synchrones. 6 Servomoteurs synchrones à aimants permanents Références : Électrotechnique, Théodore Wildi, Électricité au service des machines,

Plus en détail

- ACTIONNEURS - MACHINE A COURANT CONTINU AVEC BALAIS

- ACTIONNEURS - MACHINE A COURANT CONTINU AVEC BALAIS LIAISON REFERENTIEL B.11 Les actionneurs Machine à courant continu avec balais. Thèmes : E1 - C122 Conversion électromécanique d énergie E4 C12 Comportement énergétique des systèmes Centre d intérêt :

Plus en détail

UNIVERSITE E SIDI BEL ABBES 2010 / 2011 FACULTE DES SCIENCES DE L INGENIEUR DEPARTEMENT D ELECTROTECHNIQUE Dr. BENDAOUD. TD de Machines Asynchrones

UNIVERSITE E SIDI BEL ABBES 2010 / 2011 FACULTE DES SCIENCES DE L INGENIEUR DEPARTEMENT D ELECTROTECHNIQUE Dr. BENDAOUD. TD de Machines Asynchrones UNIVERSITE E SIDI BEL ABBES 2010 / 2011 FACULTE DES SCIENCES DE L INGENIEUR DEPARTEMENT D ELECTROTECHNIQUE Dr. BENDAOUD TD de Machines Asynchrones Exercice N 1 : Un moteur asynchrone tourne à 965 tr/min

Plus en détail

Le Moteur Asynchrone Triphasé

Le Moteur Asynchrone Triphasé Le Moteur Asynchrone Triphasé DOSSIER RESSOURCES Première BAC PRO ELEEC - Lycée Professionnel Clément Ader Le moteur asynchrone triphasé - Dossier ressources 1/6 I- FONCTION : Les moteurs asynchrones triphasés

Plus en détail

Sciences Appliquées, chap 7.2 DANS LES MACHINES ÉLECTRIQUES

Sciences Appliquées, chap 7.2 DANS LES MACHINES ÉLECTRIQUES Sciences Appliquées, chap 7.2 MAGNÉTISME DANS LES MACHINES ÉLECTRIQUES 1 -Inducteur et induit...2 2 -Les pertes dans une machine électrique...2 3 -Le transformateur...3 4 -MCC et MCS...3 4.1 -Couple dans

Plus en détail

CH5 : Les machines alternatives

CH5 : Les machines alternatives BTS CRSA 2 ème année - Sciences physiques et chimiques appliquées CH5 : Les machines alternatives Objectifs : A l issue de la leçon, l étudiant doit : 5.1 Savoir décrire la conversion de puissance réalisée

Plus en détail

La machine à courant continu (MCC) Année 2006/2007

La machine à courant continu (MCC) Année 2006/2007 La machine à courant continu (MCC) Année 2006/2007 Ventilateur nduit bobiné nducteur Balais Collecteur Composition On distingue les éléments suivants: Les pôles inducteurs avec leurs enroulements (ou leurs

Plus en détail

LE MOTEUR ASYNCHRONE

LE MOTEUR ASYNCHRONE LE MOTEUR ASYNCHRONE I Principe de conversion de l énergie électrique en énergie mécanique : Phénomène physique : Un conducteur libre, fermant un circuit électrique, placé dans un champ magnétique, est

Plus en détail

UNIVERSITE E SIDI BEL ABBES 2010 /2011 FACULTE DES SCIENCES DE L INGENIEUR DEPARTEMENT D ELECTROTECHNIQUE

UNIVERSITE E SIDI BEL ABBES 2010 /2011 FACULTE DES SCIENCES DE L INGENIEUR DEPARTEMENT D ELECTROTECHNIQUE UNIVERSITE E SIDI BEL ABBES 2010 /2011 FACULTE DES SCIENCES DE L INGENIEUR DEPARTEMENT D ELECTROTECHNIQUE Licence : TDEE TD de machines synchrones Dr. BENDAOUD Exercice N 1 : Alternateur Un alternateur

Plus en détail

LE MOTEUR ASYNCHRONE

LE MOTEUR ASYNCHRONE 1. Introduction Un système automatisé domestique ou industriel pouvant être relié au réseau électrique sera donc alimenté par l énergie électrique alternative fournie par EDF. Dans ce cas, l actionneur

Plus en détail

Chapitre 7 : Moteur asynchrone

Chapitre 7 : Moteur asynchrone Chapitre 7 : Moteur asynchrone Introduction I / constitution du moteur asynchrone triphasé. 1. Stator ou inducteur 2. rotor ou induit a) rotor à cage d écureuil b) rotor bobiné 3. Symboles 4. plaque signalétique

Plus en détail

Conversion puissance Chap.4 Machine à courant continu - part1

Conversion puissance Chap.4 Machine à courant continu - part1 Conversion puissance Chap.4 Machine à courant continu - part1 1. Description et principe simplifié du fonctionnement d une MCC 1.1. Description de la machine 1.2. Explication simplifiée du principe de

Plus en détail

QCM 1 de Physique (STI)

QCM 1 de Physique (STI) QCM 1 de Physique (STI) Question 1 Une bobine est parcourue par un courant de 1 A. Sans noyau ferromagnétique, l intensité de l induction magnétique est de 4 mt, avec le noyau ferromagnétique elle est

Plus en détail

Le Moteur Asynchrone

Le Moteur Asynchrone Le Moteur Asynchrone Table des matières 1. Introduction...2 2. Principe de fonctionnement...2 2.1. principe du moteur synchrone...2 2.2. Principe du moteur asynchrone...2 2.3. Énonce du principe...3 2.4.

Plus en détail

MOTEURS ELECTRIQUES ASPECT MECANIQUE

MOTEURS ELECTRIQUES ASPECT MECANIQUE Sciences et Technologies de l Industrie et du Développement Durable MOTEURS ELECTRIQUES ASPECT MECANIQUE Energie et Environnement Cours T ale 1. Introduction MOTEURS ELECTRIQUES ASPECT MECANIQUE Les moteurs

Plus en détail

Chapitre 3 : MACHINES SYNCHRONE ET ASYNCHRONE

Chapitre 3 : MACHINES SYNCHRONE ET ASYNCHRONE Chapitre 3 : MACHINES SYNCHRONE ET ASYNCHRONE 1.Principe et description. Les machines synchones et asynchrones fonctionnent avec des champs magnétiques tournants créés par le stator. Le circuit rotorique

Plus en détail

MOTEUR ASYNCHRONE TRIPHASE

MOTEUR ASYNCHRONE TRIPHASE I - Principe de fonctionnement Le moteur asynchrone est une machine qui transforme de l énergie ELECTRIQUE en énergie MECANIQUE. Le fonctionnement est basé sur la production d un CHAMP TOURNANT. I.1 PRINCIPE

Plus en détail

RAPPELS DE PRINCIPES PHYSIQUES

RAPPELS DE PRINCIPES PHYSIQUES 1) RAPPELS DE PRINCIPES PHYSIQUES: 1.1) Effet du passage du courant électrique : Un conducteur parcouru par un courant électrique crée un champ magnétique. Le sens du champ dépend du sens de passage du

Plus en détail

S2.3 FORCE MOTRICE S2.3 FORCE MOTRICE RNCAP13-S2-3-FORCE-MOTRICE-APP

S2.3 FORCE MOTRICE S2.3 FORCE MOTRICE RNCAP13-S2-3-FORCE-MOTRICE-APP S2.3 FORCE MOTRICE 1 ) MOTEURS A COURANT CONTINU 1.1)Constitution 1.2) Moteur à courant continu à excitation séparée 1.3)Moteurs à courant continu à aimant permanent 1.4)Freinage 2 ) MOTEURS ASYNCHRONES

Plus en détail

Moteur synchrone autopiloté Moteur brushless

Moteur synchrone autopiloté Moteur brushless Moteur synchrone autopiloté Moteur brushless Moteur synchrone autopiloté Moteur brushless Moteur synchrone autopiloté OBJECTIFS Moteur brushless Identifier une machine synchrone Définir son principe de

Plus en détail

3.2.1 Transformateurs et modulateurs d énergie associés. Déterminer le nombre de pôles du moteur sachant que la fréquence du réseau est f = 50 Hz.

3.2.1 Transformateurs et modulateurs d énergie associés. Déterminer le nombre de pôles du moteur sachant que la fréquence du réseau est f = 50 Hz. Exercice MAS01 : moteur asynchrone Un moteur asynchrone tourne à 965 tr/min avec un glissement de 3,5 %. Déterminer le nombre de pôles du moteur sachant que la fréquence du réseau est f = 50 Hz. Exercice

Plus en détail

moteur asynchrone MOTEUR ASYNCHRONE

moteur asynchrone MOTEUR ASYNCHRONE MOTEUR ASYNCHRONE Rappel: trois bobines, dont les axes font entre eux des angles de... et alimentées par un réseau triphasé équilibré, crée dans l'entrefer un champ magnétique radial, tournant à la fréquence

Plus en détail

Documentation sur les moteurs électriques

Documentation sur les moteurs électriques Documentation sur les moteurs électriques Projet tutoré 2012-2013 De Terris, Sabot, Bedos, Geoffroy-Giralté, Tourneur Sommaire Présentation des types de moteurs page 3 I Généralités page 4 II Constitution

Plus en détail

N.L.Technique FONCTION CONVERTIR : MACHINE SYNCHRONE S.CHARI

N.L.Technique FONCTION CONVERTIR : MACHINE SYNCHRONE S.CHARI .L.Technique FOCTO CORTR : MACH YCHRO.CHAR. Alternateur La machine synchrone est un convertisseur réversible. lle peut fonctionner soit en génératrice soit en moteur. Lorsqu'elle fonctionne en génératrice,

Plus en détail

Moteur asynchrone triphasé

Moteur asynchrone triphasé triphasé 1. Constitution et principe de fonctionnement 1.1. Stator = inducteur Il est constitué de trois enroulements (bobines) parcourus par des courants alternatifs triphasés et possède p paires de pôles.

Plus en détail

Conversion puissance Chap.4 Machine à courant continu - part1

Conversion puissance Chap.4 Machine à courant continu - part1 Conversion puissance Chap.4 Machine à courant continu - part1 1. Description et principe simplifié du fonctionnement d une MCC 1.1. Description de la machine 1.2. Explication simplifiée du principe de

Plus en détail

I) Principe de fonctionnement d un moteur asynchrone triphasé

I) Principe de fonctionnement d un moteur asynchrone triphasé I) Principe de fonctionnement d un moteur asynchrone triphasé Disposition expérimentale Disposition réelle (Stator seul) Disposition expérimentale : Trois bobines, disposés à 20 l une par rapport à l autre,

Plus en détail

Sciences et technologie industrielles

Sciences et technologie industrielles Sciences et technologie industrielles Spécialité : Génie Electrotechnique Classe de terminale Programme d enseignement des matières spécifiques Sciences physiques et physique appliquée CE TEXTE REPREND

Plus en détail

Machines asynchrones : éléments de correction

Machines asynchrones : éléments de correction Machines asynchrones : éléments de correction VII.Fonctionnement en génératrice (parfois appelé alternateur asynchrone) 1. Réversibilité Les diagrammes de Fresnel ci dessous sont associés à une machine

Plus en détail

Chapitre 40. Machines synchrones triphasées. Constitution. Stator. Rotor. Fonctionnement en alternateur (génératrice). Avantages et inconvénients.

Chapitre 40. Machines synchrones triphasées. Constitution. Stator. Rotor. Fonctionnement en alternateur (génératrice). Avantages et inconvénients. Chapitre 40 1 Chapitre 40. Machines synchrones triphasées. Constitution. Stator. Rotor. Fonctionnement en alternateur (génératrice). Avantages et inconvénients. 2 Chapitre 40 Les machines synchrones 3

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE. Session 2011 PHYSIQUE APPLIQUÉE. Série : Sciences et Technologies Industrielles. Spécialité : Génie Électrotechnique

BACCALAURÉAT TECHNOLOGIQUE. Session 2011 PHYSIQUE APPLIQUÉE. Série : Sciences et Technologies Industrielles. Spécialité : Génie Électrotechnique BACCALAURÉAT TECHNOLOGIQUE Session 211 PHYSIQUE APPLIQUÉE Série : Sciences et Technologies Industrielles Spécialité : Génie Électrotechnique Durée de l épreuve : 4 heures coefficient : 7 L emploi de toutes

Plus en détail

LES MOTEURS SPECIAUX 1-Les moteurs universels : Constitution : Principe de fonctionnement : Utilisation :

LES MOTEURS SPECIAUX 1-Les moteurs universels : Constitution : Principe de fonctionnement : Utilisation : LES MOTEURS SPECIAUX 1-Les moteurs universels : Le moteur universel est un moteur de constitution identique à celle d un moteur à courant continu à excitation série. Il tient son nom di fait qu il peut

Plus en détail

3. Puissance alternative et systèmes triphasés

3. Puissance alternative et systèmes triphasés Master 1 Mécatronique J Diouri. Puissance alternative et systèmes triphasés Doc. Electrabel Puissance en alternatif Puissance instantanée [ I cos( ω t) ][ U cos( ω + )] p( t) = ui = t ϕ c c Valeur moyenne

Plus en détail

3 e ANNÉE SYSTÈMES ÉLECTRONIQUES ET ÉLECTROTECHNIQUES

3 e ANNÉE SYSTÈMES ÉLECTRONIQUES ET ÉLECTROTECHNIQUES 3 e ANNÉE SYSTÈMES ÉLECTRONIQUES ET ÉLECTROTECHNIQUES Durée : 4 heures L'épreuve est d'une durée de quatre heures et est constituée de deux parties indépendantes (électrotechnique et électronique). Les

Plus en détail

BEP ET Leçon 22 Moteur à courant continu Page 1/10

BEP ET Leçon 22 Moteur à courant continu Page 1/10 BEP ET Leçon 22 Moteur à courant continu Page 1/10 1. FONCTIONNEMENT Stator : il est aussi appelé inducteur ou excitateur et c est lui qui crée le champ magnétique. Rotor : il est aussi appelé induit.

Plus en détail

Machine à courant continu

Machine à courant continu Machine à courant continu 1- Constitution 1-1- L'inducteur (ou circuit d'excitation) 1-2- L'induit (circuit de puissance) 1-3- Le collecteur et les balais 2- Principe de fonctionnement 2-1- Fonctionnement

Plus en détail

Um = Ueff 2 Ucomp = Usim 3

Um = Ueff 2 Ucomp = Usim 3 COURS TSI : CI-3 CORRIGÉ E2 : STRUCTURE ET FONCTIONNEMENT D'UN MOTEUR ASYNCHRONE page 1 / 6 1 PRÉSENTATION 3 SYMBOLE Le Moteur ASynchrone (MAS) est l'un des principaux actionneurs électriques utilisés

Plus en détail

Machine à courant continu

Machine à courant continu Machine à courant continu 1. Présentation générale 1.1. Conversion d énergie La machine à courant continu est réversible, c'est-à-dire que la constitution d'une génératrice (G) est identique à celle du

Plus en détail

I) Rappel sur la machine à courant continu 1.1 Principe de fonctionnement d un moteur à courant continu

I) Rappel sur la machine à courant continu 1.1 Principe de fonctionnement d un moteur à courant continu I) Rappel sur la machine à courant continu 1.1 Principe de fonctionnement d un moteur à courant continu Considérons un rotor très simplifié, sur lequel on a bobiné une seule spire, dont les extrémités

Plus en détail

CEM Conversion électromécanique d énergie cours CEM-2 moteur asynchrone. Cours CEM 2. La conversion électromécanique d énergie

CEM Conversion électromécanique d énergie cours CEM-2 moteur asynchrone. Cours CEM 2. La conversion électromécanique d énergie Cours Cours CEM 2 La conversion électromécanique d énergie TSI1 TSI2 X Période La machine asynchrone triphasée 1 2 3 4 5 Cycle 2 : Conversion électromécanique Durée : 3 semaines X 1- Introduction : Les

Plus en détail

Chapitre 8 : Le champ magnétique. Force magnétique sur une particule animée d une vitesse v et se déplaçant dans un champ magnétique B

Chapitre 8 : Le champ magnétique. Force magnétique sur une particule animée d une vitesse v et se déplaçant dans un champ magnétique B Chapitre 8 : Le champ magnétique Produit vectoriel Règle de la main droite + Force magnétique sur une particule animée d une vitesse v et se déplaçant dans un champ magnétique B F B = q v B Et sa grandeur

Plus en détail

Sommaire. Projet 1 Éclairage d un entrepôt - Première partie... 8 Cours 1 Grandeurs sinusoïdales... 10

Sommaire. Projet 1 Éclairage d un entrepôt - Première partie... 8 Cours 1 Grandeurs sinusoïdales... 10 Sommaire Projet 1 Éclairage d un entrepôt - Première partie... 8 Cours 1 Grandeurs sinusoïdales... 10 Projet Éclairage d un entrepôt - Deuxième partie... 1 Cours Puissances et compensation en monophasé...

Plus en détail

Induction, AC. v 7s

Induction, AC. v 7s 16-17 Induction, AC v 7s 1 Loi de Faraday Faraday découvre en 1830 qu' un champ magnétique peut induire un courant électrique dans une spire de fil électrique. Il constate que la condition nécessaire est

Plus en détail

I. Le champ magnétique

I. Le champ magnétique Chap 2 : L électromagnétisme Page 1 / 7 I. Le champ magnétique Le magnétisme est l étude des phénomènes que présentent les matériaux aimantés. 1. Aimants a. Définitions b. Expériences Expérience 1 : Passons

Plus en détail

Anémomètre à fil chaud

Anémomètre à fil chaud EPEUVE OPTIONNELLE de PHYSIQUE Anémomètre à fil chaud Un fil de platine de longueur l et de diamètre d est parcouru par un courant électrique qui lui fournit une puissance maintenue constante par un dispositif

Plus en détail

premier moteur à induction

premier moteur à induction Histoire machine asynchrone 1883 Nicolas Tesla (1856-1943) premier moteur à induction Nicolas Tesla conçoit son premier moteur à induction biphasé 350 W (à Strasbourg) Histoire machine asynchrone XXe développement

Plus en détail

M-S Cours - 1 MACHINE SYNCHRONE

M-S Cours - 1 MACHINE SYNCHRONE M-S Cours - 1 MACHINE SYNCHRONE - 1 - PRESENTATION : La machine synchrone, appelée ALTERNATEUR si elle fonctionne en génératrice, fournit un courant alternatif. En fonctionnement MOTEUR sa fréquence de

Plus en détail