CONTRÔLE DE RECHERCHE OPÉRATIONNELLE. Le devoir est noté sur 30 points. Tout document autorisé. Calculatrices et calculettes interdites.

Dimension: px
Commencer à balayer dès la page:

Download "CONTRÔLE DE RECHERCHE OPÉRATIONNELLE. Le devoir est noté sur 30 points. Tout document autorisé. Calculatrices et calculettes interdites."

Transcription

1 CONTRÔLE DE RECHERCHE OPÉRATIONNELLE FÉVRIER 2014 Le devoir est noté sur 30 points. Tout document autorisé. Calculatrices et calculettes interdites. 1. UN PROBLÈME DE SAC-À-DOS (5 POINTS) Considérons le problème de sac-à-dos avec n objets. L objet i a un poids égal à a i et une valeur égale à v i. La capacité est notée K. Pour rappel, on souhaite trouver I {1,...,n} maximisant i I v i et tel que i I a i K. 1. Ecrire ce problème comme un programme linéaire en nombres entiers, avec des variables binaires. (1 pt) On spécifie maintenant les valeurs n = 13, K = 48 et i v i a i Résoudre la relaxation continue de programme donné en 1., pour ces valeurs. (2 pts) On pourra s aider des valeurs approchées suivantes : 7/6 = 1.17, 13/6 = 2.17, 17/6 = 2.83, 13/7 = 1.86, 16/7 = 2.29, 20/7 = 2.86, 20/9 = Trouver une solution de programme donné en 1. qui soit à moins de 4% de l optimum. Justifier votre réponse. (2 pts) 2. UN PROBLÈME DE DISTRIBUTION (7 POINTS) On considère une entreprise fabriquant des voitures. Cette entreprise possède n usines numérotées de 1 à n. Elle produit m modèles différents de voitures. L usine i peut produire par mois entre l i j et u i j voitures du modèle j, et au total pas plus de q i voitures. Il y a de plus r concessionnaires numérotés de 1 à r. Tous les mois, chaque concessionnaire k émet une demande d k j de voitures du modèle j. Les nombres l i j, u i j, q i et d k j sont tous supposés entiers. L entreprise connaît le coût de production unitaire p i j du modèle j au sein de l usine i. Elle connaît également le coût de transport unitaire c i j k d une voiture du modèle j depuis l usine i jusqu au concessionnaire k. On suppose que les coûts de production et de transport sont proportionnels au nombre de voitures concernées. 1

2 2 FÉVRIER 2014 L entreprise souhaite minimiser ses coûts totaux mensuels (production + transport) tout en satisfaisant la demande de chaque concessionnaire. Une première méthode consiste à modéliser le problème comme un programme linéaire en nombres entiers. Pour cela, on introduit deux familles de variables : y i j le nombre de voitures du modèle j produites dans l usine i. x i j k le nombre de voitures du modèle j produites dans l usine i et acheminées vers le concessionnaire k. Ces variables sont des variables entières (on ne s autorise pas à approximer les quantités qu elles représentent par des réels). 1. Ecrire ce problème de minimisation sous la forme d un programme linéaire en nombres entiers. (2 pts) On pourrait donc résoudre ce problème à l aide d un solver de programme linéaire en nombres entiers. A ce stade, il est difficile de dire si ce problème est polynomial ou NPdifficile. On s intéresse maintenant à une seconde méthode basée sur les flots. 2. Montrer que l inégalité n q i i=1 r k=1 j =1 est une condition nécessaire à l existence d une solution. (1 pt) On suppose désormais que l inégalité (1) est satisfaite. m d k j (1) 3. Montrer que ce problème se modélise en fait comme un problème de b-flot. (2 pts) Pour cela, on introduira un graphe orienté avec un sommet pour chaque usine, i.e. pour chaque i {1,..., n} un sommet pour chaque couple (usine,modèle), i.e. pour chaque (i, j ) avec i {1,...,n} et j {1,...,m} un sommet pour chaque couple (concessionnaire,modèle), i.e. pour chaque (k, j ) avec k {1,...,r } et j {1,...,m} un sommet dummy, noté o, et on précisera les arcs de ce graphe, ainsi que pour chaque sommet la valeur de la fonction b( ), et pour chaque arc les capacités et les coûts attachés. 4. Expliquer alors pourquoi le problème se résout en temps polynomial. (2 pts) 3. PLUS COURTS CHEMINS ET ACHAT DE POUTRES (6 POINTS) 3.1. Plus courts chemins avec contrainte de nombre d arcs. On se donne un graphe orienté D = (V, A) sans circuit, muni d une fonction de coût c : A R +. On se fixe un entier b. Etant donnés deux sommets s et t, on souhaite trouver le s-t chemin de plus petit coût ayant

3 CONTRÔLE DE RECHERCHE OPÉRATIONNELLE 3 au plus b arcs. Expliquer pourquoi ce problème peut se résoudre à l aide d un algorithme polynomial. (1 pt) 3.2. Application: achat de poutres. La construction d une structure métallique nécessite l utilisation d un ensemble P de poutres. On va donc acheter ces poutres. Pour chaque poutre p P, on connaît σ p la valeur minimale que doit prendre sa section. On dispose d un catalogue dans lequel sont proposés n types de poutres, chaque type i {1,...,n} étant caractérisé par une section S i. Le prix d une poutre de section S i est q i > 0. On suppose que les S i et les q i sont ordonnées par valeurs croissantes, i.e. que si i < j, alors S i < S j et q i < q j. On souhaite pouvoir réaliser la structure en minimisant les coûts liés aux achats de poutres. Pour toute poutre p, tout type i tel que S i σ p convient. On supposera que S n max p P σ p. 1. Montrer que ce problème de minimisation peut être résolu en temps polynomial par un algorithme direct tout simple. (1 pt) A ce stade, on ne se sert pas de l algorithme proposé en 3.1. On suppose maintenant que pour des raisons de gestion, le nombre de types différents que l entreprise s autorise à acheter est borné par un certain k entier. Notez que si k n, le problème est identique à celui traité en 1. On considère un graphe orienté D = (V, A) dont les sommets sont les types de poutres ainsi que deux autres sommets s et t. Il y a donc n + 2 sommets. Les arcs sont de trois types les arcs (s,i ) pour tout i {1,...,n}, les arcs (i, j ) pour tous i, j {1,...,n} tels que i < j et l arc (x, t) où x est le plus petit indice tel que S x max p P σ p. 2. En mettant des coûts judicieux sur les arcs de D, montrer que ce problème peut se résoudre par l algorithme proposé en 3.1, en choisissant la bonne valeur de b. (2 pts) 3. Le problème reste-t-il polynomial si la condition devient : le type i convient pour p si et seulement si (1 + θ)σ p S i σ p pour un certain θ > 0 fixé? Justifier la réponse. (2 pts) 4. OPTIMISATION DU TEMPS DE CYCLE D UNE CHAÎNE DE MONTAGE (8 POINTS) Une chaîne de montage est formées de stations placées les unes derrières les autres. Dans chaque station, les produits qui circulent le long de la chaîne de montage subissent des opérations. Les stations sont en nombre fixé sur la chaîne de montage et il faut affecter les opérations aux stations, i.e. indiquer pour chaque station les opérations qui y sont effectuées. Ces opérations sont liées par des contraintes de précédence et la durée de chacune d elles est connue. L objectif est de minimiser le temps de cycle. Les produits entrent les uns après les autres dans la chaîne de montage. Chaque produit entre dans la chaîne de montage par la première station, dans laquelle il subit certaines opérations, puis passe à la deuxième station, où il subit d autres opérations, et ainsi jusqu à la dernière station. Lorsqu un produit

4 4 FÉVRIER 2014 quitte une station, le produit qui le suit y pénètre. Chaque produit reste un temps identique dans chaque station, et c est ce temps qui est appelé temps de cycle. On dispose donc d une chaîne de montage formée de stations numérotées de 1 à m, placées en ligne, de la gauche vers la droite dans l ordre croissant. On a à effectuer n opérations sur les produits. Une opération i prend une durée d i > 0. Les opérations sont liées par des contraintes de précédences, qui forment un ordre partiel noté. Chaque opération doit être affectée à une unique station avec cette règle, dite règle de précédence : Si une opération i doit précéder une opération j, alors i et j doivent se suivre dans cet ordre sur la chaîne. Cette règle peut être reformulée de manière équivanlente: Une opération j peut être affectée à une station s si et seulement si toute opération devant précéder j est affectée à une station de numéro inférieur ou égal à s. Pour une affectation donnée, on note T s la somme des durées des opérations affectées à la station s. Le meilleur temps de cycle C est alors C = max s T s. Exemple. On suppose que l on a 4 stations que l on peut se représenter comme cela: Station 1 Station 2 Station 3 Station 4 De plus, on se donne 8 opérations de durées Opérations Durées avec les prédécesseurs directs de chaque opération encodés par le graphique suivant En affectant les opérations 1 et 2 à la station 1, les opérations 3 et 4 à la station 2, l opération 5 à la station 3, et enfin les opérations 6, 7 et 8 à la station 4, on peut obtenir un temps de cycle C = Montrer que l on ne peut pas obtenir de meilleur temps de cycle. (1 pt) On va écrire un programme linéaire en nombres entiers modélisant le problème de minimisation du temps de cycle. Pour cela, on va utiliser la variable x s,i {0,1} qui vaut 1 si l opération i est affectée à la station s, et 0 sinon. On utilisera également une variable C R + représentant le temps de cycle.

5 CONTRÔLE DE RECHERCHE OPÉRATIONNELLE 5 2. Ecrire pour chaque opération i la contrainte la forçant à être affectée à exactement une station. (1 pt) 3. Ecrire, pour chaque station s et chaque couple d opérations i et j telles que i j, une contrainte interdisant le non-respect de la règle de précédence. (1 pt) Cette contrainte doit utiliser l expression s t=1 x t,i. 4. Ecrire un programme linéaire en nombres entiers modélisant le problème, utilisant les contraintes précisées aux questions 2. et 3. et utilisant m autres contraintes à préciser. (1 pt) On va maintenant calculer des bornes inférieures par relaxation lagrangienne. 5. Dualiser les contraintes ajoutées à la question 4. et, en notant λ = (λ 1,...,λ m ) les multplicateurs de Lagrange associés à ces contraintes, écrire le programme linéaire en nombres entiers paramétré par λ donnant des bornes inférieures. (1 pt) Nommons (Q λ ) ce programme linéaire en nombres entiers, et considérons (P λ ) sa relaxation continue, i.e. avec les variables x s,i prises maintenant dans [0,1]. On va montrer que, bien qu à variables réelles, (P λ ) possède toujours une solution optimale à composantes entières. Nous allons procéder à un raisonnement par l absurde. Considérons une solution optimale (x s,i ) de (P λ ) avec le plus de composantes entières. Supposons que certaines de ses composantes ne sont pas entières et choisissons l indice ī le plus petit pour tel qu il existe s avec x s,ī Z. Notons s la plus petite station s telle que x s,ī Z 6. Montrer que la solution (y s,i ) définie par y s,ī = 1, par y s,ī = 0 pour tout s s, et y s,i = x s,i pour toute station s et toute opération i ī, est également optimale. Conclure. (2 pts) 7. Montrer que cela implique que la valeur optimale du critère de (Q λ ) peut être trouvée en temps polynomial. (1 pt) 5. ROTATIONS D AVIONS ET MAINTENANCE (4 POINTS) Une compagnie aérienne dispose d une flotte d avions. Elle doit organiser les vols de ses avions pour le mois qui vient. Chaque vol à réaliser est connu, i.e. on connaît ses horaires de départ et d arrivée, ainsi que les aéroports de départ et d arrivée. L ensemble de ses vols forment un ensemble V. Programmer la rotation d un avion consiste à spécifier la séquence des vols qu il réalise. Le planning des rotations est soumis à certaines contraintes. Chaque vol doit être réalisé par exactement un avion. Deux vols v 1 et v 2 peuvent être réalisés consécutivement par le même avion si l aéroport d arrivée de v 1 est l aéroport de départ de v 2, et si l horaire d arrivée de v 1 précède l horaire de départ de v 2 d un temps suffisant. On note l ensemble de couples de vols satisfaisant ces contraintes A. Cet ensemble A est donc une partie de V V. Le graphe des correspondances est le graphe orienté dont les sommets sont les vols et dont les arcs sont les couples de vols dans A. C est donc le graphe D = (V, A). On le suppose fixé. On note S l ensemble de ses sommets sans antécédent et T

6 6 FÉVRIER 2014 l ensemble de ses sommets sans successeur. On suppose que S = T, que S T = et que chaque avion commence par un vol de S et finit par un vol de T. Certains aéroports sont munis d équipements spéciaux permettant des opérations de maintenance sur les avions. On les appelle des bases. Tout avion doit subir au moins une opération de maintenance tous les k vols, i.e. que dans toutes k +1 visites consécutives d aéroports par un avion doit se trouver au moins une base. On note B V l ensemble des vols se terminant dans une base. On supposera aussi que tout vol dans S démarre d une base. La compagnie souhaite donc un planning réalisable de rotations. L objectif de cet exercice est de montrer qu il est possible de décrire l ensemble des plannings réalisables comme les solutions réalisables d un programme linéaire en nombres entiers. On introduit une variable x a,i pour tout a A et tout i {0,...,k}. On se donne une solution réalisable. La signification de la variable x a,i est la suivante. Ecrivons a = (v 1, v 2 ). La variable x a,i vaut 1 si un avion effectue consécutivement les deux vols v 1 et v 2 et si cet avion, lorsqu il effectue le vol v 2, vient de visiter consécutivement exactement i aéroports (ni plus, ni moins) qui ne sont pas des bases. Si ces deux conditions ne sont pas satisfaites, alors x a,i vaut 0. On utilisera le concept de compteur : chaque avion est muni d un compteur qui compte les aéroports visités depuis la dernière base. Ainsi, x a,i = 1 signifie qu il y a un avion dont le compteur est à i et qui enchaîne les vols v 1 et v 2 tels quel a = (v 1, v 2 ). Puisque tout vol de S démarre d une base, les compteurs sont tous à 0 au début du planning. 1. Jusifier chacune des équations suivantes. (2 pts) x a,k = 0 v V \ (B S), a δ (v). (1) x a,0 = 0 v V \ (B T ), a δ + (v). (2) a δ (v) k x a,i = i=0 a δ (v) k i=0 a δ + (v) k i=0 a δ (v) x a,i = a δ + (v) a δ + (v) x a,i+1 i {0,...,k 1}, v V \ (B S T ). (3) x a,0 v B \ (S T ). (4) x a,i = 1 v V \ T. (5) x a,i = 1 v T. (6) 2. Montrer que, réciproquement, tout x = (x a,i ) à valeur dans {0,1} qui satisfait ces équations fournit une solution réalisable. (2 pts) Indication : introduire dans un premier temps les variables y a = k i=0 x a,i et identifier ce qu elles encodent dans le graphe des correspondances D.

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation

Plus en détail

Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA

Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA 75. Un plombier connaît la disposition de trois tuyaux sous des dalles ( voir figure ci dessous ) et il lui suffit de découvrir une partie de chacun d eux pour pouvoir y poser les robinets. Il cherche

Plus en détail

Plus courts chemins, programmation dynamique

Plus courts chemins, programmation dynamique 1 Plus courts chemins, programmation dynamique 1. Plus courts chemins à partir d un sommet 2. Plus courts chemins entre tous les sommets 3. Semi-anneau 4. Programmation dynamique 5. Applications à la bio-informatique

Plus en détail

Annexe 6. Notions d ordonnancement.

Annexe 6. Notions d ordonnancement. Annexe 6. Notions d ordonnancement. APP3 Optimisation Combinatoire: problèmes sur-contraints et ordonnancement. Mines-Nantes, option GIPAD, 2011-2012. Sophie.Demassey@mines-nantes.fr Résumé Ce document

Plus en détail

OPTIMISATION À UNE VARIABLE

OPTIMISATION À UNE VARIABLE OPTIMISATION À UNE VARIABLE Sommaire 1. Optimum locaux d'une fonction... 1 1.1. Maximum local... 1 1.2. Minimum local... 1 1.3. Points stationnaires et points critiques... 2 1.4. Recherche d'un optimum

Plus en détail

Feuille TD n 1 Exercices d algorithmique éléments de correction

Feuille TD n 1 Exercices d algorithmique éléments de correction Master Sciences, Technologies, Santé Mention Mathématiques, spécialité Enseignement des mathématiques Algorithmique et graphes, thèmes du second degré Feuille TD n 1 Exercices d algorithmique éléments

Plus en détail

Chapitre 5 : Flot maximal dans un graphe

Chapitre 5 : Flot maximal dans un graphe Graphes et RO TELECOM Nancy A Chapitre 5 : Flot maximal dans un graphe J.-F. Scheid 1 Plan du chapitre I. Définitions 1 Graphe Graphe valué 3 Représentation d un graphe (matrice d incidence, matrice d

Plus en détail

Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1

Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1 Exemples de problèmes et d applications INF6953 Exemples de problèmes Sommaire Quelques domaines d application Quelques problèmes réels Allocation de fréquences dans les réseaux radio-mobiles Affectation

Plus en détail

Resolution limit in community detection

Resolution limit in community detection Introduction Plan 2006 Introduction Plan Introduction Introduction Plan Introduction Point de départ : un graphe et des sous-graphes. But : quantifier le fait que les sous-graphes choisis sont des modules.

Plus en détail

Objectifs du cours d aujourd hui. Informatique II : Cours d introduction à l informatique et à la programmation objet. Complexité d un problème (2)

Objectifs du cours d aujourd hui. Informatique II : Cours d introduction à l informatique et à la programmation objet. Complexité d un problème (2) Objectifs du cours d aujourd hui Informatique II : Cours d introduction à l informatique et à la programmation objet Complexité des problèmes Introduire la notion de complexité d un problème Présenter

Plus en détail

Programmation linéaire

Programmation linéaire Programmation linéaire DIDIER MAQUIN Ecole Nationale Supérieure d Electricité et de Mécanique Institut National Polytechnique de Lorraine Mathématiques discrètes cours de 2ème année Programmation linéaire

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes

Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes Loris MARCHAL Laboratoire de l Informatique du Parallélisme Équipe Graal Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes Thèse réalisée sous la direction

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

1 Systèmes triphasés symétriques

1 Systèmes triphasés symétriques 1 Systèmes triphasés symétriques 1.1 Introduction Un système triphasé est un ensemble de grandeurs (tensions ou courants) sinusoïdales de même fréquence, déphasées les unes par rapport aux autres. Le système

Plus en détail

OUTILS EN INFORMATIQUE

OUTILS EN INFORMATIQUE OUTILS EN INFORMATIQUE Brice Mayag brice.mayag@dauphine.fr LAMSADE, Université Paris-Dauphine R.O. Excel brice.mayag@dauphine.fr (LAMSADE) OUTILS EN INFORMATIQUE R.O. Excel 1 / 35 Plan Présentation générale

Plus en détail

Introduction à l étude des Corps Finis

Introduction à l étude des Corps Finis Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur

Plus en détail

L exclusion mutuelle distribuée

L exclusion mutuelle distribuée L exclusion mutuelle distribuée L algorithme de L Amport L algorithme est basé sur 2 concepts : L estampillage des messages La distribution d une file d attente sur l ensemble des sites du système distribué

Plus en détail

Représentation d un entier en base b

Représentation d un entier en base b Représentation d un entier en base b 13 octobre 2012 1 Prérequis Les bases de la programmation en langage sont supposées avoir été travaillées L écriture en base b d un entier est ainsi défini à partir

Plus en détail

TP 2 Réseaux. Adresses IP, routage et sous-réseaux

TP 2 Réseaux. Adresses IP, routage et sous-réseaux TP 2 Réseaux Adresses IP, routage et sous-réseaux C. Pain-Barre INFO - IUT Aix-en-Provence version du 24/2/2 Adressage IP. Limites du nombre d adresses IP.. Adresses de réseaux valides Les adresses IP

Plus en détail

PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES

PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES Leçon 11 PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES Dans cette leçon, nous retrouvons le problème d ordonnancement déjà vu mais en ajoutant la prise en compte de contraintes portant sur les ressources.

Plus en détail

Intelligence Artificielle Planification

Intelligence Artificielle Planification Intelligence Artificielle Planification Bruno Bouzy http://web.mi.parisdescartes.fr/~bouzy bruno.bouzy@parisdescartes.fr Licence 3 Informatique UFR Mathématiques et Informatique Université Paris Descartes

Plus en détail

physicien diplômé EPFZ originaire de France présentée acceptée sur proposition Thèse no. 7178

physicien diplômé EPFZ originaire de France présentée acceptée sur proposition Thèse no. 7178 Thèse no. 7178 PROBLEMES D'OPTIMISATION DANS LES SYSTEMES DE CHAUFFAGE A DISTANCE présentée à l'ecole POLYTECHNIQUE FEDERALE DE ZURICH pour l'obtention du titre de Docteur es sciences naturelles par Alain

Plus en détail

Cours de Master Recherche

Cours de Master Recherche Cours de Master Recherche Spécialité CODE : Résolution de problèmes combinatoires Christine Solnon LIRIS, UMR 5205 CNRS / Université Lyon 1 2007 Rappel du plan du cours 16 heures de cours 1 - Introduction

Plus en détail

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b I Définition d une fonction affine Faire l activité 1 «une nouvelle fonction» 1. définition générale a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe

Plus en détail

Programmation Linéaire - Cours 1

Programmation Linéaire - Cours 1 Programmation Linéaire - Cours 1 P. Pesneau pierre.pesneau@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 265 Ouvrages de référence V. Chvátal - Linear Programming, W.H.Freeman, New York, 1983.

Plus en détail

Contexte. Pour cela, elles doivent être très compliquées, c est-à-dire elles doivent être très différentes des fonctions simples,

Contexte. Pour cela, elles doivent être très compliquées, c est-à-dire elles doivent être très différentes des fonctions simples, Non-linéarité Contexte Pour permettre aux algorithmes de cryptographie d être sûrs, les fonctions booléennes qu ils utilisent ne doivent pas être inversées facilement. Pour cela, elles doivent être très

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 10 août 2015 Enoncés 1 Proailités sur un univers fini Evènements et langage ensemliste A quelle condition sur (a,, c, d) ]0, 1[ 4 existe-t-il une proailité P sur

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires

Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires Julien Jorge julien.jorge@univ-nantes.fr Laboratoire d Informatique de Nantes Atlantique,

Plus en détail

INITIATION AU LANGAGE C SUR PIC DE MICROSHIP

INITIATION AU LANGAGE C SUR PIC DE MICROSHIP COURS PROGRAMMATION INITIATION AU LANGAGE C SUR MICROCONTROLEUR PIC page 1 / 7 INITIATION AU LANGAGE C SUR PIC DE MICROSHIP I. Historique du langage C 1972 : naissance du C dans les laboratoires BELL par

Plus en détail

Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3

Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3 8 Systèmes de numération INTRODUCTION SYSTÈMES DE NUMÉRATION POSITIONNELS Dans un système positionnel, le nombre de symboles est fixe On représente par un symbole chaque chiffre inférieur à la base, incluant

Plus en détail

Circuits RL et RC. Chapitre 5. 5.1 Inductance

Circuits RL et RC. Chapitre 5. 5.1 Inductance Chapitre 5 Circuits RL et RC Ce chapitre présente les deux autres éléments linéaires des circuits électriques : l inductance et la capacitance. On verra le comportement de ces deux éléments, et ensuite

Plus en détail

Examen optimisation Centrale Marseille (2008) et SupGalilee (2008)

Examen optimisation Centrale Marseille (2008) et SupGalilee (2008) Examen optimisation Centrale Marseille (28) et SupGalilee (28) Olivier Latte, Jean-Michel Innocent, Isabelle Terrasse, Emmanuel Audusse, Francois Cuvelier duree 4 h Tout resultat enonce dans le texte peut

Plus en détail

Francis BISSON (06 794 819) Kenny CÔTÉ (06 836 427) Pierre-Luc ROGER (06 801 883) IFT702 Planification en intelligence artificielle

Francis BISSON (06 794 819) Kenny CÔTÉ (06 836 427) Pierre-Luc ROGER (06 801 883) IFT702 Planification en intelligence artificielle Francis BISSON (06 794 819) Kenny CÔTÉ (06 836 427) Pierre-Luc ROGER (06 801 883) PLANIFICATION DE TÂCHES DANS MS PROJECT IFT702 Planification en intelligence artificielle Présenté à M. Froduald KABANZA

Plus en détail

LES TYPES DE DONNÉES DU LANGAGE PASCAL

LES TYPES DE DONNÉES DU LANGAGE PASCAL LES TYPES DE DONNÉES DU LANGAGE PASCAL 75 LES TYPES DE DONNÉES DU LANGAGE PASCAL CHAPITRE 4 OBJECTIFS PRÉSENTER LES NOTIONS D ÉTIQUETTE, DE CONS- TANTE ET DE IABLE DANS LE CONTEXTE DU LAN- GAGE PASCAL.

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

ÉVALUATION FORMATIVE. On considère le circuit électrique RC représenté ci-dessous où R et C sont des constantes strictement positives.

ÉVALUATION FORMATIVE. On considère le circuit électrique RC représenté ci-dessous où R et C sont des constantes strictement positives. L G L G Prof. Éric J.M.DELHEZ ANALYSE MATHÉMATIQUE ÉALUATION FORMATIE Novembre 211 Ce test vous est proposé pour vous permettre de faire le point sur votre compréhension du cours d Analyse Mathématique.

Plus en détail

Cours 1 : Qu est-ce que la programmation?

Cours 1 : Qu est-ce que la programmation? 1/65 Introduction à la programmation Cours 1 : Qu est-ce que la programmation? Yann Régis-Gianas yrg@pps.univ-paris-diderot.fr Université Paris Diderot Paris 7 2/65 1. Sortez un appareil qui peut se rendre

Plus en détail

Cours de Recherche Opérationnelle IUT d Orsay. Nicolas M. THIÉRY. E-mail address: Nicolas.Thiery@u-psud.fr URL: http://nicolas.thiery.

Cours de Recherche Opérationnelle IUT d Orsay. Nicolas M. THIÉRY. E-mail address: Nicolas.Thiery@u-psud.fr URL: http://nicolas.thiery. Cours de Recherche Opérationnelle IUT d Orsay Nicolas M. THIÉRY E-mail address: Nicolas.Thiery@u-psud.fr URL: http://nicolas.thiery.name/ CHAPTER 1 Introduction à l optimisation 1.1. TD: Ordonnancement

Plus en détail

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au

Plus en détail

Info0804. Cours 6. Optimisation combinatoire : Applications et compléments

Info0804. Cours 6. Optimisation combinatoire : Applications et compléments Recherche Opérationnelle Optimisation combinatoire : Applications et compléments Pierre Delisle Université de Reims Champagne-Ardenne Département de Mathématiques et Informatique 17 février 2014 Plan de

Plus en détail

INF 232: Langages et Automates. Travaux Dirigés. Université Joseph Fourier, Université Grenoble 1 Licence Sciences et Technologies

INF 232: Langages et Automates. Travaux Dirigés. Université Joseph Fourier, Université Grenoble 1 Licence Sciences et Technologies INF 232: Langages et Automates Travaux Dirigés Université Joseph Fourier, Université Grenoble 1 Licence Sciences et Technologies Année Académique 2013-2014 Année Académique 2013-2014 UNIVERSITÉ JOSEPH

Plus en détail

Arithmétique binaire. Chapitre. 5.1 Notions. 5.1.1 Bit. 5.1.2 Mot

Arithmétique binaire. Chapitre. 5.1 Notions. 5.1.1 Bit. 5.1.2 Mot Chapitre 5 Arithmétique binaire L es codes sont manipulés au quotidien sans qu on s en rende compte, et leur compréhension est quasi instinctive. Le seul fait de lire fait appel au codage alphabétique,

Plus en détail

ELEC2753 Electrotechnique examen du 11/06/2012

ELEC2753 Electrotechnique examen du 11/06/2012 ELEC2753 Electrotechnique examen du 11/06/2012 Pour faciliter la correction et la surveillance, merci de répondre aux 3 questions sur des feuilles différentes et d'écrire immédiatement votre nom sur toutes

Plus en détail

LE PROBLEME DU PLUS COURT CHEMIN

LE PROBLEME DU PLUS COURT CHEMIN LE PROBLEME DU PLUS COURT CHEMIN Dans cette leçon nous définissons le modèle de plus court chemin, présentons des exemples d'application et proposons un algorithme de résolution dans le cas où les longueurs

Plus en détail

Nouvelles propositions pour la résolution exacte du problème de sac à dos bi-objectif unidimensionnel en variables binaires

Nouvelles propositions pour la résolution exacte du problème de sac à dos bi-objectif unidimensionnel en variables binaires Nouvelles propositions pour la résolution exacte du problème de sac à dos bi-objectif unidimensionnel en variables binaires Julien Jorge, Xavier Gandibleux Laboratoire d Informatique de Nantes Atlantique

Plus en détail

Séminaire TEST. 1 Présentation du sujet. October 18th, 2013

Séminaire TEST. 1 Présentation du sujet. October 18th, 2013 Séminaire ES Andrés SÁNCHEZ PÉREZ October 8th, 03 Présentation du sujet Le problème de régression non-paramétrique se pose de la façon suivante : Supposons que l on dispose de n couples indépendantes de

Plus en détail

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet

Plus en détail

FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines

FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines FctsAffines.nb 1 Mathématiques, 1-ère année Edition 2007-2008 Fonctions affines Supports de cours de mathématiques de degré secondaire II, lien hpertete vers la page mère http://www.deleze.name/marcel/sec2/inde.html

Plus en détail

Les puissances 4. 4.1. La notion de puissance. 4.1.1. La puissance c est l énergie pendant une seconde CHAPITRE

Les puissances 4. 4.1. La notion de puissance. 4.1.1. La puissance c est l énergie pendant une seconde CHAPITRE 4. LES PUISSANCES LA NOTION DE PUISSANCE 88 CHAPITRE 4 Rien ne se perd, rien ne se crée. Mais alors que consomme un appareil électrique si ce n est les électrons? La puissance pardi. Objectifs de ce chapitre

Plus en détail

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34 Capacité d un canal Second Théorème de Shannon Théorie de l information 1/34 Plan du cours 1. Canaux discrets sans mémoire, exemples ; 2. Capacité ; 3. Canaux symétriques ; 4. Codage de canal ; 5. Second

Plus en détail

Lagrange, où λ 1 est pour la contrainte sur µ p ).

Lagrange, où λ 1 est pour la contrainte sur µ p ). Chapitre 1 Exercice 1 : Portefeuilles financiers Considérons trois types d actions qui sont négociées à la bourse et dont les rentabilités r 1, r 2 et r 3 sont des variables aléatoires d espérances µ i

Plus en détail

Résolution de systèmes linéaires par des méthodes directes

Résolution de systèmes linéaires par des méthodes directes Résolution de systèmes linéaires par des méthodes directes J. Erhel Janvier 2014 1 Inverse d une matrice carrée et systèmes linéaires Ce paragraphe a pour objet les matrices carrées et les systèmes linéaires.

Plus en détail

Arbres binaires de décision

Arbres binaires de décision 1 Arbres binaires de décision Résumé Arbres binaires de décision Méthodes de construction d arbres binaires de décision, modélisant une discrimination (classification trees) ou une régression (regression

Plus en détail

Sujet 4: Programmation stochastique propriétés de fonction de recours

Sujet 4: Programmation stochastique propriétés de fonction de recours Sujet 4: Programmation stochastique propriétés de fonction de recours MSE3313: Optimisation Stochastiqe Andrew J. Miller Dernière mise au jour: October 19, 2011 Dans ce sujet... 1 Propriétés de la fonction

Plus en détail

Nom de l application

Nom de l application Ministère de l Enseignement Supérieur et de la Recherche Scientifique Direction Générale des Etudes Technologiques Institut Supérieur des Etudes Technologiques de Gafsa Département Technologies de l Informatique

Plus en détail

MABioVis. Bio-informatique et la

MABioVis. Bio-informatique et la MABioVis Modèles et Algorithmes pour la Bio-informatique et la Visualisation Visite ENS Cachan 5 janvier 2011 MABioVis G GUY MELANÇON (PR UFR Maths Info / EPI GRAVITE) (là, maintenant) - MABioVis DAVID

Plus en détail

Seconde Généralités sur les fonctions Exercices. Notion de fonction.

Seconde Généralités sur les fonctions Exercices. Notion de fonction. Seconde Généralités sur les fonctions Exercices Notion de fonction. Exercice. Une fonction définie par une formule. On considère la fonction f définie sur R par = x + x. a) Calculer les images de, 0 et

Plus en détail

Programmation linéaire et Optimisation. Didier Smets

Programmation linéaire et Optimisation. Didier Smets Programmation linéaire et Optimisation Didier Smets Chapitre 1 Un problème d optimisation linéaire en dimension 2 On considère le cas d un fabricant d automobiles qui propose deux modèles à la vente, des

Plus en détail

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme? Exercices Alternatifs Quelqu un aurait-il vu passer un polynôme? c 2004 Frédéric Le Roux, François Béguin (copyleft LDL : Licence pour Documents Libres). Sources et figures: polynome-lagrange/. Version

Plus en détail

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme? Exercices Alternatifs Quelqu un aurait-il vu passer un polynôme? c 2004 Frédéric Le Roux, François Béguin (copyleft LDL : Licence pour Documents Libres). Sources et figures: polynome-lagrange/. Version

Plus en détail

Algorithmique et programmation : les bases (VBA) Corrigé

Algorithmique et programmation : les bases (VBA) Corrigé PAD INPT ALGORITHMIQUE ET PROGRAMMATION 1 Cours VBA, Semaine 1 mai juin 2006 Corrigé Résumé Ce document décrit l écriture dans le langage VBA des éléments vus en algorithmique. Table des matières 1 Pourquoi

Plus en détail

Conception des bases de données : Modèle Entité-Association

Conception des bases de données : Modèle Entité-Association Conception des bases de données : Modèle Entité-Association La modélisation d un problème, c est-à-dire le passage du monde réel à sa représentation informatique, se définit en plusieurs étapes pour parvenir

Plus en détail

Master d Informatique M1 Université Paris 7 - Denis Diderot Travail de Recherche Encadré Surf Bayesien

Master d Informatique M1 Université Paris 7 - Denis Diderot Travail de Recherche Encadré Surf Bayesien Master d Informatique M1 Université Paris 7 - Denis Diderot Travail de Recherche Encadré Surf Bayesien Denis Cousineau Sous la direction de Roberto di Cosmo Juin 2005 1 Table des matières 1 Présentation

Plus en détail

L utilisation d un réseau de neurones pour optimiser la gestion d un firewall

L utilisation d un réseau de neurones pour optimiser la gestion d un firewall L utilisation d un réseau de neurones pour optimiser la gestion d un firewall Réza Assadi et Karim Khattar École Polytechnique de Montréal Le 1 mai 2002 Résumé Les réseaux de neurones sont utilisés dans

Plus en détail

Introduction à la théorie des graphes. Solutions des exercices

Introduction à la théorie des graphes. Solutions des exercices CAHIERS DE LA CRM Introduction à la théorie des graphes Solutions des exercices Didier Müller CAHIER N O 6 COMMISSION ROMANDE DE MATHÉMATIQUE 1 Graphes non orientés Exercice 1 On obtient le graphe biparti

Plus en détail

Condition inf-sup pour l Elément Fini de Taylor-Hood È ¾ -iso-è ½

Condition inf-sup pour l Elément Fini de Taylor-Hood È ¾ -iso-è ½ Condition inf-sup pour l Elément Fini de Taylor-Hood È ¾ -iso-è ½ Patrick Ciarlet et Vivette Girault ciarlet@ensta.fr & girault@ann.jussieu.fr ENSTA & Laboratoire Jacques-Louis Lions, Paris 6 Condition

Plus en détail

Les grands principes d un programme de fidélisation

Les grands principes d un programme de fidélisation Chapitre 16 Les différents types de programmes de fidélisation Partie 4 483 l essai d une offre concurrente. Un programme de fidélisation peut aussi se révéler particulièrement utile pour effacer une mauvaise

Plus en détail

Ordonnancement. N: nains de jardin. X: peinture extérieure. E: électricité T: toit. M: murs. F: fondations CHAPTER 1

Ordonnancement. N: nains de jardin. X: peinture extérieure. E: électricité T: toit. M: murs. F: fondations CHAPTER 1 CHAPTER 1 Ordonnancement 1.1. Étude de cas Ordonnancement de tâches avec contraintes de précédences 1.1.1. Exemple : construction d'une maison. Exercice. On veut construire une maison, ce qui consiste

Plus en détail

Le produit semi-direct

Le produit semi-direct Le produit semi-direct Préparation à l agrégation de mathématiques Université de Nice - Sophia Antipolis Antoine Ducros Octobre 2007 Ce texte est consacré, comme son titre l indique, au produit semi-direct.

Plus en détail

Cycle de vie du logiciel. Unified Modeling Language UML. UML: définition. Développement Logiciel. Salima Hassas. Unified Modeling Language

Cycle de vie du logiciel. Unified Modeling Language UML. UML: définition. Développement Logiciel. Salima Hassas. Unified Modeling Language Unified Modeling Language UML Salima Hassas Version Cycle de vie du logiciel Client Besoins Déploiement Analyse Test Conception Cours sur la base des transparents de : Gioavanna Di Marzo Serugendo et Frédéric

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options Université de Lorraine Modélisation Stochastique Master 2 IMOI 2014-2015 TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options 1 Les options Le but de ce

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Stratégie de recherche adaptative en programmation par contrainte

Stratégie de recherche adaptative en programmation par contrainte Université Paul Sabatier École Nationale de l Aviation Civile Master 2 Recherche Informatique et Télécommunication parcours Intelligence Artificielle Simon Marchal Stratégie de recherche adaptative en

Plus en détail

Cours d initiation à la programmation en C++ Johann Cuenin

Cours d initiation à la programmation en C++ Johann Cuenin Cours d initiation à la programmation en C++ Johann Cuenin 11 octobre 2014 2 Table des matières 1 Introduction 5 2 Bases de la programmation en C++ 7 3 Les types composés 9 3.1 Les tableaux.............................

Plus en détail

Conception de réseaux de télécommunications : optimisation et expérimentations

Conception de réseaux de télécommunications : optimisation et expérimentations Conception de réseaux de télécommunications : optimisation et expérimentations Jean-François Lalande Directeurs de thèse: Jean-Claude Bermond - Michel Syska Université de Nice-Sophia Antipolis Mascotte,

Plus en détail

TRACER LE GRAPHE D'UNE FONCTION

TRACER LE GRAPHE D'UNE FONCTION TRACER LE GRAPHE D'UNE FONCTION Sommaire 1. Méthodologie : comment tracer le graphe d'une fonction... 1 En combinant les concepts de dérivée première et seconde, il est maintenant possible de tracer le

Plus en détail

Eteindre. les. lumières MATH EN JEAN 2013-2014. Mme BACHOC. Elèves de seconde, première et terminale scientifiques :

Eteindre. les. lumières MATH EN JEAN 2013-2014. Mme BACHOC. Elèves de seconde, première et terminale scientifiques : MTH EN JEN 2013-2014 Elèves de seconde, première et terminale scientifiques : Lycée Michel Montaigne : HERITEL ôme T S POLLOZE Hélène 1 S SOK Sophie 1 S Eteindre Lycée Sud Médoc : ROSIO Gauthier 2 nd PELGE

Plus en détail

Optimisation for Cloud Computing and Big Data

Optimisation for Cloud Computing and Big Data 1 / 23 Optimisation for Cloud Computing and Big Data Olivier Beaumont, Lionel Eyraud-Dubois 2 / 23 Aujourd hui Problèmes de fiabilité on va oublier la dynamicité Placement de VMs en programmation par contraintes

Plus en détail

EXERCICES UML. Modéliser cette situation par un diagramme de cas d utilisation. Consulter planning

EXERCICES UML. Modéliser cette situation par un diagramme de cas d utilisation. Consulter planning EXERCICES UML 1 ) Dans un établissement scolaire, on désire gérer la réservation des salles de cours ainsi que du matériel pédagogique (ordinateur portable ou/et Vidéo projecteur). Seuls les enseignants

Plus en détail

Théorie et codage de l information

Théorie et codage de l information Théorie et codage de l information Les codes linéaires - Chapitre 6 - Principe Définition d un code linéaire Soient p un nombre premier et s est un entier positif. Il existe un unique corps de taille q

Plus en détail

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique La programmation linéaire : une introduction Qu est-ce qu un programme linéaire? Qu est-ce qu un programme linéaire? Exemples : allocation de ressources problème de recouvrement Hypothèses de la programmation

Plus en détail

Couplage Planification et Ordonnancement : Approche hiérarchique et décomposition

Couplage Planification et Ordonnancement : Approche hiérarchique et décomposition Université d Angers Année 2010, N ordre 1037 Couplage Planification et Ordonnancement : Approche hiérarchique et décomposition Thèse de doctorat Spécialité Informatique École doctorale Sciences et Technologies

Plus en détail

LES MÉTHODES DE POINT INTÉRIEUR 1

LES MÉTHODES DE POINT INTÉRIEUR 1 Chapitre XIII LES MÉTHODES DE POINT INTÉRIEUR 1 XIII.1 Introduction Nous débutons par un rappel de la formulation standard d un problème d optimisation 2 linéaire et donnons un bref aperçu des différences

Plus en détail

Théorie des Graphes Cours 3: Forêts et Arbres II / Modélisation

Théorie des Graphes Cours 3: Forêts et Arbres II / Modélisation IFIPS S7 - informatique Université Paris-Sud 11 1er semestre 2009/2010 Théorie des Graphes Cours 3: Forêts et Arbres II / 1 Forêts et arbres II Théorème 1.1. Les assertions suivantes sont équivalentes

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Principe d optimisation. Optimisation technico-économique. Coût. Isolation thermique. Isolation optimale

Principe d optimisation. Optimisation technico-économique. Coût. Isolation thermique. Isolation optimale Optimisation technico-économique Objectif : obtenir une certaine prestation à moindre coût Dans le domaine du bâtiment, cette optimisation peut s appliquer à trois niveaux différents : choix des composants

Plus en détail

Cours 02 : Problème général de la programmation linéaire

Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =

Plus en détail

Théorèmes de Point Fixe et Applications 1

Théorèmes de Point Fixe et Applications 1 Théorèmes de Point Fixe et Applications 1 Victor Ginsburgh Université Libre de Bruxelles et CORE, Louvain-la-Neuve Janvier 1999 Published in C. Jessua, C. Labrousse et D. Vitry, eds., Dictionnaire des

Plus en détail

Séance 4. Gestion de la capacité. Gestion des opérations et de la logistique 4-530-03

Séance 4. Gestion de la capacité. Gestion des opérations et de la logistique 4-530-03 Gestion des opérations et de la logistique Séance 4 4-530-03 Gestion de la capacité Points importants présentés au dernier cours Les principaux types d aménagement Étude du travail et l amélioration des

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée

Plus en détail

La NP-complétude. Johanne Cohen. PRISM/CNRS, Versailles, France.

La NP-complétude. Johanne Cohen. PRISM/CNRS, Versailles, France. La NP-complétude Johanne Cohen PRISM/CNRS, Versailles, France. Références 1. Algorithm Design, Jon Kleinberg, Eva Tardos, Addison-Wesley, 2006. 2. Computers and Intractability : A Guide to the Theory of

Plus en détail

Objectifs. Clustering. Principe. Applications. Applications. Cartes de crédits. Remarques. Biologie, Génomique

Objectifs. Clustering. Principe. Applications. Applications. Cartes de crédits. Remarques. Biologie, Génomique Objectifs Clustering On ne sait pas ce qu on veut trouver : on laisse l algorithme nous proposer un modèle. On pense qu il existe des similarités entre les exemples. Qui se ressemble s assemble p. /55

Plus en détail

Contexte et motivations Les techniques envisagées Evolution des processus Conclusion

Contexte et motivations Les techniques envisagées Evolution des processus Conclusion Vérification de logiciels par analyse statique Contexte et motivations Les techniques envisagées Evolution des processus Conclusion Contexte et motivations Specification Design architecture Revues and

Plus en détail

Mlle Yasmin A. RÍOS SOLÍS

Mlle Yasmin A. RÍOS SOLÍS Thèse de DOCTORAT de l UNIVERSITÉ PARIS VI - PIERRE ET MARIE CURIE Spécialité : INFORMATIQUE présentée par : Mlle Yasmin A. RÍOS SOLÍS pour obtenir le grade de DOCTEUR de l UNIVERSITÉ PARIS VI Sujet de

Plus en détail

Conception d une base de données

Conception d une base de données Conception d une base de données Cyril Gruau 17 octobre 2005 (corrigé le 13 juillet 2006) Résumé Ce support de cours regroupe quelques notions concernant le modélisation conceptuelle de système d information

Plus en détail