Les humanités numériques à l ère du big data
|
|
|
- Marie-Claire Nadeau
- il y a 10 ans
- Total affichages :
Transcription
1 Les humanités numériques à l ère du big data D. A. ZIGHED [email protected] Journées Big data & visualisation Focus sur les humanités numériques ISH Lyon juin 2015 Co-organisées par EGC AFIHM - SFdS
2 Accueil - Remerciements! Les GT de l association «extraction et gestion des connaissances» (EGC)! Fouille de Données Complexes (FDC)! Fouille de Grands Graphes (FDG)! Gestion et Analyse de données Spatiales et Temporelles (GAST)! Le GT de «l association française des interfaces hommemachine» (AFIHM)! Visualisation d informations, interaction et fouille de données (VIF)! Le GT de la société française de statistique (SFdS)! Data mining et apprentissage (DMA) Bienvenue à l ISH pour cet échange STIC-SHS
3 Plan de présentation! Présentation de l ISH! Les humanités et les sciences sociales! Le big data! Les humanités et le big data! Conclusion
4 L institut des sciences de l homme de Lyon
5 Les humanités et les sciences sociales
6 Les humanités et les sciences sociales Recherche : individuelle Matériel : Monographie Méthodologie : Interprétation exégèse érudition, critique - raisonnement déductif discours discursif Publication : auteur unique - ouvrage
7 Les humanités et les sciences sociales Recherche : Collective Matériel : Observations sur terrain Méthodologie : Hypothèse - mesure observation statistique induction expérimentation - simulation Publication : collective - articles
8 Les humanités et les sciences sociales Littérature (Analyse de style) Recherche : individuelle Matériel : Monographie Méthodologie : Interprétation exégèse érudition, critique - raisonnement déductif discours discursif Publication : auteur unique - livre Economie (Eco Politique) Recherche : Collective Matériel : Observations de terrain Méthodologie : Hypothèse - mesure observation statistique induction expérimentation simulation Publication : collective - articles
9 Les humanités et les sciences sociales l humain son existence et ses activités sociales, économiques et culturelles = Sciences de l Humain et de la Société - SHS
10 Les humanités et les sciences sociales à L ISH 8000 références biblio laboratoires 3000 personnes Extraction de topics AFC
11 Les humanités et les sciences sociales à L ISH
12 Humanités Numériques ~ 1940 : Computational humanities ; Digital Humanities ehumanities Roberto Busa ( ) Thomas John Watson, Sr. ( ) Lexique des 118 textes de Thomas d'aquin
13 Humanités Numériques Lex 1 Lex 2 Lex 3 Lex j Lex n Texte 1 Texte 2 : Texte i : : : : : : Texte 118 n ij (Occurences de Lex j dans T i ) magister T 1 Comment visualiser Les textes dans les n dimensions lexicales? T i T 2 T 3 T n praesentis
14 Humanités numériques! ~ 1990 : PC, Scanners, Internet,! Objectif initial : Mise en lignes du patrimoine culturel et scientifique;! Les projets (~2000) :! bibliothèque du congrès américain;! Gutenberg (1971);! Million books project;! Google books (2013) ~ 30 Millions d ouvrages.
15 Humanités numériques Chaine de numérisation et d édition critique; Acquisition Numérisation (Text image vidéo ) Préparation Nettoyage Mise en forme Archivage ROC Encodage (TEI) Indexation Enrichissement Méta-données Dublin Core Mise en ligne DVD, Web Enrichissement Collaboratif
16 Humanités numériques intégratives Enregistrer, stocker, traiter et diffuser les traces et empreintes des activités humaines Acquisition, enquête numérisation, open data, obets connectés (Text image vidéo ) Préparation Nettoyage Mise en forme Archivage Exploitation Analytique Fouille ROC Encodage (TEI) Indexation Enrichissement Méta-données Dublin Core Mise en ligne DVD, Web Enrichissement Collaboratif Création de nouveaux services / outils
17 Big data en image 200 Mds mails/j 35 Mds de pages Facebook 5,6 Mds téléphones Internet = Mds de Go / mois Océan Déluge Tsunami des données
18 Big data : montée en flèche et chutes libres Nb noeuds 1 Mds $ / To $ $ / GFLOPS 1,1 Mds $ $ / Mbps 1200 $ 70 $ ,08 $ ,63 $
19 Big data : caractéristiques Volume Walmart : 1 million de transactions/heure Google : 25 pétaoctets traités par jour Facebook traite, analyse +30 pétaoctets Vitesse Facebook : enregistre 100 téraoctets / jour Twitter enregistre ~ 200 millions de tweets par jour Variété Youtube enregistre 48 heures de vidéo / minute 30 milliards de documents partagés sur Facebook Médias sociaux Internet des objets Open data
20 Big data : objet Gérer et traiter des «grands» volumes de données hétérogènes et évolutives dans un cadre contraint; Temps de lecture à 100 Mo/s 2 h jours Disque dur ~1To Data center > 100 To Internet : > 10 Po BDR optimisées Temps de réponse Taille de la BD
21 Big data : diviser pour régner! Vers un nouveau modèle de données! Vers de nouveaux concepts de programmation
22 Big data : Nouveau modèle de données Dénormaliser Relâcher les contraintes Cohérence De nouveaux compromis - Efficacité + Disponibilité NoSQL Distribuer Données et traitements Montée en charge linéaire Viser Performance et disponibilité $$$$$$$$$$$$$$ Couplage données et traitements Développement ad hoc
23 Big data : Bases de données orientées agrégats Clé 0FR63K (identifie serveur et enregistrement) Valeur : blob (video/text/xml doc/ ) facteur de réplication (N) quorum d écriture (W) quorum de lecture (R) Entrepôts Clé-valeur BDOA Clé 0FR63K Valeur : Doc (XML, JSON) BD orientées documents BD orientées colonnes Clé 0FR63K table : colonnes (statique/dynamiques) Fondation Apache BD orientées graphes
24 Big data : Concept de programmation! Calcul parallèle : un concept né avec l informatique! Le paradigme MapReduce Clusters de calcul MAP Shuffle REDUCE Clients Factures Chaque machine calcule par produit : Volume - CA Tri par produit du map Volume Total CA global par produit
25 Big data : Hadoop, l éléphanto dans un magasin de porcelaine? Framework Fondation Apache Java Ramener un calcul à des taches de type : Map Reduce. Est-ce toujours possible? Ecriture-test Paramétrage...
26 Humanités numériques et big data! Google (2000) Création d un annuaire inversé des pages web pour le moteur de recherche Google; Combien
27 Digital google Des centaines de partenariats avec des musées pour rendre accessible en ligne les œuvres d arts et les préserver en numérique pour le futur.
28 Humanités Google 30 millions de livres scannés (2013) ~ 130 millions de titres ont été publiés depuis Xve siècle
29 Humanités numériques intégratives! Economie et Big data Dépôt de bilan en juillet 2008 Roberto Rigobon Relevé des prix de prix USA Aucun nettoyage ni consolidation Analyse (big data) Détecte un épisode inflationniste en septembre 2008 Le CPI (INSEE US) ne détecte le phénomène que 2 mois plus tard, novembre 2008; Coût de production 250 millions $
30 Humanités numériques intégratives! Psycho-socio
31 Humanités numériques intégratives! Sociologie - Analyse d opinion - Analyse des sentiments - Recommandations -
32 Conclusion : Humanités numériques big data! Nous sommes qu au début : il faut un Codd pour les big data ;! Il faut un Gauss pour le traitement;! Est ce que tout est dans les données? (frappe clavier)! Peut-on tout optimiser? (smart-phone/assurances)! Faut-il tout traiter tout?! Faut-il cesser de chercher des théories? (2008, Chris Anderson)
Introduction à MapReduce/Hadoop et Spark
1 / 36 Introduction à MapReduce/Hadoop et Spark Certificat Big Data Ludovic Denoyer et Sylvain Lamprier UPMC Plan 2 / 36 Contexte 3 / 36 Contexte 4 / 36 Data driven science: le 4e paradigme (Jim Gray -
Programmation parallèle et distribuée
Programmation parallèle et distribuée (GIF-4104/7104) 5a - (hiver 2014) Marc Parizeau, Département de génie électrique et de génie informatique Plan Mégadonnées («big data») Architecture Hadoop distribution
Programmation parallèle et distribuée
Programmation parallèle et distribuée (GIF-4104/7104) 5a - (hiver 2015) Marc Parizeau, Département de génie électrique et de génie informatique Plan Données massives («big data») Architecture Hadoop distribution
Les bases de données relationnelles
Bases de données NO SQL et SIG : d un existant restreint à un avenir prometteur CHRISTIAN CAROLIN, AXES CONSEIL [email protected] - HTTP://WWW.AXES.FR Les bases de données relationnelles constituent désormais
NoSQL. Introduction 1/23. I NoSQL : Not Only SQL, ce n est pas du relationnel, et le contexte. I table d associations - Map - de couples (clef,valeur)
1/23 2/23 Anne-Cécile Caron Master MIAGE - BDA 1er trimestre 2013-2014 I : Not Only SQL, ce n est pas du relationnel, et le contexte d utilisation n est donc pas celui des SGBDR. I Origine : recherche
Programmation parallèle et distribuée (Master 1 Info 2015-2016)
Programmation parallèle et distribuée (Master 1 Info 2015-2016) Hadoop MapReduce et HDFS Note bibliographique : ce cours est largement inspiré par le cours de Benjamin Renaut (Tokidev SAS) Introduction
Enjeux mathématiques et Statistiques du Big Data
Enjeux mathématiques et Statistiques du Big Data Mathilde Mougeot LPMA/Université Paris Diderot, [email protected] Mathématique en Mouvements, Paris, IHP, 6 Juin 2015 M. Mougeot (Paris
Masses de données. 1. Introduction 2. Problématiques 3. Socle de formation (non présenté) 4. Liens avec Formation INSA
Masses de données 1. Introduction 2. Problématiques 3. Socle de formation (non présenté) 4. Liens avec Formation INSA Rédacteurs : Mjo Huguet / N. Jozefowiez 1. Introduction : Besoins Informations et Aide
À PROPOS DE TALEND...
WHITE PAPER Table des matières Résultats de l enquête... 4 Stratégie d entreprise Big Data... 5 Intégration des Big Data... 8 Les défis liés à la mise en œuvre des Big Data... 10 Les technologies pour
NoSQL. Introduction 1/30. I NoSQL : Not Only SQL, ce n est pas du relationnel, et le contexte. I table d associations - Map - de couples (clef,valeur)
1/30 2/30 Anne-Cécile Caron Master MIAGE - SGBD 1er trimestre 2014-2015 I : Not Only SQL, ce n est pas du relationnel, et le contexte d utilisation n est donc pas celui des SGBDR. I Origine : recherche
BIG DATA. Veille technologique. Malek Hamouda Nina Lachia Léo Valette. Commanditaire : Thomas Milon. Encadré: Philippe Vismara
BIG DATA Veille technologique Malek Hamouda Nina Lachia Léo Valette Commanditaire : Thomas Milon Encadré: Philippe Vismara 1 2 Introduction Historique des bases de données : méthodes de stockage et d analyse
Titre : La BI vue par l intégrateur Orange
Titre : La BI vue par l intégrateur Orange Résumé : L entité Orange IT&L@bs, partenaire privilégié des entreprises et des collectivités dans la conception et l implémentation de SI Décisionnels innovants,
Pourquoi intégrer le Big Data à son organisa3on?
Pourquoi intégrer le Big Data à son organisa3on? Yvan Robert, VP Affaires Stratégiques Emmanuel Faug, Resp. pra>que BI Colloque 2014 Big Data Agenda Qui sommes nous? L importance de l information Méthodes
Les technologies du Big Data
Les technologies du Big Data PRÉSENTÉ AU 40 E CONGRÈS DE L ASSOCIATION DES ÉCONOMISTES QUÉBÉCOIS PAR TOM LANDRY, CONSEILLER SENIOR LE 20 MAI 2015 WWW.CRIM.CA TECHNOLOGIES: DES DONNÉES JUSQU'À L UTILISATEUR
Pentaho Business Analytics Intégrer > Explorer > Prévoir
Pentaho Business Analytics Intégrer > Explorer > Prévoir Pentaho lie étroitement intégration de données et analytique. En effet, les services informatiques et les utilisateurs métiers peuvent accéder aux
Bases de données documentaires et distribuées Cours NFE04
Bases de données documentaires et distribuées Cours NFE04 Cloud et scalabilité Auteurs : Raphaël Fournier-S niehotta, Philippe Rigaux, Nicolas Travers pré[email protected] Département d informatique Conservatoire
Panorama des solutions analytiques existantes
Arnaud LAROCHE Julien DAMON Panorama des solutions analytiques existantes SFdS Méthodes et Logiciels - 16 janvier 2014 - Données Massives Ne sont ici considérés que les solutions autour de l environnement
Cartographie des solutions BigData
Cartographie des solutions BigData Panorama du marché et prospective 1 1 Solutions BigData Défi(s) pour les fournisseurs Quel marché Architectures Acteurs commerciaux Solutions alternatives 2 2 Quels Défis?
Fouillez facilement dans votre système Big Data. Olivier TAVARD
Fouillez facilement dans votre système Big Data Olivier TAVARD A propos de moi : Cofondateur de la société France Labs Développeur (principalement Java) Formateur en technologies de moteurs de recherche
Les enjeux du Big Data Innovation et opportunités de l'internet industriel. Datasio 2013
Les enjeux du Big Data Innovation et opportunités de l'internet industriel François Royer [email protected] Accompagnement des entreprises dans leurs stratégies quantitatives Valorisation de patrimoine
Big Data et Graphes : Quelques pistes de recherche
Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université
Les données massives de Copernicus : vers un nouveau paradigme. Hervé Jeanjean Cnes
Les données massives de Copernicus : vers un nouveau paradigme Hervé Jeanjean Cnes 1 Règlement Copernicus du 03/04/2014 : cadre politique, organisationnel et financier Règlement délégué du 12/07/2013 sur
20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013. 20 ans du SIAD -"Big Data par l'exemple" -Julien DULOUT
20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013 20 ans du SIAD -"BigData par l'exemple" -Julien DULOUT Qui a déjà entendu parler du phénomène BigData? Qui a déjà
Groupe de Discussion Big Data Aperçu des technologies et applications. Stéphane MOUTON [email protected]
Groupe de Discussion Big Data Aperçu des technologies et applications Stéphane MOUTON [email protected] Recherche appliquée et transfert technologique q Agréé «Centre Collectif de Recherche» par
Conserver les Big Data, source de valeur pour demain
Le potentiel et les défis du Big Data UIMM Mardi 2 et mercredi 3 juillet 2013 56 avenue de Wagram 75017 PARIS Conserver les Big Data, source de valeur pour demain Définir les Big Data Les Big Data à travers
MapReduce. Nicolas Dugué [email protected]. M2 MIAGE Systèmes d information répartis
MapReduce Nicolas Dugué [email protected] M2 MIAGE Systèmes d information répartis Plan 1 Introduction Big Data 2 MapReduce et ses implémentations 3 MapReduce pour fouiller des tweets 4 MapReduce
Jean-François Boulicaut & Mohand-Saïd Hacid
e siècle! Jean-François Boulicaut & Mohand-Saïd Hacid http://liris.cnrs.fr/~jboulica http://liris.cnrs.fr/mohand-said.hacid Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205
BI dans les nuages. Olivier Bendavid, UM2 Prof. A. April, ÉTS
BI dans les nuages Olivier Bendavid, UM2 Prof. A. April, ÉTS Table des matières Introduction Description du problème Les solutions Le projet Conclusions Questions? Introduction Quelles sont les défis actuels
Ecole des Hautes Etudes Commerciales HEC Alger. par Amina GACEM. Module Informatique 1ière Année Master Sciences Commerciales
Ecole des Hautes Etudes Commerciales HEC Alger Évolution des SGBDs par Amina GACEM Module Informatique 1ière Année Master Sciences Commerciales Evolution des SGBDs Pour toute remarque, question, commentaire
Introduction Big Data
Introduction Big Data SOMMAIRE Rédacteurs : Réf.: SH. Lazare / F. Barthélemy AXIO_BD_V1 QU'EST-CE QUE LE BIG DATA? ENJEUX TECHNOLOGIQUES ENJEUX STRATÉGIQUES BIG DATA ET RH ANNEXE Ce document constitue
FORUM NTIC BIG DATA, OPEN DATA Big Data: les challenges, les défis
FORUM NTIC BIG DATA, OPEN DATA Big Data: les challenges, les défis Joseph Salmon Télécom ParisTech Jeudi 6 Février Joseph Salmon (Télécom ParisTech) Big Data Jeudi 6 Février 1 / 18 Agenda Contexte et opportunités
AVRIL 2014. Au delà de Hadoop. Panorama des solutions NoSQL
AVRIL 2014 Panorama des solutions NoSQL QUI SOMMES NOUS? Avril 2014 2 SMILE, EN QUELQUES CHIFFRES 1er INTÉGRATEUR EUROPÉEN DE SOLUTIONS OPEN SOURCE 3 4 NOS EXPERTISES ET NOS CONVICTIONS DANS NOS LIVRES
11/01/2014. Le Big Data Mining enjeux et approches techniques. Plan. Introduction. Introduction. Quelques exemples d applications
Plan Le Big Data Mining enjeux et approches techniques Bernard Dousset Professeur des universités Institut de Recherche en Informatique de Toulouse UMR 5505 Université de Toulouse 118, Route de Narbonne,
Document réalisé par Khadidjatou BAMBA
Comprendre le BIG DATA Document réalisé par Khadidjatou BAMBA 1 Sommaire Avant propos. 3 Historique du Big Data.4 Introduction.....5 Chapitre I : Présentation du Big Data... 6 I. Généralités sur le Big
Big Data et Graphes : Quelques pistes de recherche
Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci http://liris.cnrs.fr/hamamache.kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de
Les RH à l ère du Big Data: faites parler vos données! Mesurez et optimisez la performance de vos programmes RH 18 septembre 2013
Les RH à l ère du Big Data: faites parler vos données! Mesurez et optimisez la performance de vos programmes RH 18 septembre 2013 Qui nous sommes Firme québécoise (bureaux à Québec et Montréal) Spécialisée
Introduction au Data-Mining
Introduction au Data-Mining Gilles Gasso, Stéphane Canu INSA Rouen -Département ASI Laboratoire LITIS 8 septembre 205. Ce cours est librement inspiré du cours DM de Alain Rakotomamonjy Gilles Gasso, Stéphane
Quels choix de base de données pour vos projets Big Data?
Quels choix de base de données pour vos projets Big Data? Big Data? Le terme "big data" est très à la mode et naturellement un terme si générique est galvaudé. Beaucoup de promesses sont faites, et l'enthousiasme
4. Utilisation d un SGBD : le langage SQL. 5. Normalisation
Base de données S. Lèbre [email protected] Université de Strasbourg, département d informatique. Présentation du module Contenu général Notion de bases de données Fondements / Conception Utilisation :
Le coffre-fort électronique qui classe votre courrier!
Le coffre-fort électronique qui classe votre courrier! Qu est-ce que c est? Un espace en ligne sécurisé, dans lequel je peux facilement mettre tous mes documents utiles et importants, électroniques ou
BIG DATA en Sciences et Industries de l Environnement
BIG DATA en Sciences et Industries de l Environnement François Royer www.datasio.com 21 mars 2012 FR Big Data Congress, Paris 2012 1/23 Transport terrestre Traçabilité Océanographie Transport aérien Télémétrie
1 er Avril 2015 Data Science & Big Data Etat de l art Donner plus d intelligence aux données
1 er Avril 2015 Data Science & Big Data Etat de l art Donner plus d intelligence aux données Votre interlocuteur Didier Gaultier Directeur Data Science Business & Decision Professeur de Statistique à l
Bases de données documentaires et distribuées Cours NFE04
Bases de données documentaires et distribuées Cours NFE04 Introduction du cours Auteurs : Raphaël Fournier-S niehotta, Philippe Rigaux, Nicolas Travers pré[email protected] Département d informatique Conservatoire
Déploiement d une architecture Hadoop pour analyse de flux. franç[email protected]
Déploiement d une architecture Hadoop pour analyse de flux franç[email protected] 1 plan Introduction Hadoop Présentation Architecture d un cluster HDFS & MapReduce L architecture déployée Les
Préface Dunod Toute reproduction non autorisée est un délit. Les raisons de l émergence du Big Data sont bien connues. Elles sont d abord économiques et technologiques. La chute exponentielle des coûts
Big Data On Line Analytics
Fdil Fadila Bentayeb Lb Laboratoire ERIC Lyon 2 Big Data On Line Analytics ASD 2014 Hammamet Tunisie 1 Sommaire Sommaire Informatique décisionnelle (BI Business Intelligence) Big Data Big Data analytics
Open Data. Enjeux et perspectives dans les télécommunications
Open Data Enjeux et perspectives dans les télécommunications Orange Labs 28/09/2012 Patrick launay, Recherche & Développement, Orange Labs - Recherche & Développement Printemps de la Recherche EDF Open
Les Entrepôts de Données. (Data Warehouses)
Les Entrepôts de Données (Data Warehouses) Pr. Omar Boussaid Département d'informatique et de Sta5s5que Université Lyon2 - France Les Entrepôts de Données 1. Généralités, sur le décisionnel 2. L'entreposage
Présentation du module Base de données spatio-temporelles
Présentation du module Base de données spatio-temporelles S. Lèbre [email protected] Université de Strasbourg, département d informatique. Partie 1 : Notion de bases de données (12,5h ) Enjeux et principes
Open Data. François Bancilhon twitter.com/fbancilhon www.data-publica.com. Printemps de la recherche EDF R&D 28/9/12
Open Data François Bancilhon twitter.com/fbancilhon www.data-publica.com Printemps de la recherche EDF R&D 28/9/12 Plan Open data Que faire des données de l open data? Eco-système de la données Data Publica
Sommaire. 3. Les grands principes de GFS L architecture L accès de fichier en lecture L accès de fichier en écriture Bilan
1 Sommaire 1. Google en chiffres 2. Les raisons d être de GFS 3. Les grands principes de GFS L architecture L accès de fichier en lecture L accès de fichier en écriture Bilan 4. Les Evolutions et Alternatives
Livret de Stages 2014 / 2015
Livret de Stages 2014 / 2015 Paris & Niort www.bsc-france.com B.S.C. - Business Software Tour Montparnasse 33 Avenue du Maine 75015 Tel : +33(0)1 53 94 52 20 - Fax : +33(0)1 45 38 49 45 3 rue Archimède
CENTAI : Big Data & Big Analytics Réunion DGPN / Thales Octobre 2013
www.thalesgroup.com CENTAI : Big Data & Big Analytics Réunion DGPN / Thales Octobre 2013 2 / Sommaire CENTAI : Présentation du laboratoire Plate-forme OSINT LAB Détection de la fraude à la carte bancaire
Le BIG DATA????? Big Buzz? Big Bang? Big Opportunity? Big hype? Big Business? Big Challenge? Big Hacking? Gérard Peliks planche 2
Le BIG DATA????? Big Bang? Big hype? Big Challenge? Big Buzz? Big Opportunity? Big Business? Big Hacking? Gérard Peliks planche 2 Les quatre paradigmes de la science en marche Paradigme 1 : L empirisme
Ricco Rakotomalala http://eric.univ-lyon2.fr/~ricco/cours/cours_programmation_r.html. R.R. Université Lyon 2
Ricco Rakotomalala http://eric.univ-lyon2.fr/~ricco/cours/cours_programmation_r.html 1 Plan de présentation 1. L écosystème Hadoop 2. Principe de programmation MapReduce 3. Programmation des fonctions
SÉRIE NOUVELLES ARCHITECTURES
SÉRIE NOUVELLES ARCHITECTURES Alerte au tsunami des données : les entreprises doivent prendre la vague maintenant! Quels sont les faits qui sous-tendent cette réalité? Quelles entreprises sont aujourd
Big Data? Big responsabilités! Paul-Olivier Gibert Digital Ethics
Big Data? Big responsabilités! Paul-Olivier Gibert Digital Ethics Big data le Buzz Le Big Data? Tout le monde en parle sans trop savoir ce qu il signifie. Les médias high-tech en font la nouvelle panacée,
Big Graph Data Forum Teratec 2013
Big Graph Data Forum Teratec 2013 MFG Labs 35 rue de Châteaudun 75009 Paris, France www.mfglabs.com twitter: @mfg_labs Julien Laugel MFG Labs [email protected] @roolio SOMMAIRE MFG Labs Contexte
Technologies Web. Ludovic Denoyer Sylvain Lamprier Mohamed Amine Baazizi Gabriella Contardo Narcisse Nya. Université Pierre et Marie Curie
1 / 22 Technologies Web Ludovic Denoyer Sylvain Lamprier Mohamed Amine Baazizi Gabriella Contardo Narcisse Nya Université Pierre et Marie Curie Rappel 2 / 22 Problématique Quelles technologies utiliser
Les datas = le fuel du 21ième sicècle
Les datas = le fuel du 21ième sicècle D énormes gisements de création de valeurs http://www.your networkmarketin g.com/facebooktwitter-youtubestats-in-realtime-simulation/ Xavier Dalloz Le Plan Définition
Le BigData, aussi par et pour les PMEs
Parole d expert Le BigData, aussi par et pour les PMEs Stéphane MOUTON, CETIC Département Software and Services Technologies Avec le soutien de : LIEGE CREATIVE Le Big Data, aussi par et pour les PMEs
GENIE STATISTIQUE GESTION DES RISQUES ET INGENIERIE FINANCIERE MARKETING QUANTITATIF ET REVENUE MANAGEMENT
Remarque : Tous les cours sont en français, sauf contre-indication. Pour des traductions anglaises des titres, des descriptifs, et plus de renseignements, consultez l intégralité du Programme des enseignements
MapReduce. Malo Jaffré, Pablo Rauzy. 16 avril 2010 ENS. Malo Jaffré, Pablo Rauzy (ENS) MapReduce 16 avril 2010 1 / 15
MapReduce Malo Jaffré, Pablo Rauzy ENS 16 avril 2010 Malo Jaffré, Pablo Rauzy (ENS) MapReduce 16 avril 2010 1 / 15 Qu est ce que c est? Conceptuellement Données MapReduce est un framework de calcul distribué
DÉPLOIEMENT DE QLIKVIEW POUR DES ANALYSES BIG DATA CHEZ KING.COM
DÉPLOIEMENT DE QLIKVIEW POUR DES ANALYSES BIG DATA CHEZ KING.COM Étude de cas technique QlikView : Big Data Juin 2012 qlikview.com Introduction La présente étude de cas technique QlikView se consacre au
Tables Rondes Le «Big Data»
Tables Rondes Le «Big Data» 2012-2013 1 Plan Introduc9on 1 - Présenta9on Ingensi 2 - Le Big Data c est quoi? 3 - L histoire 4 - Le monde du libre : Hadoop 5 - Le système HDFS 6 - Les algorithmes distribués
Infrastructure / réseau / sécurité /support utilisateur
Présentation du PSIR Pôle regroupant normalement 7 personnes (5 personnes actuellement) Les quatre axes de spécialisation du service sont: Pôle infrastructure et réseau ; Banques de données et données
Transformez vos données en opportunités. avec Microsoft Big Data
Transformez vos données en opportunités avec Microsoft Big Data 1 VOLUME Augmentation du volume de données tous les cinq ans Vélocité x10 4,3 Nombre d appareils connectés par adulte VARIÉTÉ 85% Part des
Les quatre piliers d une solution de gestion des Big Data
White Paper Les quatre piliers d une solution de gestion des Big Data Table des Matières Introduction... 4 Big Data : un terme très vaste... 4 Le Big Data... 5 La technologie Big Data... 5 Le grand changement
HADOOP ET SON ÉCOSYSTÈME
HADOOP ET SON ÉCOSYSTÈME Mars 2013 2012 Affini-Tech - Diffusion restreinte 1 AFFINI-TECH Méthodes projets Outils de reporting & Data-visualisation Business & Analyses BigData Modélisation Hadoop Technos
MASTER LPL : LANGUE ET INFORMATIQUE (P)
MASTER LPL : LANGUE ET INFORMATIQUE (P) RÉSUMÉ DE LA FORMATION Type de diplôme := Master Domaine : Arts, Lettres, Langues Mention : LITTERATURE, PHILOLOGIE, LINGUISTIQUE Spécialité : LANGUE ET INFORMATIQUE
Surmonter les 5 défis opérationnels du Big Data
Surmonter les 5 défis opérationnels du Big Data Jean-Michel Franco Talend Connect 9 octobre 2014 Talend 2014 1 Agenda Agenda Le Big Data depuis la découverte jusqu au temps réel en passant par les applications
Il y a tellement de hype autour du big data que Gartner étudie un nouveau modèle ;-) Talend 2012 2
Big Data: au delà du Buzz Yves de Montcheuil @ydemontcheuil Il y a tellement de hype autour du big data que Gartner étudie un nouveau modèle ;-) Talend 2012 2 Hype Cycle Gartner Talend 2012 3 Big Data
CATALOGUE DE LA GAMME EASYFOLDER OFFRE GESTION DE CONTENUS NUMERIQUES
CATALOGUE DE LA GAMME EASYFOLDER OFFRE GESTION DE CONTENUS NUMERIQUES Gestion Electronique de Documents (GED) Système d Archivage Electronique (SAE) Coffre Fort Numérique (CFN) et modules complémentaires
Chaîne opératoire de réalisation d une base de données. ANF «Comment concevoir une base de données» (29-30/01/2015)
Chaîne opératoire de réalisation d une base de données ANF «Comment concevoir une base de données» (29-30/01/2015) En introduction 1- Phase d analyse ou d audit 2- Modélisation & développement de la base
Catalogue Formation «Vanilla»
Catalogue Formation «Vanilla» Date : octobre 2009 Table des matières Liste des Formations...2 Contenu des formations...3 Vanilla FastTrack...3 Vanilla Architecture...5 Enterprise Services...6 BIPortail...7
Prototypage et évaluation de performances d un service de traçabilité avec une architecture distribuée basée sur Hadoop
Julien Gerlier Siman Chen Rapport de projet de fin d étude ASR 2010/2011 Prototypage et évaluation de performances d un service de traçabilité avec une architecture distribuée basée sur Hadoop Encadrants
Technologies du Web. Ludovic DENOYER - [email protected]. Février 2014 UPMC
Technologies du Web Ludovic DENOYER - [email protected] UPMC Février 2014 Ludovic DENOYER - [email protected] Technologies du Web Plan Retour sur les BDs Le service Search Un peu plus sur les
Gestion collaborative de documents
Gestion collaborative de documents ANT box, le logiciel qui simplifie votre GED Les organisations (entreprises, collectivités, associations...) génèrent chaque jour des millions de documents, e-mails,
BIG Data et R: opportunités et perspectives
BIG Data et R: opportunités et perspectives Guati Rizlane 1 & Hicham Hajji 2 1 Ecole Nationale de Commerce et de Gestion de Casablanca, Maroc, [email protected] 2 Ecole des Sciences Géomatiques, IAV Rabat,
Présentation aux entreprises du numérique
Présentation aux entreprises du numérique 25/06/2015 Valeurs Immatérielles Transférées aux Archives pour Mémoire VITAM Pourquoi un programme Vitam? VITAM Avec la dématérialisation, une production de plus
Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data.
Big Data De la stratégie à la mise en oeuvre Description : La formation a pour objet de brosser sans concession le tableau du Big Data. Les participants repartiront de cette formation en ayant une vision
BIGDATA AN 3 : UNE NOUVELLE ERE DE B.I.
BIGDATA AN 3 : UNE NOUVELLE ERE DE B.I. QUELLES PERSPECTIVES POUR LES 20 PROCHAINES ANNEES? 22 MARS 2013 CHARLES PARAT, DIR. INNOVATION adoption L ADOPTION DES EVOLUTIONS B.I. EST LENTE BIGDATA BUZZ MAINFRAME
Mise en place d'un serveur d'application SIG au Conseil général de Seine-et-Marne
Mise en place d'un serveur d'application SIG au Conseil général de Seine-et-Marne Conférence francophone ESRI 2006 12 octobre Issy-les-Moulineaux Conseil général de Seine-et-Marne Direction Générale des
Big Data et l avenir du décisionnel
Big Data et l avenir du décisionnel Arjan Heijmenberg, Jaspersoft 1 Le nouveau monde des TI L entreprise en réseau de McKinsey McKinsey sur le Web 2.0 McKinsey Global Institute, décembre 2010 Emergence
ISTEX, vers des services innovants d accès à la connaissance
ISTEX, vers des services innovants d accès à la connaissance Synthèse rédigée par Raymond Bérard, directeur de l ABES, à partir du dossier de candidature d ISTEX aux Initiatives d excellence et des réunions
Cours 8 Not Only SQL
Cours 8 Not Only SQL Cours 8 - NoSQL Qu'est-ce que le NoSQL? Cours 8 - NoSQL Qu'est-ce que le NoSQL? Catégorie de SGBD s'affranchissant du modèle relationnel des SGBDR. Mouvance apparue par le biais des
Master Informatique Aix-Marseille Université
Aix-Marseille Université http://masterinfo.univ-mrs.fr/ Département Informatique et Interactions UFR Sciences Laboratoire d Informatique Fondamentale Laboratoire des Sciences de l Information et des Systèmes
WD et le logo WD sont des marques déposées de Western Digital Technologies, Inc, aux États-Unis et dans d'autres pays ; absolutely WD Re, WD Se, WD
WD et le logo WD sont des marques déposées de Western Digital Technologies, Inc, aux États-Unis et dans d'autres pays ; absolutely WD Re, WD Se, WD Xe, RAFF et StableTrac sont des marques de Western Digital
Un serveur d'archivage
Un serveur d'archivage destiné au Service Commun de Documentation de l'université de la Méditerranée Encadrement : Noël Novelli Représentants client (S.C.D.) : Axelle Clarisse Ronan Lagadic Equipe Projet
Guide de référence pour l achat de Business Analytics
Guide de référence pour l achat de Business Analytics Comment évaluer une solution de décisionnel pour votre petite ou moyenne entreprise : Quelles sont les questions à se poser et que faut-il rechercher?
25 octobre 2012. JD EDWARDS ENTERPRISEONE et DÉMATÉRIALISATION
25 octobre 2012 JD EDWARDS ENTERPRISEONE et DÉMATÉRIALISATION Sommaire Oracle Webcenter Suite Processus de dématérialisation Intégration de la Solution dans JDE Facture Fournisseurs Démonstration dématérialisation
Exploration des Big Data pour optimiser la Business Intelligence
Intel IT Meilleures pratiques IT Business Intelligence Juillet 2012 Exploration des Big Data pour optimiser la Business Intelligence Vue d ensemble La capacité à extraire et analyser les Big Data permet
TRAVAUX DE RECHERCHE DANS LE
TRAVAUX DE RECHERCHE DANS LE DOMAINE DE L'EXPLOITATION DES DONNÉES ET DES DOCUMENTS 1 Journée technologique " Solutions de maintenance prévisionnelle adaptées à la production Josiane Mothe, FREMIT, IRIT
Cycle de vie, processus de gestion
Les données scientifiques au CNES Cycle de vie, processus de gestion Danièle BOUCON Réunion PIN du 4 janvier 2013 Réunion PIN du 22 mars 2012 Outils CNES Contexte des données scientifiques au CNES SOMMAIRE
Découverte et investigation des menaces avancées PRÉSENTATION
Découverte et investigation des menaces avancées PRÉSENTATION AVANTAGES CLÉS RSA Security Analytics offre les avantages suivants : Surveillance de la sécurité Investigation des incidents Reporting sur
CommentWatcher. plateforme Web open-source pour analyser les discussions sur des forums en ligne. Marian-Andrei RIZOIU
CommentWatcher plateforme Web open-source pour analyser les discussions sur des forums en ligne Marian-Andrei RIZOIU 2ème octobre 2013 BLEND 2013 Lyon, France Contexte Laboratoire ERIC Université Lumière
Dématérialisation du courrier: à éviter
Dématérialisation du courrier: idées reçues et pièges à éviter Jean-Marc Rietsch Expert en archivage électronique Chargé de cours à Mines ParisTech Président de FEDISA (Fédération Européenne de l ILM du
Certificat Big Data - Master MAthématiques
1 / 1 Certificat Big Data - Master MAthématiques Master 2 Auteur : Sylvain Lamprier UPMC Fouille de données et Medias Sociaux 2 / 1 Rich and big data: Millions d utilisateurs Millions de contenus Multimedia
BABEL LEXIS : UN SYSTÈME ÉVOLUTIF PERMETTANT LA CRÉATION, LE STOCKAGE ET LA CONSULTATION D OBJETS HYPERMÉDIAS
Quatrième colloque hypermédias et apprentissages 275 BABEL LEXIS : UN SYSTÈME ÉVOLUTIF PERMETTANT LA CRÉATION, LE STOCKAGE ET LA CONSULTATION D OBJETS HYPERMÉDIAS Anne-Olivia LE CORNEC, Jean-Marc FARINONE,
QLIKVIEW ET LE BIG DATA
QLIKVIEW ET LE BIG DATA Livre blanc sur la technologie QlikView Juillet 2012 qlikview.com Introduction Le Big Data suscite actuellement un vif intérêt. En l exploitant dans un cadre opérationnel, nombre
