Pourquoi intégrer le Big Data à son organisa3on?

Dimension: px
Commencer à balayer dès la page:

Download "Pourquoi intégrer le Big Data à son organisa3on?"

Transcription

1 Pourquoi intégrer le Big Data à son organisa3on? Yvan Robert, VP Affaires Stratégiques Emmanuel Faug, Resp. pra>que BI Colloque 2014 Big Data

2 Agenda Qui sommes nous? L importance de l information Méthodes d analyse Comment intégrer le modèle big Data à son organisation? Conclusion

3 QUI SOMMES NOUS?

4 Qui sommes nous? Fondé en 2003 Plus de 120 employés Spécialiste dans les bases de données et l exploitation des données Oracle Java Centre d expertise : ü Acquisition et partage des connaissances ü Veille permanente sur les tendances ü Innovation sur les outils et les approches méthodologiques Intérêt pour le Big Data depuis plus d un an Projet Big Data en partenariat avec Desjardins et Université Laval

5 Nos dis3nc3ons 50 sociétés les mieux gérées du Canada Commandité par Deloitte, le groupe CIBC, La Presse et la Queen s School of Business, le concours des sociétés les mieux gérées au Canada est le principal palmarès des entreprises au pays. 2011, 2012 et 2013 Profit 200 Les Leaders de la croissance Classement des entreprises selon leur taux de croissance sur 5 ans 2009 Chambre de commerce de Québec Entreprise de l année 2009 Moyenne et grande entreprise Région Capitale- Na:onale et Chaudière- Appalaches Prix MauricePollack Prix québécois de la citoyenneté

6 L IMPORTANCE DE L INFORMATION?

7 L importance de l information L ère du feu ü L information est sous forme papier ü Difficile à exploiter pour comprendre les phénomènes, étudier et en faire une théorie ü Analyse du savoir par observation

8 L importance de l information L ère industrielle ü L information est numérisée ü Mise en place des chaînes de traitements et d outils pour traiter l information ü Capacité d avoir des états, des tendances et même, des projections

9 L importance de l information L ère du Web ü Avalanche d informations ü Modèle d analyse évolutif et itératif ü Accès à l information sans limite ü Ce n est pas la naissance du Big Data

10 L importance de l information Les organisations métiers L armée Les services de renseignements Les applications Web

11 L importance de l information Plus d'un milliard d'utilisateurs uniques visitent YouTube chaque mois Plus de six milliards d'heures de vidéo sont visionnées chaque mois presqu'une heure par personne sur Terre Chaque minute, les internautes mettent en ligne 100 heures de vidéo sur YouTube # utilisateurs actifs par jour : 757 millions en moyenne une augmentation de 22% année sur année # utilisateurs actifs mensuels : 1,23 milliard Chaque seconde : près de millions d'utilisateurs actifs mensuels Représente milliards de requêtes par an 1,5 milliard de photos chargées chaque semaine

12 L importance de l information Avez-vous besoin d un Jet pour vous déplacer en ville?

13 L importance de l information Avez-vous besoin d un autoroute pour vous rendre à votre chalet?

14 MÉTHODES D ANALYSE

15 Méthodes d analyse Mise en contexte Environnement transactionnel GÉRER LA DONNÉE POUR SUPPORTER LES OPÉRATIONS Actions Informations Environnement analytique EXPLOITER LA DONNÉE POUR ORIENTER LES DÉCISIONS ü Besoins différents è Compétences, méthodologies et technologies spécifiques

16 Méthodes d analyse Approche traditionnelle Besoin Comprendre le courant Améliorer la performance Environnement analytique Enrichissement de l'action Opérations Lignes affaires Enrichissement de l'analyse TI Conception de modèles prédéfinis (figés) en fonction des besoins E ntrepôt de données Données "organisées" transformées (fortement reliées) => Approche pertinente et efficace pour répondre à ce besoin! Processus complexe d'intégration (harmonisation, historisation, etc.) Sources de données "organisées" (faiblement reliées)

17 Méthodes d analyse Limites de l approche traditionnelle Nouveau besoin Intégrer les nouvelles sources Big Data pour créer et suivre de nouveaux indicateurs Environnement analytique Enrichissement de l'action Opérations Lignes affaires Conception de modèles prédéfinis (figés) en fonction des besoins Enrichissement de l'analyse E ntrepôt de données Données "organisées" transformées (fortement reliées) Impacts Révision des modèles d'exploitation et du processus d'intégration des données sources TI Processus complexe d'intégration (harmonisation, historisation, etc.) Sources de données "organisées" (faiblement reliées) => fastidieux et coûteux!!!

18 Méthodes d analyse Approche Big Data Le Big Data c est quoi? ü Données non organisées (structurées ou non) ü Les 3V (volume, variété, vélocité) et même plus valeur, variabilité, véracité, etc. Quels sont les enjeux? ü Intégrer rapidement des données multi structurées ü Créer dynamiquement des modèles évolutifs d exploitation de ces sources pour pouvoir interroger les mêmes données sous plusieurs perspectives

19 Méthodes d analyse Approche Big Data : «écosystème» "Écosystème" Big Data Outil BI #1 Outil BI #2... Outils BI traditionnels pour exploiter les résultats Moteurs de requêtes adaptés au besoin Moteur de requêtes #1 Moteur de requêtes #2... Couche sémantique Référentiel de métadonnées Association, mise en relation des données Interface pour lire les données sources Fichiers sources Données "brutes" Intégration : sélection, filtrage Bases de données opérationnels internes Données ouvertes Entrepôt de données Sources de données multiples et variées

20 Méthodes d analyse Fonctions de l écosystème Big Data Administrer Temps réel Différé Optimiser Sécuriser Analyser la donnée Multi usages Structurée Temps réel Non structurée Temps réel Collecter et intégrer la donnée Différé Différé Transformer la donnée Restituer l'information Temps réel Différé Multi canal Structurée Non structurée Stocker la donnée Mémoire Local Cloud Disque

21 COMMENT INTÉGRER LE MODÈLE BIG DATA À SON ORGANISATION?

22 Comment intégrer le Big Data? Capacité de concevoir des modèles de relations, à la demande Capacité de dénombrer les objets par catégories Difficile de distinguer les objets

23 Comment intégrer le Big Data? Modèle Big Data Conception de modèles et analyses par l'expérimentation (processus itératif) Environnement analytique Enrichissement de l'analyse Couche sémantique Données fortement reliées Environnement transactionnel Enrichissement de l'action Lignes affaires TI Référentiel de métadonnées Étiquetage des données Sources de données "Big Data" peu ou pas transformées (faiblement reliées)

24 Comment intégrer le Big Data? L approche Big Data n est pas seulement pour des organisations comme Google ü Ce concept est valorisable pour être appliqué à une plus petite échelle ü Les outils sont conçus pour cela et répondent aux besoins orientés «libre service» ü Il est possible et recommandé d y aller à la carte, en fonction du besoin, du type de données à traiter ü Le modèle est évolutif selon le volume, la variabilité, le temps de traitement, etc.

25 Comment intégrer le Big Data? Les impacts sur l organisation sont : Organisationnels ü Compétences / méthodologies: ü Analyste d affaires ü Analyste de données (Modélisateur) ü Mathématicien / Statisticien / Actuaire ü Spécialiste BI ü Équipe technologie de l information

26 Comment intégrer le Big Data? Les impacts sur l organisation sont : Culturels ü Gouvernance de la donnée, redistribution des rôles (TI vs Affaires) Techniques ü Nouvelles infrastructures et nouveaux outils : évolution et démocratisation en cours

27 CONCLUSION

28 Conclusion Constats ü Nouveau phénomène : pas encore assez de cas et peu de recul possible pour le moment ü Cependant : ü Incontournable, au même titre que ce que nous avons vécu par le passé avec les entrepôts de données ü Ne vient pas remplacer l approche traditionnelle mais plutôt répondre à de nouveaux besoins : exploitation libre, expérimentation de modèles d analyses ü Concept applicable à plus petite échelle : Inutile d attendre d avoir les 3V ou plus pour appliquer le concept dans vos organisations, petites ou grandes!!!

29 Conclusion En résumé ü Rien n est magique!!! ü il existe un investissement initial ü Cependant ü l effort en vaut la chandelle ü Gain important ü la mise en place d une approche Big Data va apporter beaucoup plus de flexibilité dans l organisation

30 Merci!

Titre : La BI vue par l intégrateur Orange

Titre : La BI vue par l intégrateur Orange Titre : La BI vue par l intégrateur Orange Résumé : L entité Orange IT&L@bs, partenaire privilégié des entreprises et des collectivités dans la conception et l implémentation de SI Décisionnels innovants,

Plus en détail

JASPERSOFT ET LE PAYSAGE ANALYTIQUE. Jaspersoft et le paysage analytique 1

JASPERSOFT ET LE PAYSAGE ANALYTIQUE. Jaspersoft et le paysage analytique 1 JASPERSOFT ET LE PAYSAGE ANALYTIQUE Jaspersoft et le paysage analytique 1 Ce texte est un résumé du Livre Blanc complet. N hésitez pas à vous inscrire sur Jaspersoft (http://www.jaspersoft.com/fr/analyticslandscape-jaspersoft)

Plus en détail

Repenser le SI à l'ère du numérique : apports des solutions de big data, cloud computing et confiance numérique

Repenser le SI à l'ère du numérique : apports des solutions de big data, cloud computing et confiance numérique Repenser le SI à l'ère du numérique : apports des solutions de big data, cloud computing et confiance numérique Extraits d analyses publiées par MARKESS International Emmanuelle Olivié-Paul epaul@markess.com

Plus en détail

Big data et données géospatiales : Enjeux et défis pour la géomatique. Thierry Badard, PhD, ing. jr Centre de Recherche en Géomatique

Big data et données géospatiales : Enjeux et défis pour la géomatique. Thierry Badard, PhD, ing. jr Centre de Recherche en Géomatique Big data et données géospatiales : Enjeux et défis pour la géomatique Thierry Badard, PhD, ing. jr Centre de Recherche en Géomatique Événement 25e anniversaire du CRG Université Laval, Qc, Canada 08 mai

Plus en détail

Webinar EBG Nouvelles perspectives d'exploitation des données clients avec le big data

Webinar EBG Nouvelles perspectives d'exploitation des données clients avec le big data Webinar EBG Nouvelles perspectives d'exploitation des données clients avec le big data Approches & opportunités face aux enjeux de volume, variété et vélocité France, 2012-2014 28 mars 2013 Ce document

Plus en détail

HADOOP ET SON ÉCOSYSTÈME

HADOOP ET SON ÉCOSYSTÈME HADOOP ET SON ÉCOSYSTÈME Mars 2013 2012 Affini-Tech - Diffusion restreinte 1 AFFINI-TECH Méthodes projets Outils de reporting & Data-visualisation Business & Analyses BigData Modélisation Hadoop Technos

Plus en détail

Chapitre 9 : Informatique décisionnelle

Chapitre 9 : Informatique décisionnelle Chapitre 9 : Informatique décisionnelle Sommaire Introduction... 3 Définition... 3 Les domaines d application de l informatique décisionnelle... 4 Architecture d un système décisionnel... 5 L outil Oracle

Plus en détail

Big Data et l avenir du décisionnel

Big Data et l avenir du décisionnel Big Data et l avenir du décisionnel Arjan Heijmenberg, Jaspersoft 1 Le nouveau monde des TI L entreprise en réseau de McKinsey McKinsey sur le Web 2.0 McKinsey Global Institute, décembre 2010 Emergence

Plus en détail

DÉPLOIEMENT DE QLIKVIEW POUR DES ANALYSES BIG DATA CHEZ KING.COM

DÉPLOIEMENT DE QLIKVIEW POUR DES ANALYSES BIG DATA CHEZ KING.COM DÉPLOIEMENT DE QLIKVIEW POUR DES ANALYSES BIG DATA CHEZ KING.COM Étude de cas technique QlikView : Big Data Juin 2012 qlikview.com Introduction La présente étude de cas technique QlikView se consacre au

Plus en détail

Objectif : Passer de l analyse métier et fonctionnelle à la définition des applications qui

Objectif : Passer de l analyse métier et fonctionnelle à la définition des applications qui Formation PARTIE 1 : ARCHITECTURE APPLICATIVE DUREE : 5 h Objectif : Passer de l analyse métier et fonctionnelle à la définition des applications qui automatisent les fonctions Définir une architecture

Plus en détail

WD et le logo WD sont des marques déposées de Western Digital Technologies, Inc, aux États-Unis et dans d'autres pays ; absolutely WD Re, WD Se, WD

WD et le logo WD sont des marques déposées de Western Digital Technologies, Inc, aux États-Unis et dans d'autres pays ; absolutely WD Re, WD Se, WD WD et le logo WD sont des marques déposées de Western Digital Technologies, Inc, aux États-Unis et dans d'autres pays ; absolutely WD Re, WD Se, WD Xe, RAFF et StableTrac sont des marques de Western Digital

Plus en détail

Connaissez-vous Google? Le 2 avril 2015

Connaissez-vous Google? Le 2 avril 2015 Connaissez-vous Google? Le 2 avril 2015 Je google, tu googles, il google On se présente! Je google, tu googles, il google Le Géant 94 % des recherches effectuées sur la Toile 40 000 requêtes sur Google

Plus en détail

Malgré la crise, Le décisionnel en croissance en France

Malgré la crise, Le décisionnel en croissance en France Malgré la crise, Le décisionnel en croissance en France 11 juin 2009 www.idc.com Cyril Meunier IDC France Consulting Manager Copyright 2009 IDC. Reproduction is forbidden unless authorized. All rights

Plus en détail

avec nos solutions spécialisées pour la microfinance et ses institutions coopératives Big Data

avec nos solutions spécialisées pour la microfinance et ses institutions coopératives Big Data avec nos solutions spécialisées pour la microfinance et ses institutions coopératives Big Data Historique de Big data Jusqu à l avènement d Internet et surtout du Web 2.0 il n y avait pas tant de données

Plus en détail

5. Architecture et sécurité des systèmes informatiques Dimension Fonctionnelle du SI

5. Architecture et sécurité des systèmes informatiques Dimension Fonctionnelle du SI 5. Architecture et sécurité des systèmes informatiques Dimension Fonctionnelle du SI Un SI : et pour faire quoi? Permet de stocker de manière définitive des informations volatiles provenant d autre BD.

Plus en détail

Pentaho Business Analytics Intégrer > Explorer > Prévoir

Pentaho Business Analytics Intégrer > Explorer > Prévoir Pentaho Business Analytics Intégrer > Explorer > Prévoir Pentaho lie étroitement intégration de données et analytique. En effet, les services informatiques et les utilisateurs métiers peuvent accéder aux

Plus en détail

Transformez vos données en opportunités. avec Microsoft Big Data

Transformez vos données en opportunités. avec Microsoft Big Data Transformez vos données en opportunités avec Microsoft Big Data 1 VOLUME Augmentation du volume de données tous les cinq ans Vélocité x10 4,3 Nombre d appareils connectés par adulte VARIÉTÉ 85% Part des

Plus en détail

XML pour la mise en valeur des informations

XML pour la mise en valeur des informations XML pour la mise en valeur des informations Exploitez l'intelligence des documents! DIRO - Cours IFT3225 Une présentation d Irosoft Inc. Alain Lavoie Septembre 2011 Qui suis-je? Alain Lavoie B.Sc. Mathématique-Informatique

Plus en détail

Check-list de migration applicative Windows 7

Check-list de migration applicative Windows 7 Check-list de migration applicative Windows 7 Accélérez la conception et la planification de vos projets de migration Windows 7. 2 Que vous débutiez à peine un projet de migration applicative Microsoft

Plus en détail

Présentation aux entreprises du numérique

Présentation aux entreprises du numérique Présentation aux entreprises du numérique 25/06/2015 Valeurs Immatérielles Transférées aux Archives pour Mémoire VITAM Pourquoi un programme Vitam? VITAM Avec la dématérialisation, une production de plus

Plus en détail

NewPoint IT Consulting BIG DATA WHITE PAPER. NewPoint Information Technology Consulting

NewPoint IT Consulting BIG DATA WHITE PAPER. NewPoint Information Technology Consulting NewPoint IT Consulting BIG DATA WHITE PAPER NewPoint Information Technology Consulting Contenu 1 Big Data: Défi et opportunité pour l'entreprise... 3 2 Les drivers techniques et d'entreprise de BIG DATA...

Plus en détail

SÉRIE NOUVELLES ARCHITECTURES

SÉRIE NOUVELLES ARCHITECTURES SÉRIE NOUVELLES ARCHITECTURES Alerte au tsunami des données : les entreprises doivent prendre la vague maintenant! Quels sont les faits qui sous-tendent cette réalité? Quelles entreprises sont aujourd

Plus en détail

Comment assurer le plein potentiel de votre solution analytique. Guillaume Bédard, Directeur des Solutions d Affaires Odesia

Comment assurer le plein potentiel de votre solution analytique. Guillaume Bédard, Directeur des Solutions d Affaires Odesia L Comment assurer le plein potentiel de votre solution analytique ODESIA 1155 University suite 800 Montreal, Qc, Canada H3B 3A7 Phone: (514) 876-1155 Fax: (514) 876-1153 www.odesia.com Guillaume Bédard,

Plus en détail

Data 2 Business : La démarche de valorisation de la Data pour améliorer la performance de ses clients

Data 2 Business : La démarche de valorisation de la Data pour améliorer la performance de ses clients Data 2 Business : La démarche de valorisation de la Data pour améliorer la performance de ses clients Frédérick Vautrain, Dir. Data Science - Viseo Laurent Lefranc, Resp. Data Science Analytics - Altares

Plus en détail

et les Systèmes Multidimensionnels

et les Systèmes Multidimensionnels Le Data Warehouse et les Systèmes Multidimensionnels 1 1. Définition d un Datawarehouse (DW) Le Datawarehouse est une collection de données orientées sujet, intégrées, non volatiles et historisées, organisées

Plus en détail

Intégration de systèmes client - serveur Des approches client-serveur à l urbanisation Quelques transparents introductifs

Intégration de systèmes client - serveur Des approches client-serveur à l urbanisation Quelques transparents introductifs Intégration de systèmes client - serveur Des approches client-serveur à l urbanisation Quelques transparents introductifs Jean-Pierre Meinadier Professeur du CNAM, meinadier@cnam.fr Révolution CS : l utilisateur

Plus en détail

Présentation de l offre produit de Business Objects XI

Présentation de l offre produit de Business Objects XI Conseil National des Assurances Séminaire - Atelier L information au service de tous Le 09 Novembre 2005 Présentation de l offre produit de XI Amar AMROUCHE Consultant Avant Vente aamrouche@aacom-algerie.com

Plus en détail

Entrepôt de données 1. Introduction

Entrepôt de données 1. Introduction Entrepôt de données 1 (data warehouse) Introduction 1 Présentation Le concept d entrepôt de données a été formalisé pour la première fois en 1990 par Bill Inmon. Il s agissait de constituer une base de

Plus en détail

Business Intelligence et Data Visualisation

Business Intelligence et Data Visualisation livre blanc Business Intelligence et Data Visualisation Perspectives pour la DSI par Mouloud Dey, SAS France Sommaire 1 Introduction 1 Les données du problème 2 La menace fantôme 4 Les nouveaux besoins

Plus en détail

DOSSIER SOLUTION CA ERwin Modeling. Comment gérer la complexité des données et améliorer l agilité métier?

DOSSIER SOLUTION CA ERwin Modeling. Comment gérer la complexité des données et améliorer l agilité métier? DOSSIER SOLUTION CA ERwin Modeling Comment gérer la complexité des données et améliorer l agilité métier? CA ERwin Modeling fournit une vue centralisée des définitions de données clés afin de mieux comprendre

Plus en détail

Stratégies gagnantes pour la fabrication industrielle : le cloud computing vu par les dirigeants Dossier à l attention des dirigeants

Stratégies gagnantes pour la fabrication industrielle : le cloud computing vu par les dirigeants Dossier à l attention des dirigeants Stratégies gagnantes pour la fabrication industrielle : Dossier à l attention des dirigeants Centres d évaluation de la technologie inc. Stratégies gagnantes pour l industrie : Synthèse Jusqu ici, les

Plus en détail

Workflow/DataWarehouse/DataMining. 14-09-98 LORIA - Université d automne 1998 - Informatique décisionnelle - L. Mirtain 1

Workflow/DataWarehouse/DataMining. 14-09-98 LORIA - Université d automne 1998 - Informatique décisionnelle - L. Mirtain 1 Workflow/DataWarehouse/DataMining 14-09-98 LORIA - Université d automne 1998 - Informatique décisionnelle - L. Mirtain 1 plan Workflow DataWarehouse Aide à la décision DataMinig Conclusion 14-09-98 LORIA

Plus en détail

Vision prospective et obstacles à surmonter pour les assureurs

Vision prospective et obstacles à surmonter pour les assureurs smart solutions for smart leaders Le «Big Data» assurément Rédigé par Pascal STERN Architecte d Entreprise Vision prospective et obstacles à surmonter pour les assureurs Un avis rendu par la cour de justice

Plus en détail

Les outils logiciels IBM à l'appui d'un projet de remontée des informations en temps réel.

Les outils logiciels IBM à l'appui d'un projet de remontée des informations en temps réel. IBM Software Group Les outils logiciels IBM à l'appui d'un projet de remontée des informations en temps réel. Lydie Peter, IBM Software Group. 2004 IBM Corporation Le principe : Identifier et réagir Filtres

Plus en détail

OFFRE DE FORMATION L.M.D.

OFFRE DE FORMATION L.M.D. REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE OFFRE DE FORMATION L.M.D. MASTER PROFESSIONNEL ET ACADEMIQUE Systèmes d Information

Plus en détail

Programme scientifique Majeure ARCHITECTURE DES SYSTEMES D INFORMATION. Mentions Ingénierie des Systèmes d Information Business Intelligence

Programme scientifique Majeure ARCHITECTURE DES SYSTEMES D INFORMATION. Mentions Ingénierie des Systèmes d Information Business Intelligence É C O L E D I N G É N I E U R D E S T E C H N O L O G I E S D E L I N F O R M A T I O N E T D E L A C O M M U N I C A T I O N Programme scientifique Majeure ARCHITECTURE DES SYSTEMES D INFORMATION Mentions

Plus en détail

Dailymotion: La performance dans le cloud

Dailymotion: La performance dans le cloud Dailymotion: La performance dans le cloud CRiP Thématique Services IT dans le Cloud 06/11/14 Dailymotion en quelques chiffres? 130 millions visiteurs uniques par mois 3 milliards de vidéos vues par mois

Plus en détail

L INTÉRÊT D INTERNET PIERRE DANSEREAU RICHARD TASCHEREAU. Association des actuaires I.A.R.D 21 novembre 2003 Page 1

L INTÉRÊT D INTERNET PIERRE DANSEREAU RICHARD TASCHEREAU. Association des actuaires I.A.R.D 21 novembre 2003 Page 1 L INTÉRÊT D INTERNET PIERRE DANSEREAU RICHARD TASCHEREAU JEAN-YVES ST-ARNAUD Association des actuaires I.A.R.D 21 novembre 2003 Page 1 AGENDA de la présentation Faire le point sur Internet Au-delà des

Plus en détail

Présentation de la solution SAP Solutions SAP Crystal 2011. Une solution de Business Intelligence d entrée de gamme complète

Présentation de la solution SAP Solutions SAP Crystal 2011. Une solution de Business Intelligence d entrée de gamme complète Présentation de la solution SAP Solutions SAP Crystal Solutions SAP Crystal 2011 Une solution de Business Intelligence d entrée de gamme complète SOMMAIRE ^4 ^ 5 ^ 6 ^ 7 ^ 8 ^ 9 Créez les fondements de

Plus en détail

Position du CIGREF sur le Cloud computing

Position du CIGREF sur le Cloud computing Position du CIGREF sur le Cloud computing Septembre 2010 Cette position est le fruit d un groupe de réflexion ayant rassemblé les Directeurs des Systèmes d Information de grandes entreprises, au premier

Plus en détail

Les données massives de Copernicus : vers un nouveau paradigme. Hervé Jeanjean Cnes

Les données massives de Copernicus : vers un nouveau paradigme. Hervé Jeanjean Cnes Les données massives de Copernicus : vers un nouveau paradigme Hervé Jeanjean Cnes 1 Règlement Copernicus du 03/04/2014 : cadre politique, organisationnel et financier Règlement délégué du 12/07/2013 sur

Plus en détail

Cette première partie pose les enjeux de la BI 2.0 et son intégration dans le SI de l entreprise. De manière progressive, notre approche situera le

Cette première partie pose les enjeux de la BI 2.0 et son intégration dans le SI de l entreprise. De manière progressive, notre approche situera le Partie I BI 2.0 Cette première partie pose les enjeux de la BI 2.0 et son intégration dans le SI de l entreprise. De manière progressive, notre approche situera le SI classique avec l intégration de la

Plus en détail

Open Data. Enjeux et perspectives dans les télécommunications

Open Data. Enjeux et perspectives dans les télécommunications Open Data Enjeux et perspectives dans les télécommunications Orange Labs 28/09/2012 Patrick launay, Recherche & Développement, Orange Labs - Recherche & Développement Printemps de la Recherche EDF Open

Plus en détail

Les RH à l ère du Big Data: faites parler vos données! Mesurez et optimisez la performance de vos programmes RH 18 septembre 2013

Les RH à l ère du Big Data: faites parler vos données! Mesurez et optimisez la performance de vos programmes RH 18 septembre 2013 Les RH à l ère du Big Data: faites parler vos données! Mesurez et optimisez la performance de vos programmes RH 18 septembre 2013 Qui nous sommes Firme québécoise (bureaux à Québec et Montréal) Spécialisée

Plus en détail

SQL Server 2014 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services, Power BI...)

SQL Server 2014 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services, Power BI...) Avant-propos 1. À qui s'adresse ce livre? 15 2. Pré-requis 15 3. Objectifs du livre 16 4. Notations 17 Introduction à la Business Intelligence 1. Du transactionnel au décisionnel 19 2. Business Intelligence

Plus en détail

Présentation du livre blanc Groupe de travail CMDB. CRIP Thématique CMDB 14 décembre 2010

Présentation du livre blanc Groupe de travail CMDB. CRIP Thématique CMDB 14 décembre 2010 Présentation du livre blanc Groupe de travail CMDB CRIP Thématique CMDB 14 décembre 2010 m1 Du lancement du groupe à la publication du livre blanc Sujet lancé deuxième semestre 2008 67 inscrits 10 membres

Plus en détail

THE NEW STYLE OF SERVICE DESK, ANYTIME, ANYWHERE MARDI 11 FÉVRIER, DOMINIQUE DUPUIS, DIRECTRICE DE LA RECHERCHE

THE NEW STYLE OF SERVICE DESK, ANYTIME, ANYWHERE MARDI 11 FÉVRIER, DOMINIQUE DUPUIS, DIRECTRICE DE LA RECHERCHE THE NEW STYLE OF SERVICE DESK, ANYTIME, ANYWHERE MARDI 11 FÉVRIER, DOMINIQUE DUPUIS, DIRECTRICE DE LA RECHERCHE SOMMAIRE Les enquêtes du CXP SaaS / Cloud Mobilité Big Data Conclusion 2 SOMMAIRE Les enquêtes

Plus en détail

Formation Méthode MDM. Architecture et procédés de modélisation des données de référence

Formation Méthode MDM. Architecture et procédés de modélisation des données de référence Architecture et procédés de modélisation des données de référence Objectifs de la session Les participants découvrent l architecture et les procédés de modélisation utilisés pour les projets de Master

Plus en détail

Ad-exchanges & RTB (avec la participation de Fabien Magalon, La place

Ad-exchanges & RTB (avec la participation de Fabien Magalon, La place En partenariat avec : Tout savoir sur le marketing à la performance Intervenants Hugo Loriot Directeur media technologie, Fifty Five Yann Gabay - Directeur général, Netbooster Fabien Magalon Directeur

Plus en détail

COMMUNIQUE DE PRESSE CONJOINT MODELLIS & DATAVALUE CONSULTING

COMMUNIQUE DE PRESSE CONJOINT MODELLIS & DATAVALUE CONSULTING COMMUNIQUE DE PRESSE CONJOINT MODELLIS & DATAVALUE CONSULTING 12/01/15 La Direction Financière du Groupe Chèque Déjeuner innove en optant pour une solution Cloud d élaboration budgétaire, gage d agilité

Plus en détail

Comment valoriser votre patrimoine de données?

Comment valoriser votre patrimoine de données? BIG DATA POUR QUELS USAGES? Comment valoriser votre patrimoine de données? HIGH PERFORMANCE HIGH ANALYTICS PERFORMANCE ANALYTICS MOULOUD DEY SAS FRANCE 15/11/2012 L ENTREPRISE SAS EN QUELQUES CHIFFRES

Plus en détail

Skills Technology Software PARTENAIRE TECHNOLOGIQUE DE VOTRE DÉVELOPPEMENT

Skills Technology Software PARTENAIRE TECHNOLOGIQUE DE VOTRE DÉVELOPPEMENT Skills Technology Software w w w.s PARTENAIRE TECHNOLOGIQUE DE VOTRE DÉVELOPPEMENT ka ty s. co m E U OG ION L TA AT A C RM FO Accélérateur de votre RÉUSSITE 2 Formation Aujourd hui, la formation constitue

Plus en détail

Département de Maine et Loire OASIS. Observatoire d Analyse du Système d Information Stratégique

Département de Maine et Loire OASIS. Observatoire d Analyse du Système d Information Stratégique Département de Maine et Loire OASIS Observatoire d Analyse du Système d Information Stratégique Système Information d Analyse Décisionnelle Plan de la présentation L informatique décisionnelle? Les Objectifs

Plus en détail

UNE DÉMARCHE D ANALYSE À BASE DE PATRONS POUR LA DÉCOUVERTE DES BESOINS MÉTIER D UN SID

UNE DÉMARCHE D ANALYSE À BASE DE PATRONS POUR LA DÉCOUVERTE DES BESOINS MÉTIER D UN SID 1 UNE DÉMARCHE D ANALYSE À BASE DE PATRONS POUR LA DÉCOUVERTE DES BESOINS MÉTIER D UN SID 31 janvier 2012 Bordeaux Présentée par :Mme SABRI Aziza Encadrée par : Mme KJIRI Laila Plan 2 Contexte Problématique

Plus en détail

Le tableau de bord de la DSI : un outil pour mieux piloter son informatique.

Le tableau de bord de la DSI : un outil pour mieux piloter son informatique. Le tableau de bord de la DSI : un outil pour mieux piloter son informatique. Introduction Face à l évolution constante des besoins fonctionnels et des outils informatiques, il est devenu essentiel pour

Plus en détail

FAITES DE LA DONNÉE LE MOTEUR DE VOTRE BUSINESS. Alexandre Vasseur Responsable Avant-Vente Europe du Sud Pivotal, EMC

FAITES DE LA DONNÉE LE MOTEUR DE VOTRE BUSINESS. Alexandre Vasseur Responsable Avant-Vente Europe du Sud Pivotal, EMC FAITES DE LA DONNÉE LE MOTEUR DE VOTRE BUSINESS Alexandre Vasseur Responsable Avant-Vente Europe du Sud Pivotal, EMC 1 Big Data = Volume, Variété, Vélocité et Valorisation Internet des objets Informations

Plus en détail

Présentation du 23 mai 2013 Barcarolle/Prangins AGENDA. 1. INTRODUCTION 2. CALYPS 3. QlikView by QlikTech 4. ANALYSE AVEC QLIKVIEW

Présentation du 23 mai 2013 Barcarolle/Prangins AGENDA. 1. INTRODUCTION 2. CALYPS 3. QlikView by QlikTech 4. ANALYSE AVEC QLIKVIEW Présentation du 23 mai 2013 Barcarolle/Prangins CALYPS SA : 5/2013 Tony Germini CEO Gérald Tedeschi Sales Director Nicolas Paccaud Senior Consultant Alessandro Baseggio Senior Consultant AGENDA 1. INTRODUCTION

Plus en détail

DU RÉSEAU AU BIG DATA UNE OFFRE GLOBALE DE GESTION DE LA DONNÉE. Bruno Fleisch - Responsable Produits Tarik Hakkou Responsable du pôle «Data»

DU RÉSEAU AU BIG DATA UNE OFFRE GLOBALE DE GESTION DE LA DONNÉE. Bruno Fleisch - Responsable Produits Tarik Hakkou Responsable du pôle «Data» DU RÉSEAU AU BIG DATA UNE OFFRE GLOBALE DE GESTION DE LA DONNÉE Bruno Fleisch - Responsable Produits Tarik Hakkou Responsable du pôle «Data» BT, UN LEADER MONDIAL BT est l une des premières entreprises

Plus en détail

Londres 1854 Des problèmes (re)connus Faire plus avec moins Tendances et défis «BYOD» WIN INTUNE «Nouveaux paradigmes» «Big Data» «Cloud» Windows Server Gestion Sys. Center Identité & Virt CLOUD OS Microsoft

Plus en détail

CATALOGUE DE FORMATIONS BUSINESS INTELLIGENCE. Edition 2012

CATALOGUE DE FORMATIONS BUSINESS INTELLIGENCE. Edition 2012 CATALOGUE DE FORMATIONS BUSINESS INTELLIGENCE Edition 2012 AGENDA Qui sommes nous? Présentation de Keyrus Keyrus : Expert en formations BI Nos propositions de formation 3 modes de formations Liste des

Plus en détail

Bases de Données Avancées

Bases de Données Avancées 1/26 Bases de Données Avancées DataWareHouse Thierry Hamon Bureau H202 - Institut Galilée Tél. : 33 1.48.38.35.53 Bureau 150 LIM&BIO EA 3969 Université Paris 13 - UFR Léonard de Vinci 74, rue Marcel Cachin,

Plus en détail

Un datawarehouse est un entrepôt de données (une base de données) qui se caractérise par des données :

Un datawarehouse est un entrepôt de données (une base de données) qui se caractérise par des données : Page 1 of 6 Entrepôt de données Un article de Wikipédia, l'encyclopédie libre. L'entrepôt de données, ou datawarehouse, est un concept spécifique de l'informatique décisionnelle, issu du constat suivant

Plus en détail

L état du Québec numérique en 2015 : des Québécois très branchés, mobiles et actifs sur les réseaux sociaux

L état du Québec numérique en 2015 : des Québécois très branchés, mobiles et actifs sur les réseaux sociaux L état du Québec numérique en 2015 : des Québécois très branchés, mobiles et actifs sur les réseaux sociaux Printemps des réseaux sociaux 14 avril 2015 Guillaume Ducharme Directeur des communications et

Plus en détail

Que faire des data? 04/06/2015

Que faire des data? 04/06/2015 Que faire des data? 04/06/2015 2 minutes pour le BigData Le Big Data Volume : la dimension du teraoctet est dépassée Variété : données structurées (relationnelle) et non structurées Vélocité : création,

Plus en détail

Analytics Platform. MicroStrategy. Business Intelligence d entreprise. Self-service analytics. Big Data analytics.

Analytics Platform. MicroStrategy. Business Intelligence d entreprise. Self-service analytics. Big Data analytics. Business Intelligence d entreprise MicroStrategy Analytics Platform Self-service analytics Big Data analytics Mobile analytics Disponible en Cloud Donner l autonomie aux utilisateurs. Des tableaux de bord

Plus en détail

Sécurité des Systèmes d Information

Sécurité des Systèmes d Information Sécurité des Systèmes d Information Tableaux de bord SSI 29% Nicolas ABRIOUX / Consultant Sécurité / Intrinsec Nicolas.Abrioux@Intrinsec.com http://www.intrinsec.com Conférence du 23/03/2011 Tableau de

Plus en détail

L OFFRE JDE CLOUD 9 CHEZ REDFAIRE

L OFFRE JDE CLOUD 9 CHEZ REDFAIRE Spécialiste ORACLE / JD Edwards 25 octobre 2012 L OFFRE JDE CLOUD 9 CHEZ REDFAIRE Agenda Un contexte favorable L offre Cloud de Redfaire sur JD Edwards - Contenu fonctionnel - La plateforme technique -

Plus en détail

Inscriptions : 0800 901 069 - Renseignements : 33 (0)1 44 45 24 35 - education.france@sap.com

Inscriptions : 0800 901 069 - Renseignements : 33 (0)1 44 45 24 35 - education.france@sap.com FORMATION SAP BUSINESSOBJECTS BUSINESS INTELLIGENCE PLATFORM 4.x Du lundi 3 au vendredi 7 juin 2013 http://www.sap.com/france/services/education/newsevents/index.epx 1 Vous êtes clients SAP BusinessObjects

Plus en détail

données optimisée Une solution d'entreprise pour fournir à la demande des données mélangées, hiérarchisées et prêtes à être analysées

données optimisée Une solution d'entreprise pour fournir à la demande des données mélangées, hiérarchisées et prêtes à être analysées Concevoir une données optimisée Une solution d'entreprise pour fournir à la demande des données mélangées, hiérarchisées et prêtes à être analysées Copyright 2015 Pentaho Corporation. Redistribution autorisée.

Plus en détail

Présentation de la majeure ISN. ESILV - 18 avril 2013

Présentation de la majeure ISN. ESILV - 18 avril 2013 Présentation de la majeure ISN ESILV - 18 avril 2013 La Grande Carte des Métiers et des Emplois Sociétés de service Entreprises Administrations Grand- Public Sciences Utiliser Aider à utiliser Vendre APPLICATIONS:

Plus en détail

02.10.2015 Olivier Rafal, PAC CXP Group

02.10.2015 Olivier Rafal, PAC CXP Group 02.10.2015 Olivier Rafal, PAC CXP Group 1 Le groupe CXP L étude BARC Big Data Use Cases 2015 Etude internationale Plus de 550 participants 3e Edition Large couverture des types d industries & tailles d

Plus en détail

Généralités sur les bases de données

Généralités sur les bases de données Généralités sur les bases de données Qu est-ce donc qu une base de données? Que peut-on attendre d un système de gestion de bases de données? Que peut-on faire avec une base de données? 1 Des données?

Plus en détail

Conférence organisée par le Laboratoire d ingénierie financière de l Université Laval www.fsa.ulaval.ca/labiful/

Conférence organisée par le Laboratoire d ingénierie financière de l Université Laval www.fsa.ulaval.ca/labiful/ MERCI À NOS PARTENAIRES : Fonds Conrad Leblanc Département de finance, assurance et immobilier Chaire RBC en innovations financières Chaire d'assurance et de services financiers L'Industrielle Alliance

Plus en détail

Il est temps de passer à la déduplication

Il est temps de passer à la déduplication Plein les bras de multiplier la même information? OPTIMISE_BACKUP Il est temps de passer à la déduplication OPTIMISE_BACKUP remet les sauvegardes de données à l heure L heure de la déduplication a sonné

Plus en détail

Introduction Big Data

Introduction Big Data Introduction Big Data SOMMAIRE Rédacteurs : Réf.: SH. Lazare / F. Barthélemy AXIO_BD_V1 QU'EST-CE QUE LE BIG DATA? ENJEUX TECHNOLOGIQUES ENJEUX STRATÉGIQUES BIG DATA ET RH ANNEXE Ce document constitue

Plus en détail

Entreprise et Big Data

Entreprise et Big Data Entreprise et Big Data Christophe Favart Chef Architecte, SAP Advanced Development, Business Information Technology Public Juin 2013 Agenda SAP Données d Entreprise Big Data en entreprise Solutions SAP

Plus en détail

Conception des systèmes répartis

Conception des systèmes répartis Conception des systèmes répartis Principes et concepts Gérard Padiou Département Informatique et Mathématiques appliquées ENSEEIHT Octobre 2012 Gérard Padiou Conception des systèmes répartis 1 / 37 plan

Plus en détail

New Features. Developed by. BPM Conseil - SARL au capital de 70 000 euros - RCS LYON 479 400 129 9, rue Pierre Blanc - 69001 Lyon - France 1/20

New Features. Developed by. BPM Conseil - SARL au capital de 70 000 euros - RCS LYON 479 400 129 9, rue Pierre Blanc - 69001 Lyon - France 1/20 5 New Features Developed by 1/20 Sommaire 1 Introduction... 3 2 Evolutions des studios de développement et améliorations fonctionnelles... 5 3 Portail Vanilla... 6 3.1 Open Street Maps... 6 3.2 Gestion

Plus en détail

Big Data. Concept et perspectives : la réalité derrière le "buzz"

Big Data. Concept et perspectives : la réalité derrière le buzz Big Data Concept et perspectives : la réalité derrière le "buzz" 2012 Agenda Concept & Perspectives Technologies & Acteurs 2 Pierre Audoin Consultants (PAC) Pierre Audoin Consultants (PAC) est une société

Plus en détail

Canon Business Services. Service de courrier numérique

Canon Business Services. Service de courrier numérique Canon Business Services Service de courrier numérique 2 Courrier numérique Aperçu du marché Le saviez-vous? Un service de courrier numérique présente de nombreux avantages. Il permet notamment une augmentation

Plus en détail

BIGDATA AN 3 : UNE NOUVELLE ERE DE B.I.

BIGDATA AN 3 : UNE NOUVELLE ERE DE B.I. BIGDATA AN 3 : UNE NOUVELLE ERE DE B.I. QUELLES PERSPECTIVES POUR LES 20 PROCHAINES ANNEES? 22 MARS 2013 CHARLES PARAT, DIR. INNOVATION adoption L ADOPTION DES EVOLUTIONS B.I. EST LENTE BIGDATA BUZZ MAINFRAME

Plus en détail

Surmonter les 5 défis opérationnels du Big Data

Surmonter les 5 défis opérationnels du Big Data Surmonter les 5 défis opérationnels du Big Data Jean-Michel Franco Talend Connect 9 octobre 2014 Talend 2014 1 Agenda Agenda Le Big Data depuis la découverte jusqu au temps réel en passant par les applications

Plus en détail

Big Data : Risques et contre-mesures

Big Data : Risques et contre-mesures 18 mars 2014 Big Data : Risques et contre-mesures Les fondamentaux pour bien démarrer Gérôme BILLOIS gerome.billois@solucom.fr Twitter : @gbillois Chadi HANTOUCHE chadi.hantouche@solucom.fr Twitter : @chadihantouche

Plus en détail

Déployer une Stratégie Web Globale

Déployer une Stratégie Web Globale Lundi 23 Avril 2012 Déployer une Stratégie Web Globale au service de sa structure Plan de la présentation A) Internet en France aujourd'hui B) Internet : une constellation de moyens à disposition C) Pourquoi

Plus en détail

Qu'est-ce que le BPM?

Qu'est-ce que le BPM? Qu'est-ce que le BPM? Le BPM (Business Process Management) n'est pas seulement une technologie mais, dans les grandes lignes, une discipline de gestion d'entreprise qui s'occupe des procédures contribuant

Plus en détail

Conclusion. Rôle du géodécisionnel dans une organisation gouvernementale Contexte organisationnel à Infrastructure Canada Le projet Les résultats

Conclusion. Rôle du géodécisionnel dans une organisation gouvernementale Contexte organisationnel à Infrastructure Canada Le projet Les résultats Le marché des logiciels géodécisionnels et exemple d application avec Oracle BIEE 11g Géomatique 2011, Montréal Sonia Rivest, Analyste en géodécisionnel géodécisionnel,, Intelli3 Denis Beaulieu, Gestionnaire,

Plus en détail

La Business Intelligence & le monde des assurances

La Business Intelligence & le monde des assurances Conseil National des Assurances Séminaire - Atelier L information au service de tous Le 09 Novembre 2005 La Business Intelligence & le monde des assurances Karim NAFIE Regional Presales Manager EEMEA Operations

Plus en détail

Marketing synchronisé

Marketing synchronisé Marketing synchronisé Placez l expérience de vos prospects au centre de vos stratégies pour un engagement maximum Big Bang -AQT 15 mai 2013 Alain Boudreau Associé-fondateur, VSM Quelle est votre destination

Plus en détail

WMS On Demand. Facilité d accès et flexibilité

WMS On Demand. Facilité d accès et flexibilité Facilité d accès et flexibilité Les utilisateurs de l entrepôt accèdent aux serveurs WMS On Demand de Generix Group par une connexion simple et sécurisée. Vous utilisez votre application n'importe quand

Plus en détail

Création de la Plateforme numérique d'infomédiation du tourisme français

Création de la Plateforme numérique d'infomédiation du tourisme français Création de la Plateforme numérique d'infomédiation du tourisme français Le tourisme français point d'appui de l'image et du rayonnement de la France De l ordre de 80 millions de visiteurs étrangers se

Plus en détail

Intégrez la puissance "Où" du dans votre entreprise. Obtenez de meilleurs résultats grâce à Esri Location Analytics. Comprendre notre monde

Intégrez la puissance Où du dans votre entreprise. Obtenez de meilleurs résultats grâce à Esri Location Analytics. Comprendre notre monde Intégrez la puissance "Où" du dans votre entreprise Obtenez de meilleurs résultats grâce à Esri Location Analytics Comprendre notre monde Quand la question est Quoi? la réponse est Où Dans le contexte

Plus en détail

CONSEIL EN STRATÉGIE ET TRANSFORMATION DIGITALE. Leading Digital Together

CONSEIL EN STRATÉGIE ET TRANSFORMATION DIGITALE. Leading Digital Together CONSEIL EN STRATÉGIE ET TRANSFORMATION DIGITALE Leading Digital Together 2 3 Capgemini Consulting, le leader français de la transformation digitale Une force de frappe de 900 consultants en France et de

Plus en détail

Comment réussir le déploiement de votre communauté B2B et réduire les coûts de votre chaîne logistique?

Comment réussir le déploiement de votre communauté B2B et réduire les coûts de votre chaîne logistique? Comment réussir le déploiement de votre communauté B2B et réduire les coûts de votre chaîne logistique? La chaîne d approvisionnement ne saurait plus fonctionner sans EDI. L enjeu est à présent d accélérer

Plus en détail

Rôle des bases de données émergentes dans le renforcement des mesures du développement humain

Rôle des bases de données émergentes dans le renforcement des mesures du développement humain Royaume du Maroc Le Chef du Gouvernement Rôle des bases de données émergentes dans le renforcement des mesures du développement humain Conférence internationale sur les méthodes de mesure de développement

Plus en détail

Edmond Cissé. URÆUS Consult Ingénierie & Sécurité des Données www.uraeus-consult.com. edcisse@uraeus-consult.com 04 93 95 52 10

Edmond Cissé. URÆUS Consult Ingénierie & Sécurité des Données www.uraeus-consult.com. edcisse@uraeus-consult.com 04 93 95 52 10 Edmond Cissé URÆUS Consult Ingénierie & Sécurité des Données www.uraeus-consult.com edcisse@uraeus-consult.com 04 93 95 52 10 1 Historique du BI Depuis 20 ans, le marché BI est stable et maintenu dans

Plus en détail

SYNERGYTEK. Logiciel de gestion de la production sur mesure

SYNERGYTEK. Logiciel de gestion de la production sur mesure SYNERGYTEK Logiciel de gestion de la production sur mesure Sommaire SYNERGYTEK Pourquoi :: Est-ce que ce logiciel est fait pour vous? Quoi :: Qu est-ce que ça fait exactement? Comment :: Une implantation

Plus en détail

To PIM or not to PIM? Managing your Product Catalog

To PIM or not to PIM? Managing your Product Catalog To PIM or not to PIM? Managing your Product Catalog Sébastien LIEUTAUD VP Sales & Marketing Programme Le marché du PIM en pleine (r)évolution! To PIM or not to PIM: Objectifs, réalisation et bénéfices

Plus en détail

GT Big Data. Saison 2014-2015. Bruno Prévost (Safran), Marc Demerlé (GDF SUEZ) CRiP Thématique Mise en œuvre du Big Data 16/12/14

GT Big Data. Saison 2014-2015. Bruno Prévost (Safran), Marc Demerlé (GDF SUEZ) CRiP Thématique Mise en œuvre du Big Data 16/12/14 GT Big Data Saison 2014-2015 Bruno Prévost (Safran), Marc Demerlé (GDF SUEZ) Sommaire GT Big Data : roadmap 2014-15 Revue de presse Business Education / Promotion Emploi Sécurité / Compliance Cuisine:

Plus en détail

Londres 1854 Des problèmes (re)connus Faire plus avec moins Tendances et défis «BYOD» WIN INTUNE «Nouveaux paradigmes» «Big Data» «Cloud» Windows Server Gestion Sys. Center Identité & Virt CLOUD OS Microsoft

Plus en détail

Intelligence d affaires nouvelle génération

Intelligence d affaires nouvelle génération Intelligence d affaires nouvelle génération Sept étapes vers l amélioration de l intelligence d affaires par l entremise de la recherche de données À PROPOS DE CETTE ÉTUDE Les approches traditionnelles

Plus en détail