Master 2 Informatique UAG. Classification de documents/textes

Dimension: px
Commencer à balayer dès la page:

Download "Master 2 Informatique UAG. Classification de documents/textes"

Transcription

1 Data Mining Master 2 Informatique UAG Classification de documents/textes Utilisée en text mining, information retrieval : amélioration du recall et de la précision Moyen de trouver les voisins les plus proches d un document navigation dans une collection de documents organisation des résultats retournés par un moteur de recherche génération automatique d'une hiérarchie de documents

2 Classification de textes 1. Représentation 2. Techniques 3. Evaluation des clusters 4. K-Means et Bi-Section K-Means 5. Techniques hiérarchiques agglomératives 6. Comparaison K-Means, Bi-Section K-Means, UPGMA 7. Fonctions Objectif 8. Outil CLUTO 1. Représentation Représentation vectorielle un document d est représenté, dans l'espace des termes (mots) par le (TF) vecteur d tf = (tf 1, tf 2,, tf n ) où tf i est la fréquence du ième terme dans le document d

3 Représentation T1 T2 T3 T4 T5 T6 T7 T8 doc doc doc doc doc Représentation T1 T2 T3 T4 T5 T6 T7 T8 doc doc doc doc doc

4 TF-IDF IDF Inverse Document Frequency un document d est représenté, dans l'espace des termes par le vecteur d tf = (tf 1 log(n/df 1 ), tf 2 log(n/df 2 ),, tf n log(n/df n ) ) où tf i est la fréquence du ième terme dans le document df i est le nombre de documents contenant le ième terme Distance entre document Formules les plus usitées Cosinus Distance euclidienne

5 2. Techniques Hiérarchiques agglomératives Agglomératives (ascendantes) ou divisives (descendantes) Technique agglomérative stnadard 1. Calcul de la similarité entre clusters 2 à 2 (calcul d'une matrice de similarité) 2. Fusion des clusters les plus proches. 3. Re-calcul de la similarité entre le nouveau cluster et les autres clusters. 4. Itération des pas 2 et 3 jusqu'à obtenir un seul cluster Classification hierarchique pas 0 pas 1 pas 2 pas 3 pas 4 a a b b a b c d e c c d e d d e e pas 4 pas 3 pas 2 pas 1 pas 0 agglomeration division

6 Classification hierarchique T1 0 T1 T2 T3 T4 T5 T6 T7 T8 T2 d(t1,t2) 0 T3 d(t1,t3)... 0 T4 0 T5 0 T6 0 T7 0 T8 0

7 Méthodes agglomeratives distances entre clusters Single linkage Complete linkage Average linkage Centroid linkage Ward distance minimum distance maximum distance moyenne distance entre les centroides distance euclidienne pondérée entre moyennes Distance between clusters Single Link: smallest distance between points Complete Link: largest distance between points Average Link: average distance between points Centroid: distance between centroids

8 Exemple

9

10 Techniques par partitionnement K-Means basé sur la notion de centroide, point central d'un cluster 1. Selectionner K objets comme centroides initiaux 2. Assigner les points au centroide le plus proche 3. Re-calcul du centroide de chaque cluster 4. Iteration de 2 et 3 jusqu'à obtenir des clusters stables

11 Clustering hiérarchique : produit un dendrogramme Peut être utilisé pour produire un ensemble de clusters "plats" K-means ou autre algo. par partitionnement peut être utilisé itérativement pour produire une hiérarchie de clusters K-Means utilise le cosinus pour calculer le centroide le plus proche d'un document Centroide calculé comme une moyenne Distance Document - centroide

12 Produit scalaire entre un document et un centroide : d 1.c Similarité moyenne avec les documents du clusters Bi-sections K-Means Méthode démarre avec un seul cluster regroupant tous les objets (documents) 1. Choisit un cluster à éclater 2. Extrait deux clusters en utilisant K-Means avec k=2 3. Itère en 2 et choisit l'éclatement qui produit le meilleure similarité globale 4. Itère 1, 2 et 3 jusqu'à obtenir le nombre de clusters demandé Choix du cluster à éclater : critères nombreux, en général, on choisit le plus grand

13 Bi-sections K-Means Méthode hiérarchique divisive Evaluation des clusters résultats Entropie calculée par rapport à un ensemble de classes Classes C 1, C i C p Clusters Cl 1, Cl j Cl m

14 F-Measure calculée par rapport à un ensemble de classes n ij nombre d'objets du cluster j dans la classe i n j nombre d'objets du cluster j n nombre d'objets du jeu de données Similarité globale ou

15 Méthodes agglomeratives : comparaison Critères de fusion des clusters Critères de similarité K-Means, Bisect. Kmeans, UPGMA Cf [Steinbach et al. 2000]

16 Fonctions objectifs Adéquation des fonctions objectif au clustering de documents : Similarité intra-cluster, interclusters, combinaisons Méthode d'optimisation Performance globale dépendante de la sensibilité à la variation de densité des clusters Certaines méthodes produisent des clusters de densités peu différentes (ex Bisect K-Means)

Objectifs. Clustering. Principe. Applications. Applications. Cartes de crédits. Remarques. Biologie, Génomique

Objectifs. Clustering. Principe. Applications. Applications. Cartes de crédits. Remarques. Biologie, Génomique Objectifs Clustering On ne sait pas ce qu on veut trouver : on laisse l algorithme nous proposer un modèle. On pense qu il existe des similarités entre les exemples. Qui se ressemble s assemble p. /55

Plus en détail

La classification automatique de données quantitatives

La classification automatique de données quantitatives La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations

Plus en détail

Stéphane Tufféry DATA MINING & STATISTIQUE DÉCISIONNELLE. 04/04/2008 Stéphane Tufféry - Data Mining - http://data.mining.free.fr

Stéphane Tufféry DATA MINING & STATISTIQUE DÉCISIONNELLE. 04/04/2008 Stéphane Tufféry - Data Mining - http://data.mining.free.fr Stéphane Tufféry DATA MINING & STATISTIQUE DÉCISIONNELLE 1 Plan du cours Qu est-ce que le data mining? A quoi sert le data mining? Les 2 grandes familles de techniques Le déroulement d un projet de data

Plus en détail

TRAITEMENT AUTOMATIQUE DES LANGUES. Licence d'informatique 2ème Année Semestre 1. Département d'informatique Université de Caen Basse-Normandie

TRAITEMENT AUTOMATIQUE DES LANGUES. Licence d'informatique 2ème Année Semestre 1. Département d'informatique Université de Caen Basse-Normandie TRAITEMENT AUTOMATIQUE DES LANGUES Licence d'informatique 2ème Année Semestre 1 Département d'informatique Université de Caen Basse-Normandie https://dias.users.greyc.fr/?op=paginas/tal.html Plan Définition

Plus en détail

Recherche d Information(RI): Fondements et illustration avec Apache Lucene. par Majirus Fansi @majirus

Recherche d Information(RI): Fondements et illustration avec Apache Lucene. par Majirus Fansi @majirus 1 Recherche d Information(RI): Fondements et illustration avec Apache Lucene par Majirus Fansi @majirus Résumé Fondements de la Recherche d Information (RI) Noyau de toute application de RI Éléments à

Plus en détail

La segmentation à l aide de EG-SAS. A.Bouhia Analyste principal à la Banque Nationale du Canada. Chargé de cours à l UQAM

La segmentation à l aide de EG-SAS. A.Bouhia Analyste principal à la Banque Nationale du Canada. Chargé de cours à l UQAM La segmentation à l aide de EG-SAS A.Bouhia Analyste principal à la Banque Nationale du Canada. Chargé de cours à l UQAM Définition de la segmentation - Au lieu de considérer une population dans son ensemble,

Plus en détail

INF6304 Interfaces Intelligentes

INF6304 Interfaces Intelligentes INF6304 Interfaces Intelligentes filtres collaboratifs 1/42 INF6304 Interfaces Intelligentes Systèmes de recommandations, Approches filtres collaboratifs Michel C. Desmarais Génie informatique et génie

Plus en détail

Recherche d information en langue arabe : influence des paramètres linguistiques et de pondération de LSA

Recherche d information en langue arabe : influence des paramètres linguistiques et de pondération de LSA RÉCITAL 2005, Dourdan, 6-10 juin 2005 Recherche d information en langue arabe : influence des paramètres linguistiques et de pondération de LSA Siham Boulaknadel (1,2), Fadoua Ataa-Allah (2) (1) LINA FRE

Plus en détail

EXTRACTION DE CONNAISSANCES À PARTIR DE DONNÉES TEXTUELLES VUE D ENSEMBLE

EXTRACTION DE CONNAISSANCES À PARTIR DE DONNÉES TEXTUELLES VUE D ENSEMBLE ème Colloque National AIP PRIMECA La Plagne - 7- avril 7 EXTRACTION DE CONNAISSANCES À PARTIR DE DONNÉES TEXTUELLES VUE D ENSEMBLE Bruno Agard Département de Mathématiques et de Génie Industriel, École

Plus en détail

Agrégation des portefeuilles de contrats d assurance vie

Agrégation des portefeuilles de contrats d assurance vie Agrégation des portefeuilles de contrats d assurance vie Est-il optimal de regrouper les contrats en fonction de l âge, du genre, et de l ancienneté des assurés? Pierre-O. Goffard Université d été de l

Plus en détail

COURS DE DATA MINING 4 : MODELISATION NON-SUPERVISEE CLASSIFICATIONS AUTOMATIQUES

COURS DE DATA MINING 4 : MODELISATION NON-SUPERVISEE CLASSIFICATIONS AUTOMATIQUES COURS DE DATA MINING 4 : MODELISATION NON-SUPERVISEE CLASSIFICATIONS AUTOMATIQUES EPF 4/ 5 ème année - Option Ingénierie d Affaires et de Projets - Finance Bertrand LIAUDET 4 : Modélisation non-supervisée

Plus en détail

Introduction aux algorithmes MapReduce. Mathieu Dumoulin (GRAAL), 14 Février 2014

Introduction aux algorithmes MapReduce. Mathieu Dumoulin (GRAAL), 14 Février 2014 Introduction aux algorithmes MapReduce Mathieu Dumoulin (GRAAL), 14 Février 2014 Plan Introduction de la problématique Tutoriel MapReduce Design d algorithmes MapReduce Tri, somme et calcul de moyenne

Plus en détail

Une nouvelle approche de détection de communautés dans les réseaux sociaux

Une nouvelle approche de détection de communautés dans les réseaux sociaux UNIVERSITÉ DU QUÉBEC EN OUTAOUAIS Département d informatique et d ingénierie Une nouvelle approche de détection de communautés dans les réseaux sociaux Mémoire (INF 6021) pour l obtention du grade de Maîtrise

Plus en détail

5. Apprentissage pour le filtrage collaboratif

5. Apprentissage pour le filtrage collaboratif 686 PARTIE 5 : Au-delà de l apprentissage supervisé 5. Apprentissage pour le filtrage collaboratif Il semble que le nombre de choix qui nous sont ouverts augmente constamment. Films, livres, recettes,

Plus en détail

Optimisation, traitement d image et éclipse de Soleil

Optimisation, traitement d image et éclipse de Soleil Kléber, PCSI1&3 014-015 I. Introduction 1/8 Optimisation, traitement d image et éclipse de Soleil Partie I Introduction Le 0 mars 015 a eu lieu en France une éclipse partielle de Soleil qu il était particulièrement

Plus en détail

1 Complément sur la projection du nuage des individus

1 Complément sur la projection du nuage des individus TP 0 : Analyse en composantes principales (II) Le but de ce TP est d approfondir nos connaissances concernant l analyse en composantes principales (ACP). Pour cela, on reprend les notations du précédent

Plus en détail

TRS: Sélection des sous-graphes représentants par l intermédiaire des attributs topologiques et K-medoïdes

TRS: Sélection des sous-graphes représentants par l intermédiaire des attributs topologiques et K-medoïdes TRS: Sélection des sous-graphes représentants par l intermédiaire des attributs topologiques et K-medoïdes Mohamed Moussaoui,Wajdi Dhifli,Sami Zghal,Engelbert Mephu Nguifo FSJEG, Université de Jendouba,

Plus en détail

Conception d un lecteur de musique intelligent basé sur l apprentissage automatique.

Conception d un lecteur de musique intelligent basé sur l apprentissage automatique. Université de Mons Faculté des Sciences Institut d Informatique Service d Algorithmique Conception d un lecteur de musique intelligent basé sur l apprentissage automatique. Mémoire réalisé par Xavier DUBUC

Plus en détail

Séance 11 : Typologies

Séance 11 : Typologies Séance 11 : Typologies Sommaire Proc CLUSTER : Typologie hiérarchique... 3 Proc FASTCLUS : Typologie nodale... 8 Proc MODECLUS : Typologie non paramétrique... 11 - Les phénomènes observés (attitudes, comportements,

Plus en détail

Enjeux mathématiques et Statistiques du Big Data

Enjeux mathématiques et Statistiques du Big Data Enjeux mathématiques et Statistiques du Big Data Mathilde Mougeot LPMA/Université Paris Diderot, mathilde.mougeot@univ-paris-diderot.fr Mathématique en Mouvements, Paris, IHP, 6 Juin 2015 M. Mougeot (Paris

Plus en détail

Travail de session : Mémoire. Le clustering de données. Par Nicolas Sola & Mathieu Schmitt

Travail de session : Mémoire. Le clustering de données. Par Nicolas Sola & Mathieu Schmitt Travail de session : Mémoire Le clustering de données Par Nicolas Sola & Mathieu Schmitt Résumé Le travail du clustering consiste à regrouper les données en classe ; nous obtenons par ce biais une forte

Plus en détail

Clustering par optimisation de la modularité pour trajectoires d objets mobiles

Clustering par optimisation de la modularité pour trajectoires d objets mobiles Clustering par optimisation de la modularité pour trajectoires d objets mobiles Mohamed K. El Mahrsi, Télécom ParisTech, Département INFRES 46, rue Barrault 75634 Paris CEDEX 13, France Fabrice Rossi,

Plus en détail

De la modélisation linguistique aux applications logicielles: le rôle des Entités Nommées en Traitement Automatique des Langues

De la modélisation linguistique aux applications logicielles: le rôle des Entités Nommées en Traitement Automatique des Langues De la modélisation linguistique aux applications logicielles: le rôle des Entités Nommées en Traitement Automatique des Langues Maud Ehrmann Joint Research Centre Ispra, Italie. Guillaume Jacquet Xerox

Plus en détail

I.D.S. Systèmes de détection d intrusion - Link Analysis. par: FOUQUIN MATHIEU. responsable: AKLI ADJAOUTE DEVÈZE BENJAMIN.

I.D.S. Systèmes de détection d intrusion - Link Analysis. par: FOUQUIN MATHIEU. responsable: AKLI ADJAOUTE DEVÈZE BENJAMIN. EPITA SCIA PROMO 2005 14-16 rue Voltaire 94270 Kremlin-Bicêtre I.D.S. Systèmes de détection d intrusion - Link Analysis Juillet 2004 par: DEVÈZE BENJAMIN FOUQUIN MATHIEU responsable: AKLI ADJAOUTE TABLE

Plus en détail

Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring

Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Année académique 2006-2007 Professeurs : Marco Saerens Adresse : Université catholique de Louvain Information Systems

Plus en détail

Apprentissage Automatique

Apprentissage Automatique Apprentissage Automatique Introduction-I jean-francois.bonastre@univ-avignon.fr www.lia.univ-avignon.fr Définition? (Wikipedia) L'apprentissage automatique (machine-learning en anglais) est un des champs

Plus en détail

Master IAD Module PS. Reconnaissance de la parole (suite) Alignement temporel et Programmation dynamique. Gaël RICHARD Février 2008

Master IAD Module PS. Reconnaissance de la parole (suite) Alignement temporel et Programmation dynamique. Gaël RICHARD Février 2008 Master IAD Module PS Reconnaissance de la parole (suite) Alignement temporel et Programmation dynamique Gaël RICHARD Février 2008 1 Reconnaissance de la parole Introduction Approches pour la reconnaissance

Plus en détail

Cartes de communautés pour l adaptation interactive de profils dans un système de filtrage d information

Cartes de communautés pour l adaptation interactive de profils dans un système de filtrage d information Cartes de communautés pour l adaptation interactive de profils dans un système de filtrage d information An-Te Nguyen* Nathalie Denos* Catherine Berrut* * Laboratoire CLIPS-IMAG 385 rue de la Bibliothèque,

Plus en détail

Rapport de Stage. Titre : Clustering à l aide d une représentation supervisée

Rapport de Stage. Titre : Clustering à l aide d une représentation supervisée Nicolas Creff Du 1er février au 31 juillet 2011 Promotion 2011 Majeure SCIA Rapport de Stage Titre : Clustering à l aide d une représentation supervisée Sujet : Personnalisation de scores à l aide de la

Plus en détail

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et

Plus en détail

Analyses multivariées avec R Commander (via le package FactoMineR) Qu est ce que R? Introduction à R Qu est ce que R?

Analyses multivariées avec R Commander (via le package FactoMineR) Qu est ce que R? Introduction à R Qu est ce que R? Analyses multivariées avec R Commander Analyses multivariées avec R Commander (via le package FactoMineR) Plate-forme de Support en Méthodologie et Calcul Statistique (SMCS) - UCL 1 Introduction à R 2

Plus en détail

1 - PRESENTATION GENERALE...

1 - PRESENTATION GENERALE... Contenu PREAMBULE... 2 INTRODUCTION... 2 1 - PRESENTATION GENERALE... 4 Qualité et optimalité... 8 2 - AGREGATION AUTOUR DE CENTRES MOBILES... 9 2.1 LES BASES DE L'ALGORITHME... 10 2.2 TECHNIQUES CONNEXES...

Plus en détail

Classification non supervisée

Classification non supervisée AgroParisTech Classification non supervisée E. Lebarbier, T. Mary-Huard Table des matières 1 Introduction 4 2 Méthodes de partitionnement 5 2.1 Mesures de similarité et de dissimilarité, distances.................

Plus en détail

Limitations of the Playstation 3 for High Performance Cluster Computing

Limitations of the Playstation 3 for High Performance Cluster Computing Introduction Plan Limitations of the Playstation 3 for High Performance Cluster Computing July 2007 Introduction Plan Introduction Intérêts de la PS3 : rapide et puissante bon marché L utiliser pour faire

Plus en détail

DATAMINING C4.5 - DBSCAN

DATAMINING C4.5 - DBSCAN 14-16 rue Voltaire 94270 Kremlin Bicêtre Benjamin DEVÈZE Matthieu FOUQUIN PROMOTION 2005 SCIA DATAMINING C4.5 - DBSCAN Mai 2004 Responsable de spécialité SCIA : M. Akli Adjaoute Table des matières Table

Plus en détail

Brève introduction à la fouille de grandes bases de données océaniques

Brève introduction à la fouille de grandes bases de données océaniques Brève introduction à la fouille de grandes bases de données océaniques Guillaume Maze 1, Herlé Mercier 2, Ronan Fablet 3, Philippe Lenca 3 et Jean-François Piollé 4 1 Ifremer, UMR 6523, Laboratoire de

Plus en détail

2015 kmeans. September 3, 2015

2015 kmeans. September 3, 2015 2015 kmeans September 3, 2015 1 Kmeans avec PIG auteurs : P. Atalaya, M. Gubri M k-means est un algorithme de clustering relativement simple qu on cherche à paralléliser. In [1]: import pyensae %nb_menu

Plus en détail

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation

Plus en détail

Introduction au datamining

Introduction au datamining Introduction au datamining Patrick Naïm janvier 2005 Définition Définition Historique Mot utilisé au départ par les statisticiens Le mot indiquait une utilisation intensive des données conduisant à des

Plus en détail

Historique. Architecture. Contribution. Conclusion. Définitions et buts La veille stratégique Le multidimensionnel Les classifications

Historique. Architecture. Contribution. Conclusion. Définitions et buts La veille stratégique Le multidimensionnel Les classifications L intelligence économique outil stratégique pour l entreprise Professeur Bernard DOUSSET dousset@irit.fr http://atlas.irit.fr Institut de Recherche en Informatique de Toulouse (IRIT) Equipe Systèmes d

Plus en détail

Big$data,$le$Web$et$tout$ça $ De$quel$volume$parleDton$?$ Surcharge$d informa>on$ Introduction à la fouille de texte Master Informatique 1 ère année

Big$data,$le$Web$et$tout$ça $ De$quel$volume$parleDton$?$ Surcharge$d informa>on$ Introduction à la fouille de texte Master Informatique 1 ère année Université*Lumière*Lyon*2* *Faculté*de*Sciences*Economiques*et*Ges;on* KHARKIV*Na;onal*University*of*Economic* Introduction à la fouille de texte Master Informatique 1 ère année Julien Velcin http://mediamining.univ-lyon2.fr/velcin

Plus en détail

Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands.

Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands. Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands. Pourquoi un autre catalogue en Suisse romande Historique En 1990, la CRUS (Conférences des

Plus en détail

Fouille de données massives avec Hadoop

Fouille de données massives avec Hadoop Fouille de données massives avec Hadoop Sebastiao Correia scorreia@talend.com Talend 2013 AAFD'14 29-30 avril 2014 1 Agenda Présentation de Talend Définition du Big Data Le framework Hadoop 3 thématiques

Plus en détail

Plan. Data mining (partie 2) Data Mining : Utilisateur ou Statisticien? Data Mining : Cocktail de techniques. Master MIAGE - ENITE.

Plan. Data mining (partie 2) Data Mining : Utilisateur ou Statisticien? Data Mining : Cocktail de techniques. Master MIAGE - ENITE. Plan Data mining (partie 2) Introduction 1. Les tâches du data mining 2. Le processus de data mining Master MIAGE - ENITE Spécialité ACSI 3. Les bases de l'analyse de données 4. Les modèles du data mining

Plus en détail

Parallélisation de l algorithme des k-médoïdes. Application au clustering de courbes.

Parallélisation de l algorithme des k-médoïdes. Application au clustering de courbes. Parallélisation de l algorithme des k-médoïdes. Application au clustering de courbes. Benjamin Auder 1 & Jairo Cugliari 2 1 Laboratoire LMO. Université Paris-Sud. Bât 425. 91405 Orsay Cedex, France. benjamin.auder@math.u-psud.fr

Plus en détail

ProxiLens : Exploration interactive de données multidimensionnelles à partir de leur projection

ProxiLens : Exploration interactive de données multidimensionnelles à partir de leur projection ProxiLens : Exploration interactive de données multidimensionnelles à partir de leur projection Nicolas HEULOT (CEA LIST) Michaël AUPETIT (CEA LIST) Jean-Daniel FEKETE (INRIA Saclay) Journées Big Data

Plus en détail

Magister INFORMATIQUE. Présenté par. Soutenu en Février 2011 devant la commission du jury composée de :

Magister INFORMATIQUE. Présenté par. Soutenu en Février 2011 devant la commission du jury composée de : REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITE ABOUBEKR BELKAID-TLEMCEN FACULTE DES SCIENCES DEPARTEMENT D INFORMATIQUE

Plus en détail

Répondants et non-répondants dans les enquêtes. Analyse des séquences de contact

Répondants et non-répondants dans les enquêtes. Analyse des séquences de contact Répondants et non-répondants dans les enquêtes Analyse des séquences de contact 7 ème colloque francophone sur les sondages Alexandre Pollien (FORS), Dominique Joye (ISS), Michèle Ernst Stähli (FORS et

Plus en détail

INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES

INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES Dominique LAFFLY Maître de Conférences, Université de Pau Laboratoire Société Environnement Territoire UMR 5603 du CNRS et Université de Pau Domaine

Plus en détail

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Gilles Gasso, Stéphane Canu INSA Rouen -Département ASI Laboratoire LITIS 8 septembre 205. Ce cours est librement inspiré du cours DM de Alain Rakotomamonjy Gilles Gasso, Stéphane

Plus en détail

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Alain Rakotomamonjy - Gilles Gasso. INSA Rouen -Département ASI Laboratoire PSI Introduction au Data-Mining p. 1/25 Data-Mining : Kèkecé? Traduction : Fouille de données. Terme

Plus en détail

Caroline Hurault-Delarue 1, Cécile Chouquet 2, Nicolas Savy 2, Isabelle Lacroix 1, Christine Damase- Michel 1

Caroline Hurault-Delarue 1, Cécile Chouquet 2, Nicolas Savy 2, Isabelle Lacroix 1, Christine Damase- Michel 1 Trajectoires individuelles d'exposition aux psychotropes au cours de la grossesse et partitionnement en fonction du profil d'exposition : utilisation des K-means pour données longitudinales Caroline Hurault-Delarue

Plus en détail

Mémoire DEA Système d'information Management and Technology of Information Systems

Mémoire DEA Système d'information Management and Technology of Information Systems Mémoire DEA Système d'information Management and Technology of Information Systems Titre : Expérience sur l'utilisation de conjonctions de termes et la prise en compte des dépendances entre termes d'indexation

Plus en détail

ACP Voitures 1- Méthode

ACP Voitures 1- Méthode acp=princomp(voit,cor=t) ACP Voitures 1- Méthode Call: princomp(x = voit, cor = T) Standard deviations: Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 2.1577815 0.9566721 0.4903373 0.3204833 0.2542759 0.1447788

Plus en détail

INTRODUCTION AU DATA MINING

INTRODUCTION AU DATA MINING INTRODUCTION AU DATA MINING 6 séances de 3 heures mai-juin 2006 EPF - 4 ème année - Option Ingénierie d Affaires et de Projets Bertrand LIAUDET TP DE DATA MINING Le TP et le projet consisteront à mettre

Plus en détail

Optimisation de la compression fractale D images basée sur les réseaux de neurones

Optimisation de la compression fractale D images basée sur les réseaux de neurones Optimisation de la compression fractale D images basée sur les réseaux de neurones D r BOUKELIF Aoued Communication Networks,Architectures and Mutimedia laboratory University of S.B.A aoued@hotmail.com

Plus en détail

Infrastructure de calcul du CRRI

Infrastructure de calcul du CRRI Infrastructure de calcul du CRRI Types d'infrastructures de calcul Calcul Intensif (High Performance Computing) Tâches fortement couplées (codes vectoriels / parallèles) Supercalculateurs, SMP, clusters,

Plus en détail

NOTATIONS PRÉLIMINAIRES

NOTATIONS PRÉLIMINAIRES Pour le Jeudi 14 Octobre 2010 NOTATIONS Soit V un espace vectoriel réel ; l'espace vectoriel des endomorphismes de l'espace vectoriel V est désigné par L(V ). Soit f un endomorphisme de l'espace vectoriel

Plus en détail

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015 Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k

Plus en détail

VISUALISATION DES DISTANCES ENTRE LES CLASSES DE LA CARTE DE KOHONEN POUR LE DEVELOPPEMENT D'UN OUTIL D'ANALYSE ET DE REPRESENTATION DES DONNEES

VISUALISATION DES DISTANCES ENTRE LES CLASSES DE LA CARTE DE KOHONEN POUR LE DEVELOPPEMENT D'UN OUTIL D'ANALYSE ET DE REPRESENTATION DES DONNEES VISUALISATION DES DISTANCES ENTRE LES CLASSES DE LA CARTE DE KOHONEN POUR LE DEVELOPPEMENT D'UN OUTIL D'ANALYSE ET DE REPRESENTATION DES DONNEES Patrick Rousset 1,2 et Christiane Guinot 3 1 CEREQ, Service

Plus en détail

Calcul différentiel sur R n Première partie

Calcul différentiel sur R n Première partie Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité

Plus en détail

Identification de nouveaux membres dans des familles d'interleukines

Identification de nouveaux membres dans des familles d'interleukines Identification de nouveaux membres dans des familles d'interleukines Nicolas Beaume Jérôme Mickolajczak Gérard Ramstein Yannick Jacques 1ère partie : Définition de la problématique Les familles de gènes

Plus en détail

Exercices Corrigés Premières notions sur les espaces vectoriels

Exercices Corrigés Premières notions sur les espaces vectoriels Exercices Corrigés Premières notions sur les espaces vectoriels Exercice 1 On considére le sous-espace vectoriel F de R formé des solutions du système suivant : x1 x 2 x 3 + 2x = 0 E 1 x 1 + 2x 2 + x 3

Plus en détail

Intégration de la dimension sémantique dans les réseaux sociaux

Intégration de la dimension sémantique dans les réseaux sociaux Intégration de la dimension sémantique dans les réseaux sociaux Application : systèmes de recommandation Maria Malek LARIS-EISTI maria.malek@eisti.fr 1 Contexte : Recommandation dans les réseaux sociaux

Plus en détail

2 Serveurs OLAP et introduction au Data Mining

2 Serveurs OLAP et introduction au Data Mining 2-1 2 Serveurs OLAP et introduction au Data Mining 2-2 Création et consultation des cubes en mode client-serveur Serveur OLAP Clients OLAP Clients OLAP 2-3 Intérêt Systèmes serveurs et clients Fonctionnalité

Plus en détail

Multi-catégorisation de textes juridiques et retour de pertinence

Multi-catégorisation de textes juridiques et retour de pertinence Multi-catégorisation de textes juridiques et retour de pertinence Vincent Pisetta, Hakim Hacid et Djamel A. Zighed article paru dans G. Ritschard et C. Djeraba (eds), Extraction et gestion des Connaissances

Plus en détail

Vers une Optimisation de l Algorithme AntTreeStoch

Vers une Optimisation de l Algorithme AntTreeStoch Revue des Sciences et de la Technologie - RST- Volume 3 N 1 / janvier 2012 Vers une Optimisation de l Algorithme AntTreeStoch O. KADRI, H. MOUSS, A. ABDELHADI, R. MAHDAOUI Laboratoire d Automatique et

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci http://liris.cnrs.fr/hamamache.kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de

Plus en détail

Luc Grivel (*, **) Luc.Grivel@univ-paris1.fr

Luc Grivel (*, **) Luc.Grivel@univ-paris1.fr MAITRISER LE PROCESSUS DE TEXT MINING DANS LE CADRE D APPLICATIONS D INTELLIGENCE ECONOMIQUE, DE GESTION DE LA RELATION CLIENT OU DE GESTION DE CONNAISSANCES Luc Grivel (*, **) Luc.Grivel@univ-paris1.fr

Plus en détail

Pourquoi l apprentissage?

Pourquoi l apprentissage? Pourquoi l apprentissage? Les SE sont basés sur la possibilité d extraire la connaissance d un expert sous forme de règles. Dépend fortement de la capacité à extraire et formaliser ces connaissances. Apprentissage

Plus en détail

MEMOIRE. Présenté à. L École Nationale d Ingénieurs de Sfax. en vue de l obtention du MASTERE. Par. Houssem Medhioub. (Ingénieur Génie Informatique)

MEMOIRE. Présenté à. L École Nationale d Ingénieurs de Sfax. en vue de l obtention du MASTERE. Par. Houssem Medhioub. (Ingénieur Génie Informatique) République Tunisienne Ministère de l Enseignement Supérieur, De la Recherche Scientifique et de la Technologie Université de Sfax École Nationale d Ingénieurs de Sfax Nouvelles Technologies des Systèmes

Plus en détail

Application du data mining à la segmentation du marché des meubles aux États-Unis

Application du data mining à la segmentation du marché des meubles aux États-Unis Application du data mining à la segmentation du marché des meubles aux États-Unis THI THU HOA LE 1, BRUNO AGARD 1, STÉPHANE DEVEAULT 2 1 ÉCOLE POLYTECHNIQUE DE MONTRÉAL C.P. 6079, succ. Centre-ville, Montréal

Plus en détail

Visualisation en Fouille de Données

Visualisation en Fouille de Données Université Nice Sophia Antipolis Master Informatique, Fondements & Ingénierie (IFI) Visualisation en Fouille de Données Elaboré par : Abir DILOU Mouna REKIK Encadré par : Mr. Nicolas PASQUIER Année universitaire

Plus en détail

Lamia Oukid, Ounas Asfari, Fadila Bentayeb, Nadjia Benblidia, Omar Boussaid. 14 Juin 2013

Lamia Oukid, Ounas Asfari, Fadila Bentayeb, Nadjia Benblidia, Omar Boussaid. 14 Juin 2013 Cube de textes et opérateur d'agrégation basé sur un modèle vectoriel adapté Text Cube Model and aggregation operator based on an adapted vector space model Lamia Oukid, Ounas Asfari, Fadila Bentayeb,

Plus en détail

Logiciel XLSTAT version 7.0. 40 rue Damrémont 75018 PARIS

Logiciel XLSTAT version 7.0. 40 rue Damrémont 75018 PARIS Logiciel XLSTAT version 7.0 Contact : Addinsoft 40 rue Damrémont 75018 PARIS 2005-2006 Plan Présentation générale du logiciel Statistiques descriptives Histogramme Discrétisation Tableau de contingence

Plus en détail

Application de K-means à la définition du nombre de VM optimal dans un cloud

Application de K-means à la définition du nombre de VM optimal dans un cloud Application de K-means à la définition du nombre de VM optimal dans un cloud EGC 2012 : Atelier Fouille de données complexes : complexité liée aux données multiples et massives (31 janvier - 3 février

Plus en détail

Masters Spécialisés «Actuariat et Prévoyance» et «Actuariat et Finance»

Masters Spécialisés «Actuariat et Prévoyance» et «Actuariat et Finance» Masters Spécialisés «Actuariat et Prévoyance» et «Actuariat et Finance» Introduction au Data Mining K. EL HIMDI elhimdi@menara.ma 1 Sommaire du MODULE Partie 1 : Introduction au Data Mining Partie 2 :

Plus en détail

Une Démarche pour la sélection d outils de cartographie des processus métiers

Une Démarche pour la sélection d outils de cartographie des processus métiers Une Démarche pour la sélection d outils de cartographie des processus métiers Résumé El Haddadi Anass, Atahran Ahmed, Ebobissé Yves, B. Bounabat anass.elhaddadi@gmail.com, atahran.ahmed@gmail.com, ebobisseyves@yahoo.fr,

Plus en détail

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57 Analyse de la vidéo Chapitre 4.1 - La modélisation pour le suivi d objet 10 mars 2015 Chapitre 4.1 - La modélisation d objet 1 / 57 La représentation d objets Plan de la présentation 1 La représentation

Plus en détail

Bouzerda Feriel- Hadjira Louati Mortadha Maâtallah Amine

Bouzerda Feriel- Hadjira Louati Mortadha Maâtallah Amine Cours : Data Mining Enseignant : Professeur. Kilian Stoffel Assistant : Iulian Ciorascu Switzernet Élaboré par : Bouzerda Feriel- Hadjira Louati Mortadha Maâtallah Amine 1 Table des matières Introduction

Plus en détail

Les exploitations de grandes cultures face à la variabilité de leurs revenus : quels outils de gestion des risques pour pérenniser les structures?

Les exploitations de grandes cultures face à la variabilité de leurs revenus : quels outils de gestion des risques pour pérenniser les structures? Les exploitations de grandes cultures face à la variabilité de leurs revenus : quels outils de gestion des risques pour pérenniser les structures? Benoît Pagès 1, Valérie Leveau 1 1 ARVALIS Institut du

Plus en détail

REVUE DE STATISTIQUE APPLIQUÉE

REVUE DE STATISTIQUE APPLIQUÉE REVUE DE STATISTIQUE APPLIQUÉE H. ABDALLAH G. SAPORTA Mesures de distance entre modalités de variables qualitatives; application à la classification Revue de statistique appliquée, tome 51, n o 2 (2003),

Plus en détail

Web Science. Master 1 IFI. Andrea G. B. Tettamanzi. Université de Nice Sophia Antipolis Département Informatique andrea.tettamanzi@unice.

Web Science. Master 1 IFI. Andrea G. B. Tettamanzi. Université de Nice Sophia Antipolis Département Informatique andrea.tettamanzi@unice. Web Science Master 1 IFI Andrea G. B. Tettamanzi Université de Nice Sophia Antipolis Département Informatique andrea.tettamanzi@unice.fr 1 Annonce : recherche apprenti Projet Géo-Incertitude Objectifs

Plus en détail

Analyse dialectométrique des parlers berbères de Kabylie

Analyse dialectométrique des parlers berbères de Kabylie Saïd GUERRAB Analyse dialectométrique des parlers berbères de Kabylie Résumé de la thèse (pour affichage) Il est difficile de parler du berbère sans parler de la variation. Il y a d abord une variation

Plus en détail

Présentation du cursus Animateur de Cluster et de réseaux territoriaux Etat du 14 avril 2013

Présentation du cursus Animateur de Cluster et de réseaux territoriaux Etat du 14 avril 2013 MASTER ANIMATEUR DE CLUSTER ET DE RESEAUX TERRITORIAUX PRESENTATION DU DIPLOME FRANCO-ALLEMAND 1. OBJECTIFS DE LA FORMATION ET COMPETENCES A ACQUERIR: Former des animateurs de cluster et de réseaux territoriaux

Plus en détail

Différentiabilité ; Fonctions de plusieurs variables réelles

Différentiabilité ; Fonctions de plusieurs variables réelles Différentiabilité ; Fonctions de plusieurs variables réelles Denis Vekemans R n est muni de l une des trois normes usuelles. 1,. 2 ou.. x 1 = i i n Toutes les normes de R n sont équivalentes. x i ; x 2

Plus en détail

Master d Informatique M1 Université Paris 7 - Denis Diderot Travail de Recherche Encadré Surf Bayesien

Master d Informatique M1 Université Paris 7 - Denis Diderot Travail de Recherche Encadré Surf Bayesien Master d Informatique M1 Université Paris 7 - Denis Diderot Travail de Recherche Encadré Surf Bayesien Denis Cousineau Sous la direction de Roberto di Cosmo Juin 2005 1 Table des matières 1 Présentation

Plus en détail

Plan du cours : électricité 1

Plan du cours : électricité 1 Semestre : S2 Module Physique II 1 Electricité 1 2 Optique géométrique Plan du cours : électricité 1 Partie A : Electrostatique (discipline de l étude des phénomènes liés aux distributions de charges stationnaires)

Plus en détail

Une approche pour l extraction automatique de structures sémantiques de documents XML

Une approche pour l extraction automatique de structures sémantiques de documents XML Une approche pour l extraction automatique de structures sémantiques de documents XML Salma Ben Mefteh*,**, Kaïs Khrouf*, Jamel Feki*, Maha Ben Kraiem*, Chantal Soulé-Dupuy** * Laboratoire MIR@CL, Université

Plus en détail

Utilisation du logiciel ModellingSpace

Utilisation du logiciel ModellingSpace Utilisation du logiciel ModellingSpace 1. Pour ouvrir le logiciel, cliquer deux fois sur l icône de ModellingSpace se trouvant sur le bureau. N ouvrez pas d autres applications en même temps que ModellingSpace.

Plus en détail

MEMOIRE. Présenté par. Pour obtenir DIPLOME. Intitulé : B. Beldjilalii. B. Atmani. Encadreur : F. Barigou. S. Nait Bahloul. M.

MEMOIRE. Présenté par. Pour obtenir DIPLOME. Intitulé : B. Beldjilalii. B. Atmani. Encadreur : F. Barigou. S. Nait Bahloul. M. DEPARTEMENTT D'INFORMATIQUE MEMOIRE Présenté par B ARIGOU Baya Naouel Pour obtenir LE DIPLOME DE MAGISTER Spécialitéé Informatique Option : Automatique Informatique Intitulé : DÉTECTION DE COURRIELS INDÉSIRABLES

Plus en détail

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples 45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Cognit Ive Cas d utilisation

Cognit Ive Cas d utilisation Cognit Ive Cas d utilisation 96-98, rue de Montreuil - 75011 Paris _ opicot@ _ + 33 (0)1 40 09 71 55 Sommaire Présentation de la plateforme Cognit Ive SemanticMail : Traitement sémantique des mails Projets

Plus en détail

De la mesure à l analyse des risques

De la mesure à l analyse des risques De la mesure à l analyse des risques Séminaire FFA Jean-Paul LAURENT Professeur à l'isfa jean-paul.laurent@univ-lyon1.fr http://laurent.jeanpaul.free.fr/ 0 De la la mesure à l analyse des risques! Intégrer

Plus en détail

Algorithmes pour la planification de mouvements en robotique non-holonome

Algorithmes pour la planification de mouvements en robotique non-holonome Algorithmes pour la planification de mouvements en robotique non-holonome Frédéric Jean Unité de Mathématiques Appliquées ENSTA Le 02 février 2006 Outline 1 2 3 Modélisation Géométrique d un Robot Robot

Plus en détail

Contexte. Pour cela, elles doivent être très compliquées, c est-à-dire elles doivent être très différentes des fonctions simples,

Contexte. Pour cela, elles doivent être très compliquées, c est-à-dire elles doivent être très différentes des fonctions simples, Non-linéarité Contexte Pour permettre aux algorithmes de cryptographie d être sûrs, les fonctions booléennes qu ils utilisent ne doivent pas être inversées facilement. Pour cela, elles doivent être très

Plus en détail

MapReduce. Nicolas Dugué nicolas.dugue@univ-orleans.fr. M2 MIAGE Systèmes d information répartis

MapReduce. Nicolas Dugué nicolas.dugue@univ-orleans.fr. M2 MIAGE Systèmes d information répartis MapReduce Nicolas Dugué nicolas.dugue@univ-orleans.fr M2 MIAGE Systèmes d information répartis Plan 1 Introduction Big Data 2 MapReduce et ses implémentations 3 MapReduce pour fouiller des tweets 4 MapReduce

Plus en détail

L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories :

L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories : La vision nous permet de percevoir et d interpreter le monde qui nous entoure. La vision artificielle a pour but de reproduire certaines fonctionnalités de la vision humaine au travers de l analyse d images.

Plus en détail

Une approche de co-classification automatique à base des cartes topologiques

Une approche de co-classification automatique à base des cartes topologiques Une approche de co-classification automatique à base des cartes topologiques Kais Allab, Khalid Benabdeslem, Alexandre Aussem To cite this version: Kais Allab, Khalid Benabdeslem, Alexandre Aussem. Une

Plus en détail