Thème : Electricité Fiche 5 : Dipôle RC et dipôle RL



Documents pareils
Les circuits électriques en régime transitoire

Fonction dont la variable est borne d intégration

Cours d électrocinétique :

Oscillations forcées en régime sinusoïdal.

Caractéristiques des signaux électriques

CHAPITRE I : Cinématique du point matériel

CARACTERISTIQUES STATIQUES D'UN SYSTEME

Documentation Technique de Référence Chapitre 8 Trames types Article

Sciences Industrielles pour l Ingénieur

TD/TP : Taux d un emprunt (méthode de Newton)

TB 352 TB 352. Entrée 1. Entrée 2

MATHEMATIQUES FINANCIERES

Le mode de fonctionnement des régimes en annuités. Secrétariat général du Conseil d orientation des retraites

Exemples de résolutions d équations différentielles

AMPLIFICATEUR OPERATIONNEL EN REGIME NON LINEAIRE

Texte Ruine d une compagnie d assurance

F 2 = - T p K F T = - T p K 0 - K 0

Montages à plusieurs transistors

La rentabilité des investissements

B34 - Modulation & Modems

CHAPITRE 13. EXERCICES a) 20,32 ± 0,055 b) 97,75 ± 0,4535 c) 1953,125 ± 23, ±0,36π cm 3

Cahier technique n 114

Les solutions solides et les diagrammes d équilibre binaires. sssp1. sssp1 ssss1 ssss2 ssss3 sssp2

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre.

Rappels théoriques. -TP- Modulations digitales ASK - FSK. Première partie 1 INTRODUCTION

Chapitre 2 L investissement. . Les principales caractéristiques de l investissement

Annuités. I Définition : II Capitalisation : ( Valeur acquise par une suite d annuités constantes ) V n = a t

Finance 1 Université d Evry Val d Essonne. Séance 2. Philippe PRIAULET

FONCTIONS EXPONENTIELLES - FONCTIONS LOGARITHMES. lim e x = 0 et. x y

SYSTÈME HYBRIDE SOLAIRE THERMODYNAMIQUE POUR L EAU CHAUDE SANITAIRE

Coaching - accompagnement personnalisé (Ref : MEF29) Accompagner les agents et les cadres dans le développement de leur potentiel OBJECTIFS

Étudier si une famille est une base

VA(1+r) = C 1. VA = C 1 v 1

BILAN EN ELECTRICITE : RC, RL ET RLC

NUMERISATION ET TRANSMISSION DE L INFORMATION

CONVERSION ÉLECTRONIQUE STATIQUE. HACHEURS. I : Ce que vous ne pouvez pas deviner. 1 ) Principes généraux des convertisseurs de puissance.

OBJECTIFS LES PLUS DE LA FORMATION

Filtrage optimal. par Mohamed NAJIM Professeur à l École nationale supérieure d électronique et de radioélectricité de Bordeaux (ENSERB)

Ned s Expat L assurance des Néerlandais en France

LBC 341x/0 - Enceintes

Intégration de Net2 avec un système d alarme intrusion

Séminaire d Économie Publique

Sommaire de la séquence 12

COURS GESTION FINANCIERE A COURT TERME SEANCE 3 PLANS DE TRESORERIE. François LONGIN

Sélection de portefeuilles et prédictibilité des rendements via la durée de l avantage concurrentiel 1

THÈSE. Pour l obtention du grade de Docteur de l Université de Paris I Panthéon-Sorbonne Discipline : Sciences Économiques

Risque associé au contrat d assurance-vie pour la compagnie d assurance. par Christophe BERTHELOT, Mireille BOSSY et Nathalie PISTRE

Ecole des HEC Université de Lausanne FINANCE EMPIRIQUE. Eric Jondeau

Calcul Stochastique 2 Annie Millet

Séquence 2. Pourcentages. Sommaire

Guide. Solution simplifiée. Solution simplifiée, c est. Votre guide pour la mise en place rapide et facile de régimes de garanties collectives

TRANSLATION ET VECTEURS

La fonction de production dans l analyse néo-classique

pour toute la famille

Froid industriel : production et application (Ref : 3494) Procédés thermodynamiques, systèmes et applications OBJECTIFS LES PLUS DE LA FORMATION

Files d attente (1) F. Sur - ENSMN. Introduction. 1 Introduction. Vocabulaire Caractéristiques Notations de Kendall Loi de Little.

LE PARADOXE DES DEUX TRAINS

Chapitre 9. Contrôle des risques immobiliers et marchés financiers

Le mécanisme du multiplicateur (dit "multiplicateur keynésien") revisité

CHAPITRE 4 RÉPONSES AUX CHOCS D INFLATION : LES PAYS DU G7 DIFFÈRENT-ILS LES UNS DES AUTRES?

GUIDE DES INDICES BOURSIERS

Relation entre la Volatilité Implicite et la Volatilité Réalisée.

Recueil d'exercices de logique séquentielle

Programmation, organisation et optimisation de son processus Achat (Ref : M64) Découvrez le programme

Université Technique de Sofia, Filière Francophone d Informatique Notes de cours de Réseaux Informatiques, G. Naydenov Maitre de conférence, PhD

N d ordre Année 2008 THESE. présentée. devant l UNIVERSITE CLAUDE BERNARD - LYON 1. pour l obtention. du DIPLOME DE DOCTORAT. (arrêté du 7 août 2006)

Pouvoir de marché et transmission asymétrique des prix sur les marchés de produits vivriers au Bénin

No Décembre. La coordination interne et externe des politiques économiques : une analyse dynamique. Fabrice Capoën Pierre Villa

La complémentaire santé. des ans CHEZ NOUS PAS DE PROFIT SUR VOTRE SANTÉ. adaptée à vos besoins pour faciliter votre accès aux soins :

Impact des futures normes IFRS sur la tarification et le provisionnement des contrats d assurance vie : mise en oeuvre de méthodes par simulation

Pour 2014, le rythme de la reprise économique qui semble s annoncer,

DE L'ÉVALUATION DU RISQUE DE CRÉDIT

Article. «Les effets à long terme des fonds de pension» Pascal Belan, Philippe Michel et Bertrand Wigniolle

TRAVAUX PRATIQUES N 5 INSTALLATION ELECTRIQUE DE LA CAGE D'ESCALIER DU BATIMENT A

Même si les conditions de travail sont variées suivant les bassins de navigation et les entreprises, force est

Thème : Essai de Modélisation du comportement du taux de change du dinar algérien par la méthode ARFIMA

Marché à procédure adaptée (Article 28 du CMP)

3 POLITIQUE D'ÉPARGNE

Copules et dépendances : application pratique à la détermination du besoin en fonds propres d un assureur non vie

Impact du vieillissement démographique sur l impôt prélevé sur les retraits des régimes privés de retraite

CANAUX DE TRANSMISSION BRUITES

Un modèle de projection pour des contrats de retraite dans le cadre de l ORSA

JE LÈGUE À L ŒUVRE DES VOCATIONS POUR FORMER NOS FUTURS PRÊTRES NOS RÉPONSES À VOS QUESTIONS SUR LES LEGS, DONATIONS, ASSURANCES VIE

Mesures générales de prévention pour l utilisation des fardeleuses

Mathématiques financières. Peter Tankov

MINISTERE DE L ECONOMIE ET DES FINANCES

EFFICIENCE INFORMATIONNELLE DES UNE VERIFICATION ECONOMETRIQUE MARCHES DE L OR A PARIS ET A LONDRES, DE LA FORME FAIBLE

Chapitre 3 Les régimes de fonctionnement de quelques circuits linéaires

Circuits RL et RC. Chapitre Inductance

EVALUATION DE LA FPL PAR LES APPRENANTS: CAS DU MASTER IDS

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1)

Cahier technique n 141

n 1 LES GRANDS THÈMES DE L ITB > 2009 Les intérêts simples et les intérêts composés ( ) C T D ( en mois)

UNIVERSITÉ D ORLÉANS. THÈSE présentée par :

EPARGNE RETRAITE ET REDISTRIBUTION *

Système isolateur de ligne de haut-parleurs

La Communauté d Agglomération agit pour le Développement Durable. Petit guide des éco-gestes au bureau

PRÉSENTATION DU CONTRAT

Accompagner les familles d aujourd hui

L impact de l activisme des fonds de pension américains : l exemple du Conseil des Investisseurs Institutionnels.

Transcription:

Fiche ors Thème : Elecricié Fiche 5 : Dipôle e dipôle Plan de la fiche Définiions ègles 3 Méhodologie I - Définiions oran élecriqe : déplacemen de charges élecriqes q a mesre d débi de charges donne l inensié d coran : - dans le cas d n coran conin (inensié consane d coran a cors d emps), l inensié es définie par : I = Q / où Q es la charge ayan raversé ne porion d circi pendan la drée ; - dans le cas d n coran variable (inensié non consane d coran a cors d emps), l inensié es définie par : i = dq / d où dq es la charge élecriqe circlan dans le circi pendan ne drée d Orienaion d n circi : choix d sens d orienaion d coran élecriqe por leqel l inensié es > 0 e sens d orienaion es maérialisé par ne flèche inensié es ne grander algébriqe ; le branchemen d n ampèremère oriene de fai le circi : enrée par la borne de l ampèremère e sorie par la OM de l ampèremère Si l ampèremère affiche ne valer > 0, l orienaion d circi es correce ; dans le cas conraire, il fa inverser le sens d orienaion Tension élecriqe enre les dex bornes e B d n dipôle : différence de poeniel élecriqe ( ) V B poins a ension es ne grander algébriqe : U = U Elle es représenée par ne flèche B V enre ces dex onvenion réceper : la flèche précisan l orienaion d dipôle de vers B es en sens conraire de la flèche ilisée por représener la ension U Sens convenionnel d coran : sens de la borne + d généraer vers la borne d généraer à l exérier d circi e sens convenionnel d coran es de sens conraire à celi d déplacemen des élecrons ondensaer : composan consié de dex srfaces condcrices (armares) séparées par n isolan diélecriqe Un condensaer se caracérise par ne grander nommée capacié don l nié es le Farad, de symbole F Bobine : composan consié d n fil condcer enoré d ne gaine Une bobine se caracérise par dex granders : - l indcance don l nié es le Henry, de symbole H ; - la résisance r d fil condcer don l nié es l Ohm, de symbole Ω Dipôle : associaion série d n condcer ohmiqe de résisance e d n condensaer de capacié Dipôle : associaion série d n condcer ohmiqe de résisance e d ne bobine d indcance e de résisance r Echelon de ension : variaion brale de la ension appliqée à n dipôle (dipôle o dipôle ) harge d n dipôle : phénomène correspondan à n régime ransioire a cors dqel les ensions ax bornes d condcer ohmiqe e d condensaer agmenen progressivemen a charge d n condensaer nécessie le branchemen d condensaer à n généraer de ension E e généraer exrai les élecrons libres d ne armare e les fai circler vers l are armare : il y a déplacemen de charges omme les charges ne peven pas raverser le condensaer, elles s accmlen sr les armares armare d condensaer perd des élecrons e présene ne charge élecriqe q > 0 armare B d condensaer cape des élecrons e présene ne charge q B < 0 elle qe, à o insan : q = q = q B cors de la charge, q e U agmenen proporionnellemen selon la relaion : q = U a fin de la charge correspond à n régime permanen (o régime éabli o régime asympoiqe) où q e valers maximales ( q = E ; U = E) e i B U aeignen des Tos drois réservés Sdyrama 006 Fiche éléchargée sr wwwsdyramacom

Fiche ors Décharge d n dipôle : phénomène correspondan à n régime ransioire a cors dqel les ensions ax bornes d condcer ohmiqe e d condensaer diminen progressivemen e condensaer n es pls connecé a généraer es élecrons accmlés sr l armare négaive B lors de la charge d condensaer se déplacen vers l armare posiive cors de la décharge, q e U diminen proporionnellemen selon la relaion : q = U a fin de la décharge correspond à n régime permanen (o régime éabli o régime asympoiqe) où q e valers minimales ( q MIN e U ) e I MIN = E / B U aeignen des Eablissemen d coran dans n dipôle : phénomène correspondan à n régime ransioire a cors dqel l inensié d coran dans le circi agmene progressivemen To se passe comme si la bobine s opposai à l éablissemen d coran a fin de l éablissemen d coran correspond a régime permanen (o régime éabli o régime asympoiqe) : l inensié es consane (i = ce 0) e la bobine se compore alors comme n condcer ohmiqe Sppression d coran dans n dipôle : phénomène correspondan à n régime ransioire a cors dqel l inensié d coran dans le circi dimine progressivemen To se passe comme si la bobine s opposai à la sppression d coran a fin de la sppression d coran correspond a régime permanen (o régime éabli o régime asympoiqe) où i onsane de emps (o emps caracérisiqe) d n dipôle : grander homogène à n emps, définie par = e caracérisan la rapidié de charge (o de décharge) d n condensaer à ravers n condcer ohmiqe correspond à la drée nécessaire por charger n condensaer à 63 % de sa valer maximale o por décharger n condensaer à 37 % de sa valer maximale (voir méhodologie ci-après) bo de 5, la ension ax bornes d condensaer es égale : - lors de la charge, à 99 % de sa valer maximale ; - lors de la décharge, à % de sa valer maximale On considère a bo d n emps = 7 qe le condensaer es chargé (o déchargé) onsane de emps (o emps caracérisiqe) d n dipôle : grander homogène à n emps, définie par = / e caracérisan la rapidié d éablissemen (o de sppression) d coran dans la bobine correspond à la drée nécessaire por qe l inensié prenne ne valer égale à 63 % de sa valer finale lors de l éablissemen d coran o ne valer égale à 37 % de sa valer iniiale lors de la sppression d coran bo de 5, l inensié d coran es égale : - lors de l éablissemen d coran, à 99 % de sa valer maximale ; - lors de la sppression d coran, à % de sa valer maximale On considère a bo d n emps = 7 qe le coran es éabli (o spprimé) II - ègle Propriéés Propriéé n Un condensaer chargé es n réservoir d énergie : il resie de l énergie lorsq il se décharge Un condensaer es n inerrper over, socker de charges Propriéé n Une bobine emmagasine de l énergie mais ne pe pas resier en différé (comme le condensaer) l énergie sockée En régime permanen, ne bobine es n inerrper fermé Propriéé n 3 Dans n dipôle, la charge q d n condensaer e la ension Par conre, l inensié i d coran sbi ne disconinié ax bornes d condensaer ne son jamais disconines Propriéé n 4 Dans n dipôle, lors de l éablissemen o de la sppression d coran, l inensié i d coran n es jamais disconine Par conre, la ension ax bornes de la bobine sbi ne disconinié Propriéé n 5 a loi des nœds e la loi d addiivié des ensions s appliqen égalemen lorsqe les circis son parcors par des corans variables Tos drois réservés Sdyrama 006 Fiche éléchargée sr wwwsdyramacom

Fiche ors Propriéé n 6 a ension ax bornes d n condensaer es définie par : = q / armare pore la charge q ; l armare B pore la charge ( q) Propriéé n 7 a ension ax bornes d ne bobine es définie par : = r i + (di / d) Propriéé n 8 éqaion différenielle de la ension ax bornes d n condensaer lors de la charge de ce condensaer à ravers ne résisance en réponse à n échelon de ension s éabli comme si : E = + (applicaion de la loi d addiivié des ensions) Or : = i (loi d Ohm) e i = dq / d e qi condi à : i = ( d / d) Soi l éqaion différenielle de la ension lors de la charge : E = + [ ( d / d)] o, en posan = : E = + [ ( d / d)] a solion générale de cee éqaion différenielle es de la forme : = e + B où e B son des consanes qi se déerminen à parir des condiions iniiales : (0) Soi : + B condisan à = B D où : B( e ) = + e ( d / d) = ( B / ) e éqaion différenielle s écri : E = B( e + ) + ( B / ) e Soi : B = E condisan à : ( ) = E e où por, on a : = E ompe en qe : q =, alors : q = E ( ) e où por, on a : q = E i = dq / d, alors : i = (E / ) e / où por, on a : i Propriéé n 9 éqaion différenielle de la ension ax bornes d n condensaer lors de la décharge de ce condensaer à ravers ne résisance en réponse à n échelon de ension s éabli comme si : 0 = + (applicaion de la loi d addiivié des ensions) Soi l éqaion différenielle de la ension lors de la décharge : 0 = + [ ( d / d)] a solion générale de cee éqaion différenielle es de la forme : = e + B où e B son des consanes déerminées à parir des condiions iniiales : (0) = E Soi : 0 = E - ( / ) ondisan à : = E D où : (0) = E + B = E Soi : B lors : = E e où por, on a : ompe en qe : q =, alors : q = E e où por, on a : q i = dq / d, alors : i = ( E / ) e où por, on a : i = - (E /) Propriéé n 0 éqaion différenielle de l inensié d coran raversan ne bobine (, r) d n dipôle somis à n échelon de ension s éabli lors de l éablissemen d coran comme si : E = + (applicaion de la loi d addiivié des ensions) Or : = i (loi d Ohm) e = r i + ( di / d) e qi condi à : E = i + ( di / d) avec = r + éqaion différenielle de l inensié d coran lors de l éablissemen d coran s écri : ( E / ) = i + [ ( di / d) ] avec = / a solion générale de cee éqaion différenielle es de la forme : i = e + B où e B son des consanes déerminées à parir des condiions iniiales : i(0) Soi : 0 = + B D où : = B omme ( i / d) = E / = B / = d /, on en dédi : ( ) B Tos drois réservés Sdyrama 006 Fiche éléchargée sr wwwsdyramacom

Fiche ors Soi : ( ) ( ) = E / e i où por, on a : i = E / omme = r i + (di / d), on en dédi : ( ) ( ) ( ) = + / r E / e E e où por, on a : = ( r E) / Si la bobine a ne résisance négligeable, lors de l éablissemen d coran, varie de : 0 à E Propriéé n éqaion différenielle de l inensié d coran raversan ne bobine (, r) d n dipôle () somis à n échelon de ension s éabli lors de la sppression d coran comme si : 0 = + [ (di / d)] Soi : 0 = i + [ (di / d)] a solion générale de cee éqaion différenielle es de la forme : i = e + B où e B son des consanes déerminées à parir des condiions iniiales i (0) = E / = + B D où : omme ( di / d) = /, on en dédi : 0 = ( E / ) ( / ) = Soi : = E / Por, l éqaion différenielle s écri : E / = E / + B Soi : B D où : i = ( E / ) e où por, on a : i omme = r i + [ (di / d)], on en dédi : = ( ) r E / e E e où por, on a : Si la bobine a ne résisance négligeable, lors de la sppression de coran, varie de E à 0 Propriéé n énergie emmagasinée par n condensaer es : E ( ) ( ) = / ompe en de q =, on a : E ( / ) ( q ) En effe, la pissance reçe par le condensaer es : P = i = ( d / d) omme P de / d = / = o E = ( / ) ( q / ) =, on en dédi : [ ( ) ( ) ] k E + k es déerminée à parir des condiions iniiales : (0) Soi : k e E ( ) ( ) = / Propriéé n 3 énergie emmagasinée par ne bobine es : E ( ) ( ) = / i En effe, la pissance reçe par la bobine es : P = i = ( r i ) + ( i) ( di / d) e erme r i correspond à la pissance dissipée par effe Jole e ne conribe donc pas à l énergie emmagasinée par la bobine Soi : P = ( di / d) omme P = de / d, on en dédi : E [ ( / ) i ] k' = + K es déerminée à parir des condiions iniiales : i(0) E = / i Soi : k e ( ) ( ) III - Méhodologie Méhodes por déerminer la valer de la consane de emps d dipôle - première méhode : on connaî e On calcle = ; - dexième méhode : lecre graphiqe ; Tos drois réservés Sdyrama 006 Fiche éléchargée sr wwwsdyramacom

Fiche ors > charge d condensaer : () = E ( e ) 0,63 E Par lecre graphiqe de l abscisse d poin de la corbe de charge = f() don l ordonnée es égale à 0,63 E, on obien > décharge d condensaer : () = E e 0,37 E Par lecre graphiqe de l abscisse d poin de la corbe de décharge = f() don l ordonnée es égale à 0,37 E, on obien - roisième méhode : ilisaion de la angene à l origine > charge d condensaer : ( / d) = E d / a angene à l origine de la corbe = f() cope l asympoe = E a poin d abscisse = > décharge d condensaer : ( d / d) = E / a angene à l origine de la corbe de décharge = f() cope l axe des abscisses en = Méhodes por déerminer la consane de emps d dipôle - première méhode : on connaî, r e On calcle = / ( + r) ; - dexième méhode : lecre graphiqe ; > éablissemen d coran : ( ) = ( E / ) ( e ) 0,63( E / ) i Par lecre graphiqe de l abscisse d poin de la corbe d éablissemen d coran i = f() don l ordonnée es égale à 0,63 ( E / ), on obien > sppression d coran : i( ) = ( E / ) e 0,37 E / Par lecre graphiqe de l abscisse d poin de la corbe de sppression d coran i = f() don l ordonnée es égale à 0,37 ( E / ), on obien - roisième méhode : ilisaion de la angene à l origine > éablissemen d coran : ( d i / d) = E / a angene à l origine de la corbe d éablissemen d coran i = f() cope l asympoe i = E / a poin d abscisse = > sppression d coran : ( di / d) = E / a angene à l origine de la corbe de sppression d coran i = f() cope l axe des abscisses en = e prodi es homogène à n emps analyse dimensionnelle condi à : [] = [] [] Or : = / i e = q / = (i ) / D où : [] = [U] / I e [] = (I T) / [U] Soi : [] [] = T : homogène à n emps e rappor / es homogène à n emps analyse dimensionnelle condi à : [] = [] / [ ] Or : = / i e = (di / d) D où : [ ] = [U] / I e [U] = [] I T - <=> [] = [U] / ( I T ) Soi : [] / [ ] = T : homogène à n emps Tos drois réservés Sdyrama 006 Fiche éléchargée sr wwwsdyramacom