Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) (



Documents pareils
LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER

Chapitre 2 Le problème de l unicité des solutions

Université Paris-Dauphine DUMI2E. UFR Mathématiques de la décision. Notes de cours. Analyse 2. Filippo SANTAMBROGIO

Théorème de Poincaré - Formule de Green-Riemann

ANALYSE NUMERIQUE NON-LINEAIRE

Tout ce qu il faut savoir en math

COURS D ANALYSE. Licence d Informatique, première. Laurent Michel

Synthèse de cours (Terminale S) Calcul intégral

Chapitre 11 : L inductance

semestre 3 des Licences MISM annnée universitaire

Module 2 : Déterminant d une matrice

Licence M.A.S.S. Cours d Analyse S4

Cours d Analyse IV Suites et Séries de fonctions

Séquence 8. Probabilité : lois à densité. Sommaire

ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE

Chapitre 1 : Fonctions analytiques - introduction

Influence du milieu d étude sur l activité (suite) Inhibition et activation

Chapitre VI Contraintes holonomiques

/HVV\VWqPHVFRPELQDWRLUHV

Intégrale et primitives

3- Les taux d'intérêt

Techniques d analyse de circuits

Notes de révision : Automates et langages

STI2D Logique binaire SIN. L' Algèbre de BOOLE

CCP PSI Mathématiques 1 : un corrigé

Partie 4 : La monnaie et l'inflation

Baccalauréat S Asie 19 juin 2014 Corrigé

LANGAGES - GRAMMAIRES - AUTOMATES

Chapitre 7 : Intégration sur un intervalle quelconque

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Sommaire. 6. Tableau récapitulatif Sophos NAC intégré Vs. NAC Advanced - 17 Février

Algorithmes sur les mots (séquences)

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Modification simultanée de plusieurs caractéristiques d un bien hédonique : une nouvelle méthode de calcul de la variation de bien-être des ménages

Image d un intervalle par une fonction continue

Turbine hydraulique Girard simplifiée pour faibles et très faibles puissances

AUTOUR D UN MÉMOIRE INÉDIT : LA CONTRIBUTION D HERMITE AU DÉVELOPPEMENT DE LA THÉORIE DES FONCTIONS ELLIPTIQUES. Bruno BELHOSTE (*)

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

16.1 Convergence simple et convergence uniforme. une suite de fonctions de I dans R ou C.

Guide d'utilisation Easy Interactive Tools Ver. 2

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

I. Polynômes de Tchebychev

LITE-FLOOR. Dalles de sol et marches d escalier. Information technique

Sciences Industrielles Précision des systèmes asservis Papanicola Robert Lycée Jacques Amyot

Chapitre 11. Séries de Fourier. Nous supposons connues les formules donnant les coefficients de Fourier d une fonction 2 - périodique :

Chapitre 2 Le problème de l unicité des solutions

Probabilités sur un univers fini

Commun à tous les candidats

- Phénoméne aérospatial non identifié ( 0.V.N.I )

Magister en : Génie Mécanique

Toyota Assurances Toujours la meilleure solution

L'algèbre de BOOLE ou algèbre logique est l'algèbre définie pour des variables ne pouvant prendre que deux états.

F411 - Courbes Paramétrées, Polaires

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v t

ManSafe. pour les Utilitiés. La Protection antichute pour les Industries de l'energie. Français. TowerLatch LadderLatch

Probabilités sur un univers fini

Statuts ASF Association Suisse Feldenkrais

Continuité d une fonction de plusieurs variables

Le canal étroit du crédit : une analyse critique des fondements théoriques

Université Paris-Dauphine DUMI2E 1ère année, Applications

Introduction à la modélisation et à la vérication p. 1/8

Carl-Louis-Ferdinand von Lindemann ( )

LOGICIEL FONCTIONNEL EMC VNX

EXERCICE 4 (7 points ) (Commun à tous les candidats)

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Développements limités, équivalents et calculs de limites

Guide des bonnes pratiques

Comment démontrer des formules sans effort? exposé de maîtrise

Thèse Présentée Pour obtenir le diplôme de doctorat en sciences En génie civil Option : structure

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES.

INTENTION LES PROCESSUS MATHÉMATIQUES

La plateforme Next Generation Mini guide

Pour développer votre entreprise LES LOGICIELS EN LIGNE, VOUS ALLEZ DIRE OUI!

Sur certaines séries entières particulières

EnsEignEmEnt supérieur PRÉPAS / BTS 2015

Chapitre 7. Récurrences

Comparaison de fonctions Développements limités. Chapitre 10

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs

Réalisation de sites Internet PME & Grandes entreprises Offre Premium. Etude du projet. Webdesign. Intégration HTML. Développement.

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

4. Martingales à temps discret

Partie 1 - Séquence 3 Original d une fonction

Une forme générale de la conjecture abc

Différentiabilité ; Fonctions de plusieurs variables réelles

La paye. La comptabilité. Comparez et choisissez votre logiciel. Comparez et choisissez votre logiciel. Paye Bâtiment Paye Agricole 2013

Calcul fonctionnel holomorphe dans les algèbres de Banach

3 Approximation de solutions d équations

Les indices à surplus constant


Avant d utiliser l appareil, lisez ce Guide de référence rapide pour connaître la procédure de configuration et d installation.

NEWS PRO ACTIV. [Juillet 2015] Ce mois-ci on vous parle de. L arrêté est applicable à compter du 1er Juillet 2015.

Leçon 01 Exercices d'entraînement

Continuité en un point

Conseils et astuces pour les structures de base de la Ligne D30

Dérivées d ordres supérieurs. Application à l étude d extrema.

ERRATA ET AJOUTS. ( t) 2 s2 dt (4.7) Chapitre 2, p. 64, l équation se lit comme suit : Taux effectif = 1+

Suites numériques 4. 1 Autres recettes pour calculer les limites

Transcription:

Correction de l épreuve CCP PSI Mths PREMIÈRE PARTIE I- Soit t u voisinge de, t Alors ϕt t s = ϕt ρt s ρs Pr hypothèse, l fonction ϕt ϕt est lorsque t, il en est donc de même de ρt s ρt s ρs cr ρ s est une constnte Conclusion : ϕt = Ot s lorsque t I- Soit t u voisinge de, t Alors ϕt ϕt = t C est le produit d une fonction bornée u voisinge de pr une tk t k ϕt fonction tendnt vers, et pr conséquent : lim = t tk I- Pr hypothèse, pour t, on At = + t + + k t k + t k+ ϕt vec ϕ une fonction bornée u voisinge de Pr suite, il vient lim t t k+ ϕt =, et donc lim t At = I- Soit t u voisinge de Alors : A t = ra t A rt r = + r r r t + Ot k+ cr d près I-, O rt k+ = Ot k+ = r + t + t + + Ot k+ + rt + r t + + Ort k+ r On en déduit : A t = r t + + Ot k+ En posnt, = r, on donc le résultt souhité I-3 Soit Pn l propriété pour n {,, k} : pour t, A n t = + n,n+ t n+ + n,n+ t n+ + + Ot k+ P est vrie d près l question précédente Supposons Pn vrie pour n {,, k } fixé Alors pour t, A n+ t = rn+ A n t A n rt r n+ = rn+ + n,n+t n+ + n,n+t n+ + +Ot k+ + n,n+ r n+ t n+ + n,n+r n+ t n+ + +Ort k+ r n+ On observe que le terme en t n+ s élimine, et qu il rester une expression de l forme + n+,n+ t n+ + + Ot k+, donc Pn + est vrie Conclusion : I-4 On : le développement limité de A n à l ordre k u voisinge de est de l forme A n t = + n,n+ t n+ + + Ot k lim m + rm t = cr r > Vu que lim t At =, pr composition de limites on donc lim m + Arm t = I-3 Soit p N Alors A p, = Ar p t Or, pour t u voisinge de, le développement limité de A à l ordre est At = + Ot Pr suite, vu que lim p + rp t =, on Ar p t = + Or p t D près I-, t étnt une constnte, on bien A p, = + Or p Microsoft free Powered by Linux, TEX, Gnu-Emcs

I-3 Soit q N Alors d près I-3, pour t, A q t = + Ot q+ Pr suite, pour p + et q {,, p}, A p,q = A q r p t = + Or pq+ t q+, d où A p,q = + Or pq+ On obtient donc αp, q = pq + I-33 Soit p N Alors A p, = A r p t = rarp t Ar r p t r = rarp t Ar p t r On donc bien A p, = ra p, A p, r I-34 Soit p N, soit q {,, p} Alors A p,q = A q r p t = rq A q r p t A q r r p t r q De plus, rq A p,q A p,q r q = rq + A p,q A p,q r q On obtient donc bien A p,q = rq A p,q A p,q r q = rq A p,q A p,q r q = A p,q + r q A p,q A p,q = A p,q + r q A p,q A p,q I-4 Pour q p m, on vu que αp, q = pq +, donc αp, q est mximum pour q = p = m et minimum pour p = q = L plus grnde vleur de αp, q est mm +, l plus petite vleur est D près I-, plus l puissnce de t est grnde dns Ot k, plus ce terme est petit qund t On peut donc ttendre à priori l meilleure pproximtion de pr A p,q lorsque A p,q = + Or αp,q ser tel que αp, q soit le plus grnd possible, donc il s git de l vleur A m,m, vec A m,m = + Or σm, et σm = mm + I-5 D près l formule de Tylor-Young, et pr unicité des coefficients d un développement limité, on : p {,, k}, c p = gp α I-5 Soit h R Alors Gh = G est donc pire gα h gα + h h = gα + h gα h h = Gh D près Tylor-Young, on pour h : gα + h = gα + hg α + oh gα + hg α + oh ] gα hg α + oh ] On en déduit, pour h : Gh = h = g α + o Pr suite, lim h Gh = g α, donc G est prolongeble pr continuité en pr l vleur g α I-53 Soit h u voisinge de Alors : gα + h gα h Gh = h = c +c h+c h + +c kh k +c kh k +Oh k+ ] c c h+c h + c kh k +c kh k +Oh k+ h On obtient donc : Gh = c + c 3 h + c 5 h 4 + + c k h k + Oh k I-6 Posons r = 4 et t = h Alors on r >, et pour p {,, m}, Ar p t = A4 p h = G h 4 p h = G p Le choix r = 4 et t = h répond donc à l question I-6 Pour t u voisinge de +, on At = G t = c + c 3 t + c 5 t + + c k t k + Ot k d près I-53 D près I-3, on lim A p, = c p + Microsoft free Powered by Linux, TEX, Gnu-Emcs ]

D près I-5, on finlement lim A p, = l = g α p + I-7 Pour t >, on ici At = ln3 + t ln3 t t On trouve lors : A, 345898648, A, 33539983433, A, 3338848563, A 3, 333456874934 On obtient ensuite le tbleu : A, 345898648 A, 33539983433 A, 3334337645 A, 3338848563 A, 33337986 A, 33333365897 A 3, 333456874934 A 3, 33333384 A 3, 333333337599 A 3,3 33333333383 Remrque : le progrmme Mple utilisé pour obtenir ce résultt est le suivnt : # Initilistions G:=t->ln3+t-ln3-t//t; h:=8; for p from to 3 do Ap,]:=Gh/^p; # Clcul des termes for p from to 3 do for q from to p do Ap,q]:=r^q*Ap,q-]-Ap-,q-]/r^q-; # Affichge for p from to 3 do for q from to p do printf 5%f printf \n ;,Ap,q]; I-7 On l = g α, donc dns l exemple étudié on trouve l = 3 On voit clirement dns le tbleu que l meilleure pproximtion est obtenue pour A 3,3, ce qui correspond bien à l vleur trouvée u I-4 DEUXIÈME PARTIE II- B est tel que B = B, d où B = X + c c R, et On donc B = X B t dt = t ] t + c dt = + ct = + c, d où c = De même, B = B = X, d où B = X X + c c R, et On donc B = X X + 6 t 3 ] B t dt = 3 t + ct = 6 + c, d où c = 6 Enfin, B 3 = 3B = 3X 3X +, d où B 3 = X 3 3 X + X +c c R, et d où c = On donc B 3 = X 3 3 X + X B 3 t dt = t 4 4 t3 + ] 4 t +ct = c, Microsoft free Powered by Linux, TEX, Gnu-Emcs 3

II- On trouve à prtir des expressions précédentes : b =, b =, b = 6 et b 3 = De même, B =, B =, B = 6 et B 3 = On observe donc que b p = B p pour p {,, 3} II-3 Soit p N, p Alors B p t dt =, donc B pt p dt =, d où Bp t p ] = B p B p p =, et donc b p = B p II- Soit t R, lors B t = B = donc B p vérifie i p N Soit p N, soit t R Alors B pt = p B p t = p pb p t = p B p t De plus, On en déduit B p t dt = p B p t dt = p B p u du en effectunt le chngement de vrible u = t B p t dt =, et donc B p vérifie ii p N Les reltions i et ii définissnt clirement de mnière unique l suite B p p N, on donc : p N, Bp = B p II- Soit p N Alors b p+ = B p+ = B p+ D près I-3, on de plus b p+ = B p+ d où d près I- : b p+ = B p+ On obtient donc clirement : p N, b p+ = II-3 On ft dt = B tft dt = En intégrnt pr prties, on obtient donc : B tft dt pr définition de B et B Vu que B = X, on obtient : ft dt = ft dt = ] B tft II-3 L démonstrtion précédente prouve que l formule est vrie pour n = B tf t dt B tft dt = f + f B tf t dt Supposons l formule étblie pour n N fixé Alors : n f + f = ft dt + p b p f p f p + n+ = ft dt + p= p= B n t f n t dt n! n p b p f p f p + n+ B n+t n + n! f n t dt On intègre pr prtie l intégrle située à droite de l formule : B n+t ] n + n! f n Bn+ t t dt = n +! f n B n+ t t n +! f n+ t dt = b n+ f n f n B n+ t n +! n +! f n+ t dt cr b n+ = B n+ = B n+ d près I- En reportnt cette expression dns l formule précédente, on obtient l formule demndée u rng n +, d où : n, f + f = ft dt + II-33 Soit n, de l forme n = k, k N n p b p f p f p + n+ p= B n t f n t dt n! Microsoft free Powered by Linux, TEX, Gnu-Emcs 4

D près II-, tous les termes de l somme correspondnt à un indice p impir sont nuls, il reste donc en réindexnt l somme : f + f = ft dt + b p f p f p B k t k! f k t dt II-4 Soit t R, notons n = Et Alors n t < n +, d où n + t < n + et donc Et + = n + Pr suite, D p t + = B p t + n = B p t n = D p t et donc D p est périodique de période Soit, b R tel que < b Considérons l subdivision x i i n de, b] telle que, b] N = {x,, x n } x x x n x n b Alors pour i {,, n }, t ]x i, x i+, f ]xi,x i+ t = B pt x i pr définition L ppliction f ]xi,x i+ est donc clirement prolongeble à x i, x i+ ] en une fonction de clsse C sur x i, x i+ ], qui n est utre que t B p t x i, et pr suite D p est de clsse C pr morceux sur R II-4 Soit q {,, N} Alors f q est de clsse C sur, ] comme composée de telles pplictions Soit m N On clirement t, ], f t = ft, d où f m = f m Soit m N, soit q {,, N} Alors clirement t, ], f m q f q m = f m q De même, pour m N, f m N t = f m t + q, d où f q m = f m q = f m + q + et donc = f m + N et donc f m N = f m N II-43 Soit q {,, N} Alors l formule ppliquée à f q fournit : fq + f q b p = f q t dt + f p q f q p Compte tenu de l définition de f q et de II-4, on obtient donc : q fq + fq = fu du + q B k t k! f q k t dt b p f p q f p q q q on effectué le chngement de vrible u = t + q dns chcune des deux intégrles Pour tout t q, q, on de plus Et = q, d où t q, q, B k t q + = D k t Écrivons lors chcune de ces formules pour q N : b p f + f = ft dt + f p f p D k t k! f k t dt f + f = ft dt + b p f p f p D k t k! f k t dt B k u q + f k u du k! N fn + fn = N ft dt + b p f p N f p N N D k t N k! f k t dt En dditionnnt toutes ces reltions, et en utilisnt l reltion de Chsles, on obtient bien : N f + fq + N fn = ft dt + q= b p f p N f p N D k t k! f k t dt Microsoft free Powered by Linux, TEX, Gnu-Emcs 5

TROISIÈME PARTIE III- g est clirement de clsse C sur, N] comme composée de telles fonctions De plus, pr récurrence immédite, on : m N, t, N], g m t = h m f m + th Appliquons lors l formule à g : N g + gq + N gn = gt dt + q= b p g p N g p N D k t k! gk t dt On exploite lors l formule donnnt les dérivées successives de g, et on multiplie le tout pr h : ] N h f + f + qh + N fb =h f + th dt + h h p b p f p b f p q= N D k t h k! hk f k + ht dt On reconnît dns le membre de guche le terme T f h, et on effectue dns chque intégrle du membre de droite le chngement de vrible u = + th, du = h dt, on obtient bien insi : T f h = fu du + h p b p f p b f p h k D u k h f k u du k! III- L ppliction B k est continue sur, ] qui est compct, donc est bornée sur, ] Pr suite, M R + tel que t, ], Bk t M Or, pour tout t R, t Et, ], donc t R, D k t M D u k h On en déduit f k u du k! D u k h f k u du k! On donc h k D u k h f k u du = Oh k k! En posnt, pour p {,, k}, d p = T f h = k ft dt + d p h p + Oh k M f k u du k! } {{ } constnte indépendnte de h b p f p b f p, on obtient donc bien : III-3 D près III- et I-, on clirement lim t At = ft dt III-3 On est dns un cs similire à celui étudié u I-6, l fonction T f jount le rôle de G On obtient donc de l même fçon r = 4 et t = h h III-4 Pour p N, on d près ce qui précède : A p, = Ar p t = T f et donc A p p, = T f h p On obtient donc, pour p N, A p, = T f h p = T f h p III-4 Soit p N p Alors A p, = T f h p = h p f + f + qh p + ] fb q= On décompose l somme en deux : d un côté les indices q pirs q = r vec r p, de l utre les indices q impirs q = r + vec r p : Microsoft free Powered by Linux, TEX, Gnu-Emcs 6

A p, = h p p f + p f + rh p + f + r + h p + fb r= r= On remrque que, dns l première somme, chque terme f + rh p est égl à f + rh p, et de plus l deuxième somme est égle à A p, h p On donc finlement : A p, = A p, + A p, L intérêt de cette formule est de permettre le clcul de A p, en réutilisnt l vleur de A p,, donc en économisnt une prtie des clculs Plus précisément, l ppliction directe de l formule initile donnnt A p, oblige à clculer p termes de l forme f + qh p, lors que A p, ne fournit que p tels termes Le nombre de termes à clculer est donc divisé pr deux III-5 Soit t R L formule de Tylor, reste intégrl fournit pour l fonction x sin x sur l intervlle, t] : sin t = t costx dx Pr suite, on t R, ft = L ppliction, ] R R costx dx, et on remrque que cette formule reste vlble pour t = étnt clirement de clsse C sur, ] R, d près le théorème reltif à l x, t cosxt dérivtion des intégrles dépendnt d un prmètre, on en déduit que f C, ], R III-5 On clcule les sept vleurs dns l ordre suivnt : A,, A,, A,, A,, A,, A 3, et A 3, En effet, l formule du III-4 A p, = A p, + A p, permet d ccélérer les clculs On obtient insi : A, 57 ; A,, 785 ; A,, 835 ; A 3,, 847 et A, = ; A,, 94 ; A 3, 93 III-53 On obtient les vleurs suivntes : A,, 5779637 A,, 78539863 A,, 856939 A,, 835583 A,, 85443 A,, 8589673 A 3,, 8478437 A 3,, 859537 A 3,, 8593658 A 3,3, 859375 De même qu u I-7, l meilleure pproximtion est à priori A 3,3 3 III-6 Si l fonction f est périodique de période b, lors il en est de même de chcune de ses dérivées successives, et donc l formule 4 s écrit : T f h = ft dt + Oh k Le procédé d extrpoltion de Richrdson ynt pour but de supprimer les termes de l forme p h p pprissnt dns le développement limité, il est donc inutile de l ppliquer ici Plus précisément, on obtiendr, pour q p : A p,q = A p, En bref, l méthode est dns ce cs un moyen ssez sophistiqué de consommer de l mémoire et du temps de clcul informtique 4 FIN Meuh!! Cette formule ser donc prticulièrement intéressnte dns un contexte informtique 3 Mple trouve l pproximtion :,859375 Nous vons donc 6 décimles justes, ce qui n est ps ml 4 Mis dns le style, Windows NT fit beucoup mieux! Microsoft free Powered by Linux, TEX, Gnu-Emcs 7