Analyse Numérique : SMA-SMI S4 Cours, exercices et examens



Documents pareils
3 Approximation de solutions d équations

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Résolution d équations non linéaires

Théorème du point fixe - Théorème de l inversion locale

Chapitre 2 Le problème de l unicité des solutions

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Équations non linéaires

Cours d analyse numérique SMI-S4

Cours d Analyse. Fonctions de plusieurs variables

Image d un intervalle par une fonction continue

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Résolution de systèmes linéaires par des méthodes directes

I. Polynômes de Tchebychev

Correction de l examen de la première session

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Continuité en un point

Calcul différentiel sur R n Première partie

Limites finies en un point

Chapitre 2. Matrices

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

CCP PSI Mathématiques 1 : un corrigé

IV- Equations, inéquations dans R, Systèmes d équations

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Capes Première épreuve

Fonctions de plusieurs variables

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

Commun à tous les candidats

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument

Simulation de variables aléatoires

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

Cours 02 : Problème général de la programmation linéaire

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Continuité et dérivabilité d une fonction

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Calcul fonctionnel holomorphe dans les algèbres de Banach

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://

Probabilités sur un univers fini

Continuité d une fonction de plusieurs variables

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Développement décimal d un réel

Calcul différentiel. Chapitre Différentiabilité

EXERCICE 4 (7 points ) (Commun à tous les candidats)

3. Conditionnement P (B)

Corrigé du baccalauréat S Asie 21 juin 2010

Correction du Baccalauréat S Amérique du Nord mai 2007

La fonction exponentielle

Chp. 4. Minimisation d une fonction d une variable

Polynômes à plusieurs variables. Résultant

Fonctions de plusieurs variables

aux différences est appelé équation aux différences d ordre n en forme normale.

Amphi 3: Espaces complets - Applications linéaires continues

Première partie. Introduction à la méthodes des différences finies

Rappels sur les suites - Algorithme

Approximations variationelles des EDP Notes du Cours de M2

Licence à distance Chapitre V : Equations différentielles. Méthodes numériques à un pas.

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

Chapitre VI Fonctions de plusieurs variables

Université Paris-Dauphine DUMI2E 1ère année, Applications

Programmation linéaire

Moments des variables aléatoires réelles

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES.

Intégration et probabilités TD1 Espaces mesurés Corrigé

Différentiabilité ; Fonctions de plusieurs variables réelles

Fonctions de plusieurs variables. Sébastien Tordeux

Chapitre 3. Mesures stationnaires. et théorèmes de convergence

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

Pour l épreuve d algèbre, les calculatrices sont interdites.

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v t

Dualité dans les espaces de Lebesgue et mesures de Radon finies

Extrait du poly de Stage de Grésillon 1, août 2010

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Dérivées d ordres supérieurs. Application à l étude d extrema.

Chapitre 7 : Intégration sur un intervalle quelconque

Probabilités sur un univers fini

Problème 1 : applications du plan affine

Programmation linéaire et Optimisation. Didier Smets

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Programmes des classes préparatoires aux Grandes Ecoles

Fonctions de plusieurs variables et applications pour l ingénieur

Chapitre 6. Fonction réelle d une variable réelle

RO04/TI07 - Optimisation non-linéaire

Suites numériques 3. 1 Convergence et limite d une suite

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Développements limités, équivalents et calculs de limites

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche

Dérivation : cours. Dérivation dans R

F411 - Courbes Paramétrées, Polaires

Cours Fonctions de deux variables

Les indices à surplus constant

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

NOMBRES COMPLEXES. Exercice 1 :

Exercices Corrigés Premières notions sur les espaces vectoriels

Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables

Optimisation des fonctions de plusieurs variables

Transcription:

Analyse Numérique : SMA-SMI S4 Cours, exercices et examens Boutayeb A, Derouich M, Lamlili M et Boutayeb W.

Table des matières Résolution numérique de systèmes linéaires AX = B 5. Méthodes directes de résolution de AX=B................ 5.. Exemples.............................. 5.. Méthode de Gauss(avec et sans pivot).............. 7..3 Factorisation LU.......................... 0..4 Factorisation de Choleski (matrice symétrique)......... 3..5 Factorisation de Householder (matrice unitaire )........ 4. Méthodes indirectes de résolution de AX=B............... 5.. Quelques rappels sur les matrices................ 5.. Méthodes classiques(jacobi, Gauss Seidel, Relaxation).... 5.3 Exercices................................... 9 Approximations des solutions de l équation f(x) = 0. Rappels et notations............................. Méthode de Newton :........................... 7.3 Méthode de Newton modifiée :...................... 9.4 Méthode de dichotomie :......................... 9.5 Méthode de fausse position ( Regula Falsi) :.............. 3.6 Exercices................................... 3 3 Inroduction à l interpolation 36 3. Rappel et définitions............................ 36 3. Interpolant de Lagrange.......................... 36 3.3 Interpolant de Newton........................... 38 3.4 Existence et Unicité de l interpolant................... 4 3.4. Interpolation linéaire........................ 4 3.5 Erreur d interpolation........................... 43 3.6 Exercices................................... 44

4 Intégration numérique 46 4. Introduction................................. 46 4. Approximation............................... 47 4.. Approximation par des rectangles à gauche........... 48 4.. Approximation par des rectangles à droite........... 49 4..3 Approximation par des rectangles médians........... 50 4..4 Approximations par des trapèzes................. 5 4..5 Formule de Simpson........................ 5 4.3 Interpolation et Erreur d intégration numérique............ 53 4.3. Interpolation linèaire et la formule du trapèze :......... 53 4.3. Formule du trapèze composée.................. 53 4.3.3 Erreur de la formule de Simpson................. 54 4.4 Exercices................................... 54 5 Analyse numérique des équations differentielles ordinaires (e.d.o) 56 5. Rappels sur les équations differentielles ordinaires (e.d.o)...... 56 5. Systèmes linéaires.............................. 57 5.3 Notions de stabilité............................. 58 5.4 Système d équations aux differences linéaires avec coéfficients constants 60 5.5 Méthodes numériques pour les problèmes de condition initiale... 6 5.5. Convergence............................ 6 5.5. Consistance............................. 6 5.5.3 Stabilité............................... 63 5.5.4 Méthode d Euler.......................... 64 5.5.5 Méthodes de Taylor dans le cas scalaire............. 66 5.5.6 Méthodes de Runge-Kutta (R.K) dans le cas scalaire...... 67 5.5.7 Méthodes de Runge-Kutta explicites............... 67 5.6 Exercices................................... 7 6 Examens 77 6. F.S.O Session ordinaire 0-03 (Durée : h30)............ 77 6. F.S.O Session Rattrapage 0-03 (Durée : h30)........... 79 6.3 F.S.O Session ordinaire 0-0 (Durée : h30)............ 8 6.4 F.S.O Session de rattrapage 0-0 (Durée : h30).......... 83 6.5 F.S.O Session ordinaire 00-0 (Durée :h30)............. 85 6.6 F.S.O Session Rattrapage 00-0 (Durée : h30)........... 87 6.7 F.S.O Examen 009-00.......................... 89 6.8 F.S.O Session ordinaire 008/009.................... 9

6.9 F.S.O Session rattrapage 008-009.................... 93 6.0 F.S.O Session ordinaire 007-008(Durée : h30)............. 94 6. F.S.O Examen blanc 007-008....................... 96 6. F.S.O Devoir à faire chez soi 007-008.................. 98 6.3 F.S.O Session ordinaire Janvier 003................... 99 3

Table des figures. la solution est x =.365......................... 9. f(). f() < 0................................ 3.3 x =.733.................................. 3 3. Interpolation de Newton......................... 4 3. Interpolation de Lagrange........................ 44 4. Approximation par des rectangles à gauche............... 49 4. Approximation par des rectangles à droite................ 50 4.3 Approximation par des rectangles médians............... 5 4

Chapitre Résolution numérique de systèmes linéaires AX = B. Méthodes directes de résolution de AX=B.. Exemples {. Résoudre(S) : Par substitution x x = 0 L x + x = L L x = x L x = x = x = x = Par combinaison de lignes L x x = 0 L = L L x = 0 = x = = x Par ( Inversion de ) la ( matrice ) ( ) x 0 (S) = AX = B x ( ) det A = ; A = t coma = det A Si A existe alors X = A B ( ) ( ) ( ) x = x 0 = par méthode de Cramer 5

4x + 5x + 3x 3 7x 4 = 8 L. Résoudre(S +3x + 5x 3 + 4x 4 = 0 L ) : x 3 + 5x 4 = 8 L 3 7x 4 = 4 L 4 4 5 3 7 x 8 (S) 0 3 5 4 x 0 0 5 x3 = 0 8 0 0 0 7 x4 4 Résolution par remontée ( en commençant par x4) L 4 x 4 = 4 7 = L 3 x 3 = (8 5 ) = L x = (0 4 5 ) = 3 L x = ( 8+7 3 +5 ) = 7 4 3. Système triangulaire : cas général u x + u x + +u n x n = b L ST u x + +u n x n = b L ) :. u nn x n = b n L n On suppose que u kk = 0 k =,, n x x. x n = b b. b n x n = b n u nn x n = (b n u nn b n )/u n n x i = (b i j=n j=i+ u i jb j )/u ii i = n,... Algorithme de résolution pour UX = B x n = b n u nn Pour i = n à x i = b i Pour j = i+ à n x i = x i u i j x j Fin j Fin i Remarques... Remarques :. La matrice U est dite triangulaire supérieure. Elle est inversible si tous les termes diagonaux sont non nuls et det U = u u u nn 6

. La matrice triangulaire inférieure se traite de façon similaire 3. le nombre d opérations nécéssaires est : n(n ) multiplications, n(n ) additions et n divisions soit au total n opérations.. Méthode de Gauss(avec et sans pivot) Elle consiste à ramener un système linéaire de la forme AX = B ( A avec matrice pleine) à un système de la forme UX = D puis à résoudre ce dernier. Exemple... Résoudre (S ) : 3x + 5x + x 3 = 8 L 0x + 8x + x 3 = 7 L 6x + x + 8x 3 = 6 L 3 Etape: Etape: 3x + 5x + x 3 = 8 L () = L 0+8x + x 3 = 7 L () = L 0 8x + 4x 3 = 0 L () 3 = L 3 L 3x + 5x + x 3 = 8 L () = L 0+8x + x 3 = 7 L () = L 0+0+6x 3 = 3 L () 3 = L () 3 + L () D où : x 3 =, x = ( 7 x 3 )/8 = et x = (8 x 3 5x )/3 = 4 Méthode de Gauss sans pivot (cas général) (S 0 ) a (0) x +a (0) x +a (0) 3 x 3 + +a (0) n x n = b (0) a (0) x +a (0) x +a (0) 3 x 3 + +a (0) n x n = b (0)... a (0) n x +a (0) n x +a (0) n3 x 3 + +a (0) nn x n = b (0) n Etape : On suppose a (0) = 0 et on pose m i = a(0) i On remplace la ligne L (0) i par L () i = L (0) i m i L (0) pour i =, 3,, n a () i j = a (0) i j m i a (0) j i, j =, 3, ; n et b () i = b (0) i m i b (0) i =, 3, ; n 7 a (0)

On obtient alors le système(s ) suivant : (S ) a (0) x +a (0) x +a (0) 3 x 3 + +a (0) n x n = b (0) 0+a () x +a () 3 x 3 + +a () n x n = b ()... 0+a () n x +a () n3 x 3 + +a () nn x n = b () n Etape : A nouveau, on suppose a () = 0 et on pose m i = a() i On remplace la ligne L () i par L () i = L () i m i L () pour i = 3,, n a () i j = a () i j m i a () j i, j = 3,, n et b () i = b () i m i b () i = 3,, n On obtient alors le système(s ) suivant : (S ) : a () a (0) x + a (0) x +a (0) 3 x 3+ +a (0) n x n = b (0) 0+a () x +a () 3 x 3+ +a () n x n = b ()... 0+0+a () n3 x 3+ +a () nn x n = b () n En supposant qu à chaque étape on a a () kk = 0, on poursuit la la transformation jusq à l obtention d un système triangulaire : (S n ) : a (0) x +a (0) x + +a (0) n x n = b (0) 0+a () x + +a () n x n = b ()... 0+0+0+ +0+a nn (n ) x n = b n (n ) On obtient alors la solution en commençant par : x n = b(n ) n a (n ), x n,,x nn Ecriture matricielle : ètape 0 : A (0) = A = a (0) a (0) a (0) n a (0) n a (0) nn b (0) b (0) n 8

ètape : A () = ètape n- : A (n ) = a (0) a (0) a (0) n 0 a () a () n 0 0 a () n a () nn b (0) b (). b () n a (0) a (0) a (0) n 0 a () a () n 0 0 0 0 0 a (n ) nn b (0) b (). b (n ) n k Matrices élementaires de Gauss Soient les matrices. 0.. 0 m M = 0. 0..., M 0 k =.. m.. k+k m n..... 0 m k+k en posant e k = (0,,, 0,, 0) et m k = (0,, 0, m k+k,, m nk ), on obtient M k = I m k e k et on vérifie facilement que M k est inversible et que M k = I+ m k e k. On montre alors que : Etape : A () = M A (0) Etape k : A (k) = M k A (k ) = M k M k M M A (0) Etape n- :U = A (n ) = M n M M A (0) k Remarque... : Le procédé suppose que tous les a (k ) kk = 0. Si à une étape k on a a (k ) kk = 0 et s il ya au moins un des a (k ) ik = 0 (i = k+,.n) on permute les lignes k et i et on continue, sinon ça voudrait dire que la matrice A n est pas inversible. En utilisant la méthode de Gauss sans pivot, le nombre d opérations nécéssaires au calcul de la solution deax = B est égal à : 3 n3 + 3 n 7 6 n dont n(n )(n+5) 6 et n(n+) divisions. additions, n(n )(n+5) 6 multiplications La méthode de Cramer nécéssite environ n(n + )!opérations. Par exemple 9

Méthode de Gauss avec pivot N 4 4 0 Gauss 6 5 805 Cramer 480 3600 39968000 Exemple... Soit à résoudre le système { 0 0 x + x = 0 x x = 0 La solution théorique est x = x = /(+0 0 ). Cependant, la résolution du système par la méthode de Gauss donne des résultats différents selon qu on l applique avec ou sans pivot. i) Si on applique la méthode de Gauss sans pivot on obtient et (S ) m = a() a () { = = 00 0 0 0 0 x + x = 0 ( 0 0 )x = 0 0 qui donne pour solution approchée x et x 0. ii) Si on adopte la stratégie du pivot partiel qui consiste à mettre en première ligne celle dont le coefficient de x est le plus grand en module alors on permute les lignes pour obtenir le système { x x = 0 (S ) 0 0 x + x = 0 Pour lequel m = 0 0 = 0 0 et qui conduit à la solution approchée : x et x = x. La méthode de Gauss avec pivot consiste à choisir à l étape k : a (k ) kk tel que a (k ) = max a (k )..3 Factorisation LU kk k i n Théorème... : Si tous les a (k ) kk = 0 alors la matrice A peut-etre décomposée sous la forme A = LU où U = A (n ) est une matrice triangulaire supérieure et L = M M Mn est une matrice triangulaire inférieure 0 ik

Preuve :. M k est inversible car det M k = pour k =,, n. M k est de la forme de M k en changeant les les termes m ik en m ik, i = k+,, n 3. (M n M n M ) = M M M n 4. Le produit M M Mn est une matrice triangulaire inférieure 0 0 m 0 5. L = m 3 m 3 0 0 m n m n m nn Théorème.. (Condition suffisante de la factorisation LU). Soit A une matrice carrée d ordre n telle que toutes les sous-matrices d ordre k (k n) soient inversibles, alors il existe une matrice triangulaire inférieure L avec l ii = et une matrice triangulaire supérieure U telles que A = LU. De plus, cette factorisation est unique. Preuve : Si a = 0, la matrice a (d ordre ) est inversible, donc on peut choisir la matrice de permutation égale à l identité et appliquer la méthode de Gauss sans pivot à la première étape. Supposons qu on ait pu choisir toutes les matrices de permutation égales à l identité jusqu à l étape k, il s ensuit que Avec A (k) = M k M k M A = i= M i A. i=k A k = a (k) 0... 0 a (k) kk a (k) kn..... a (k) nk a (k) nn

... =...... a (k) a (k) k.... B k a (k) kk..... a (k) nk a (k) k a (k) n a (k) kn.... a (k) nn en écrivant A sous forme de blocs et en effectuant le produit matriciel par blocs, on obtient a () a(k) kk = det(b k). Comme det(b k ) = 0 on a a (k) kk poursuivre le procédé. Unicité = 0 et par suite on peut choisir a (k) kk comme pivot et Supposons qu il existe L, L, U et U telles que A = L U = L U, comme L et U sont inversibles alors L L = U U. Ce qui impose L L = U U = I et donc L = L et U = U. Exemple..3. Résoudre(S ) : Donc A = 3 3 4 0 0 on a M = 3 0, 0 0 0 On a M = 0 0 = M = 0 Donc U = M M A = 0 7 x + x + x 3 = 3x x + x 3 = 6 x + 3x + 4x 3 = 4, = M = 0 0 5 0 0 3 0 0 0 0 0 0 0 et L = M M = 0 0 3 0 Résoudre AX = B revient à résoudre LUX = B qu on résoud en étapes :. LY = B donne y = ; y = 6+3 y = et y 3 = 4 y y = 0. UX = Y donne x 3 = 0 5 = ; x = 4 = ; x = ( 4+) =

..4 Factorisation de Choleski (matrice symétrique) Théorème..3. Si A est une matrice symétrique, définie positive, il existe (au moins) une matrice réelle triangulaire inférieure L telle que A = LL. Si de plus on impose aux éléments diagonaux de L d être strictement positifs, alors la factorisation est unique. Preuve : Remarquons d abord que si A est définie positive, alors toutes les sous-matrices d ordre k sont inversibles. Le théorème.. permet d affirmer l existence de deux matrices L et U telles que A = LU. Ce que nous cherchons ici c est de factoriser en utilisant une seule matrice L. Raisonnons par récurrence sur n. Si k =, A = a > 0 donc a = a. a. Supposons qu on ait pu factoriser jusqu à l ordre k et soit A k une matrice d ordre k alors A k peut s écrire : A k = ( A k v v a kk ) avec A k = L k L k. Considérons alors la matrice L k obtenue à partir de L k et telle que : L k = ( L k l l l kk ) Le produit matriciel L k L k donne : ( L k L k = L k L k l L k L k l l l+ l kk ) Par identification on obtient : L k l = v (..) L k L k = A k (..) l l+lkk = a kk (..3) i) L équation (..) permet alors de résoudre un système et d obtenir la solution qui est le vecteur l. ii) L équation (..3) permet d obtenir la dernière inconnue du problème, à savoir l kk = a kk l l et on peut choisir l kk > 0. Exemple..4. Soit A la matrice de Hilbert d ordre 6, la factorisation de Choleski 3

est donnée par A = LL où 0.5 0.33 0.5 0. 0.6 0 0.8 0.8 0.5 0.3 0. 0 0 0.07 0. 0. 0.3 L =. 0 0 0 0.0 0.03 0.05 0 0 0 0 0.004 0.0 0 0 0 0 0 0.00 Remarque... L implémentation de l algorithme Choleski est donnée par la fonction Matlab choleski..5 Factorisation de Householder (matrice unitaire ) Soit P 0 = I ω 0 ω 0 une matrice élémentaire de Householder avec On cherche une matrice unitaire P 0 telle que ω 0 ω 0 =. (..4) P 0 a = ke, (..5) pour tout vecteur a = (a,, a n ), avec k R et e = (, 0,, 0). P 0 est orthogonale c est à dire P0 P 0 = I et par suite, on doit avoir ( ) a P0 (P 0 a) = k = a a. Soit k = ± ( a a ) /, les équations (..4) et (..5) donnent : P 0 a = a ω 0 ω 0 a = ke et parsuite ω 0 ω 0 a = ke + a = v, si on poseα = ω 0 a. On obtientαω 0 = v, et comme on chercheω 0 tel queω 0 ω 0 =, il vient :α = v v. Par suite P 0 = I α vv = I vv v v. Remarques... i) Le choix de k se fait au signe près, on peut choisir le signe +. ii) Le même procédé peut être appliqué pour obtenir une matrice P k = I k ω k ω k avecω k = (0,, 0,ω k+k,,ω nk ). On a constaté que P k peut être décomposée sous la forme ( ) I P k = k avec P k = I n k ω k ω k (voir paragraphe??). Pk iii) La factorisation de Householder permet d écrire : P n P n 3 P P 0 A = U, ou encore A = QU avec Q = P 0 P P n une matrice orthogonale. 4

. Méthodes indirectes de résolution de AX=B.. Quelques rappels sur les matrices Soit A = (a i j ) i, j n une matrice carrée.. A est dite à diagonale strictement dominante en colonnes si elle vérifie : i=n ai j < a j j, j n i=,i = j. A est dite à diagonale strictement dominante en lignes si elle vérifie : j=n ai j < a ii, i n j=, j =i 3. Une norme matricielle. vérifie les 4 propriétés suivantes : i) A = 0 A = 0 ii) λa = λ A pour tout λ R iii) A+ B A + B iv) AB A B 4. (I+B) est inversible si B < et de plus (I+B) B 5. A = max i n j=n j= a i j ; A = max j n i=n i= a i j ρ(a) = max j n λ i (A) est dite norme spectrale (λ i (A) : valeur propore de A).. Méthodes classiques(jacobi, Gauss Seidel, Relaxation) Pour résoudre le système Ax = b, (..) on utilise des méthodes, dites indirectes, du type x (k+) = Tx (k) + C (..) où T est une matrice obtenue à partir de A et c un vecteur dépendant de A et B On écrit A sous la forme A = M N En supposant M inversible, l équation (..) donne : x =M Nx+M b et ceci suggère le procédé itératif du type (..) avec T = M N et C = M b Il ya plusieurs façons d écrire A sous la forme A = M N Dans le cadre de ce cours on se limitera aux cas les plus utilisés à partir de : A = D L U 5

Méthode de Jacobi : M = D, N = L+U. Méthode de Gauss-Seidel : M = D L, N = U. Méthode de relaxation : A = A(ω) = M(ω) N(ω), avec M(ω) = D L, ω N(ω) = ω D U oùω est un scalaire. ω Définition... : Une méthode de type (..) est dite convergente si pour tout x (0) initial on a : lim x(k) = x k Si une telle limite existe, alors elle vérifie : Définition... : x = Tx+c On appelle erreur de la méthode (à la k ieme itération) la quantité : e (k) = x (k) x Avec e (0) = x (0) x on obtient e (k) = T k e (0) la méthode est convergente si lim k T k = 0 Méthode de Jacobi : Si A = (a i j ) la méthode de Jacobi consiste à choisir ; M = D = diag(a ii ) et N = L+U = ( a i j ) i, = j le schéma itératif est comme suit : x (k+) = D (L+U)x (k) + D b =T J x (k) + c La matrice T J = D (L+U) est dite matrice de Jacobi associée à A Si x (0) est le vecteur initial donné, l algorithme de Jacobi est de la forme : x (k+) i Explicitement, on obtient : = a ii j=n a i j x (k) j + b i ; i =,., n a j=, j =i ii a x (k+) = a x (k) a n x (k) n + b. a nn x (k+) n.. = a n x (k) a nn x (k) n + b n Une condition suffisante pour que la méthode de Jacobi converge est : ρ(t J ) < ou T J < 6

Méthode de Gauss-Seidel : Pour cette méthode, les matrices M et N sont données par : M = D L (supposé inversible) et N = U où D, L et U proviennent de l écriture A = D L U, le schéma itératif est comme suit : (D L)x (k+) = Ux (k) + b (..3) ou encore x (k+) = (D L) Ux (k) +(D L) b (..4) en explicitant (..3) on obtient : a x (k+) = a x (k) a n x (k) n + b a x (k+) = a x (k+) a 3 x (k) 3 a n x (k) n + b. a ii x (k+) i. a nn x (k+) n.. = a i x (k+) a ii x (k+) i a ii+ x (k) i+ a inx (k) n + b.. = a n x (k+) a nn x (k+) n + b n La matrice T GS = (D L) U est dite matrice de Gauss-Seidel associée à A Théorème... : Si A est une matrice carrée à diagonale strictement dominante en lignes alors la méthode de Jacobi converge Preuve : Si A est une matrice carrée à diagonale strictement dominante en lignes alors on a : j=n j=, j =i a i j < a ii, i n ( ) ou encore : a ii j=n j=, j =i ai j <, i n Par ailleurs T J = D (L+U) = (t i j ) avec t i j = ( a i j a ii ) si i = j et t ii = 0 Exercice : T J = max i n j=n t i j = max j= i n a ii j=n a i j < j=, j =i Montrer un résultat analogue avec preuve similaire si A est strictement dominante en colonnes 7

Théorème... : Si A est une matrice carrée à diagonale strictement dominante en lignes alors la méthode de Gauss-Seidel converge Preuve : on montre que T GS = (D L) U < en passant par : On pose y =Tx =(D L) Ux T = max x =0 Tx x qui donne(d L)y =Ux et Dy =Ly+Ux ou encore y =D Ly+D Ux Soit k l indice tel que y k = max i n y i = y = Tx On a y k = j=k j= (D L) k j y j + j=n j=k+ (D U) k j x j d où y k j=k ak j j= a kk y + j=n ak j j=k+ a kk x et :( j=k ak j j= a kk ) y j=n ak j x j=k+ a kk ak j soit enfin : y x j=n j=k+ ( j=k j= a kk ak j a kk ) < Méthode de relaxation Si on considère des matrices M et N dépendantes d un paramètreω on obtient : A = M(ω) N(ω) avec M(ω) = ω D L ω et N(ω) = ω D+U T(ω) = ( ω D L ) ( ω ω D+ U) et c(ω) = ( ω D L ) b T(ω) = (I ωd L ) (( ω)i +ωd U) Remarques... : Si ω =, on retrouve la méthode de Gauss-Seidel. Si ω >, on parle de sur-relaxation. Si ω <, on parle de sous-relaxation. Théorème..3. : Condition nécessaire de convergence de la méthode de relaxation : 0 < ω < 8

Preuve : T(ω) = ( ) ( ω ) ω D L ω D+ U Si les valeurs propres de T(ω) sont notéesλ i (ω) on a : ( ) ω n det ω D+U det(t(ω)) = λ i (ω) = ( ) = ( ω) n. i= det ω D L D oùρ(t ω ) [ ω n ] /n = ω. Pour que la méthode converge, il est nécessaire d avoir ρ(t(ω)) < et par conséquent ω < d oùω ]0, [..3 Exercices Exercice.3.. On note e k T = (0,, 0,, 0,, 0) le transposé du k eme vecteur canonique der n, A = (a i j ) i, j n et m k T = (0,, 0, m k+,k,, m n,k ); m i, j = a i, j a i,i, i = j,. Montrer que les matrices élémentaires de Gauss M k peuvent s écrire sous la forme M k = I+ m k e k T. Vérifier que M k 3. Montrer que : = I m k e k T (I+ m e T ) (I+ m e T ) (I+ m n e n T ) = (I+ m e T +m e T + +m n e T n ) 4. Application : On considère le systéme lineaire : (S ) : AX = B 0 0 x avec A = ; X = y et B = 0 z a) Donner les matrices de Gauss M et M qui permettent de transformer (S ) en un système (S ) de la forme UX = D où U est triangulaire supérieure b) Vérifier que M k = I + m k e k T pour k =, c) Vérifier que M M = I+ m e T +m e T d) Déduire M, M et M M e) Décomposer la matrice A sous la forme A = LU où L est triangulaire inférieure 9

f) Résoudre le système(s ) par la méthode LU Exercice.3.. Soit L la matrice triangulaire inférieure d ordre n donnée par :. Calculer la jeme colonne de L, 0 0.. 0 0. L =. 0...... Montrer que A A = n n Exercice.3.3. On cherche à résoudre le système Ax = b par les méthodes directe et indirecte. Soit A = (a i j ) i, j n une matrice carrée vérifiant les conditions suivantes : a ii > 0, i n a i j 0, i = j n j=n j= a i j > 0, i n Soit D la matrice diagonale ( d ii = a ii et d i j = 0 si i = j). Montrer que la matrice A vérifie : j=n ai j < a ii, i n ( ) j=, j =i. Donner l expression du terme général de la matrice A () obtenue après la première étape du procédé de d élimination de Gauss sans pivot 3. Montrer que la matrice B d ordre(n ) obtenue à partir de A () en enlevant la première ligne et la première colonne vérifie une la relation similaire à( ) 4. Ecrire le schéma itératif de Jacobi x (k+) = Tx (k) + C ( T étant la matrice de Jacobi associée à A ) 5. Expliciter les composantes x (k+) j en fonction de celles de x (k) et de C 6. Montrer que la méthode de Jaobi converge ( A = max i n j=n j= ai j < ) 7. Application : On donne A = 3 4 3 5, b = a) Donner la matrice T de Jacobi associée à A, x (0) = b) Calculer la ere itération x () obtenue en utilisant la méthode de Jacobi 0

Exercice.3.4. Soit A = (a i j ) une matrice carrée inversible dont les éléments diagonaux sont non nuls. A est écrite sous la forme A = D L U où D est une matrice diagonale et L (respectivement U) est triangulaire inférieure (respectivement supérieure). Pour résoudre le système Ax = b, on utilise la méthode itérative suivante : ( ) a ii x (k+) i = a ii x (k) n i +ω b i a i j x (k) i ( ) j + r a i j x (k) j x (k+) j, j= j= où r etω sont des réels fixés (ω non nul ) et k = 0,,. Montrer que la méthode proposée peut s écrire sous la forme matricielle : x (k+) = M(r,ω)x (k) + c avec : M(r,ω) = (D rl) (ad+bl+eu) où a, b et e sont des réels qu on exprimera en fonction de r et/ou deω.. Vérifier que cette méthode permet d obtenir les méthodes de Jacobi, Gauss- Seidel et de relaxation pour des choix appropriés de r et ω. 3. Montrer que les valeurs propres de M(r,ω) sont les racines de l équation : det(αd βl ωu) = 0 avecα = λ+ω etβ = (λ )r+ ω. Exercice.3.5. Soit A une matrice symétrique définie positive et T la matrice définie par : T = D D AD. On suppose que D A est définie positive.. Montrer que la méthode de Jacobi appliquée au système Ax = b converge.. Soit la méthode itérative suivante : { x (0) donné x (n+) = x (n) + T (b Ax (n)) Montrer que cette méthode converge et comparer sa vitesse de convergence à celle de la la méthode de Jacobi.

Chapitre Approximations des solutions de l équation f(x) = 0. Rappels et notations Définition... : Soit k un réel strictement positif et g une fonction définie sur un intervalle [a, b] de R à valeurs dans R. La fonction g est dite Lipschitzienne de rapport de k (encore dite k Lipschitzienne) si pour tous x et y de[a, b] on a : g(x) g(y) k x y. Définition... : Soit g une fonction k Lipschitzienne sur [a, b]. La fonction g est dite contractante de rapport de contraction k si k ]0, [. Exemple... : La fonction g(x) = sin(x) est Lipschitzienne de rappport k = Exercice... : Montrer que la La fonction g(x) = cos(x) est Lipschitzienne et déterminer le 3 rappport k Définition..3. : Soit g une fonction définie sur un intervalle [a, b] deràvaleurs dansrla fonction g est dite uniformément continue sur[a, b] si : ε 0, ηtel que x et y de[a, b] vérifiant y x η, on ait g(y) g(x) ε Remarque... : Toute fonction Lipschitzienne sur[a, b] est unfiormément continue sur[a, b].

Théorème.. (des Valeurs Intermédiaires). Soit f une fonction définie et continue sur un intervalle fermé borné [a, b] der. Alors pour tout réelθ appartenant à f([a, b]), il existe un réel c [a, b] tel queθ = f(c). Si de plus f est strictement monotone alors le point c est unique. Théorème.. (des Valeurs Intermédiaires cas particulierθ = 0). Soit f une fonction définie et continue sur un intervalle[a, b] et vérifiant f(a) f(b) 0, alors il existe un réel c [a, b] tel que f(c) = 0. Si de plus f est strictement monotone alors le point c est unique. Théorème..3 (de Rolle). Soit f une fonction définie sur [a, b] et à valeurs dans R. Si f est continue sur [a, b], dérivable sur]a, b[ et vérifie f(a) = f(b), alors il existe un réel c ]a, b[ tel que : f (c) = 0. Théorème..4 (des Accroissements Finis). Soit f une fonction définie sur [a, b] et à valeurs dans R Si f est continue sur [a, b] et dérivable sur]a, b[, alors il existe un réel c ]a, b[ tel que : Théorème..5 (Formule de Taylor). f(b) f(a) = (b a) f (c). Soit f une fonction de classe C n sur[a, b] dont la dérivée f (n+) est définie sur]a, b[, alors il existe un réel c ]a, b[ tel que : f(b) = f(a)+(b a) f (a)+... n! (b a)n f (n) (a)+ Théorème..6 (Formule de MacLaurin). (n+)! (b a)n+ f (n+) (c). Soit f une fonction de classe C n sur un intervalle I contenant 0 et telle que f (n) soit dérivable à l intrérieur de I. Alors x I, il existe un réel c strictement compris entre 0 et x tel que : f(x) = f(0)+ x f () (0)+! x f (0)+... n! xn f (n) (0)+ Définition..4. : (n+)! xn+ f (n+) (c). Soit θ un réel et f une fonction définie sur un intervalle I deret à valeurs dansr. θ est dit zéro de f si f(θ ) = 0 Définition..5. : Soit θ un réel et g une fonction définie sur un intervalle I deret à valeurs dansr. θ est dit point fixe de g si g(θ ) =θ. 3

Lemme... : Soit I un intervalle deret f une fonction définie sur I et à valeurs dansr. Alors la recherche des zéros de f est équivalente à la recherche des points fixes de la fonction g définie sur I par : g(x) = x f(x) Preuve : En effet, si f(θ ) = 0 alors g(θ) = θ f(θ) = θ et inversement, si g(θ) = θ alors f(θ) =θ g(θ) =θ θ = 0. Lemme... : Soit g une fonction de classe C sur [a, b]. S il existe un réel k 0 tel que : g (x) k x [a, b] alors la fonction g est k Lipschitzienne sur[a, b]. Preuve : Il suffit d appliquer le théorème des accroissements finis à la fonction g sur [x, y] avec x y. Donc il existe c ]x, y[ tel que : g(y) g(x) = (y x)g (c) et comme on a : g (c) k, il s ensuit que : g(y) g(x) k x y Définition..6. : Soit (u n ) une suite admettant pour limiteθ. On appelle erreur de la n eme étape le réel défini par e n = u n θ Définition..7. : On dit que la convergence de(u n ) versθ est d order p si : e n+ lim n = C où p et C sont des réels> 0 e n p Si p = (avec C < ) la convergence est dite linéaire Si p = on dit que la convergence est quadratique. Remarque... : L ordre de convergence p n est pas nécessairement un entier. Définition..8. : On dira que le réelδ est une approximation du réelα avec la precisionε si : α δ ε. En particulier, on dira que le terme u n0 d une suite (u n ) approche la limiteθ avec précisionε si u n0 θ ε. Exemple... : la suite(u n ) = ( ) tend vers zéro quand n tend vers l infini. n Si on veut une précision ε = 0, il suffit de prendre n 0 tel que n 0 0 ou 4

encore n 0 0 mais si on exige une precision de 0 5 alors on doit prendre n 0 tel que n 0 0 5 c.a.d n 0 0 5 Remarque..3. : Il est important de saisir la notion de vitesse de convergence. Par exemple, les suites ( n ),( n ),( n4) convergent vers zéro quand n tend vers l infini mais la vitesse de convergence diffère d une suite à l autre. Théorème..7. : Soit g une fonction k contractante sur [a, b] et à valeurs dans [a, b], et (u n ) la suite récurrente définie par : u 0 [a, b], u 0 donné et u n+ = g(u n ) pour tout n 0 Alors : - la suite (u n ) converge vers un réelθ - la fonction g admet un point fixe unique 3- Pour tout n N on a : u n θ kn k u u 0 Preuve : Tout d abord, comme u 0 [a, b] et que g : [a, b] [a, b], on a u n [a, b] pour tout n N. Ensuite, le fait que g soit une fonction k contractante implique que : u n+ u n = g(u n ) g(u n ) k u n u n pour tout n. Par conséquent on obtient : u n+ u n k n u u 0 pour tout n 0 (..) A l aide de l inégalité.. on montre que la suite(u n ) vérifie : En effet : Pour tous p N et n N on a : u n+p u n k kn u u 0 u n+p u n u n+p u n+p + u n+p u n+p +... u n+ u n+ + u n+ u n k n+p u u 0 +k n+p u u 0..+k n+ u u 0 +k n u u 0 kp k kn u u 0 k kn u u 0 () 5

L inégalité () nous permet de prouver que la suite(u n ) est de Cauchy. En effet : Comme k n 0 alors pour toutε > 0, il existe n 0 tel que pour tout n n 0 on n + ait : k n k u u 0 ε et par suite : k kn u u 0 ε Donc pour toutε > 0, il existe n 0 tel que pour tout n n 0 on ait : u n+p u n k n k u u 0 ε La suite(u n ) est donc de Cauchy et par conséquent elle converge vers une limiteθ. Comme la fonction g est continue sur[a, b], que u n+ = g(u n ) et que u n [a, b] n N alors on a : lim n u n =θ = g(θ) c-a-d : θ est un point fixe de g Unicité du point fixe : Supposons que g admet un autre point fixeα different deθ alors on a : g(α) g(θ) = α θ k α θ ou encore( k) α θ 0 mais comme k <, alorsα =θ Enfin, en faisant tendre p vers l infini dans l inégalité u n+p u n kn k u u 0, on obtient : θ u n kn k u u 0 n N Théorème..8 (condition de convergence locale). Soit g une fonction de classe C au voisinageθ. Si g(θ) =θ et g (θ), alors il existe ε strictement positif tel que : u 0 I ε = [θ ε,θ +ε], la suite (u n ) = (g(u n )) est définie et converge vers θ, l unique solution de g(x) = x dans I ε Preuve : Puisque g est de classe C au voisinage deθ et que g (θ) < on a : g (x) < x au voisinage deθ. Par consequent, il existe ε strictement positif tel que : x I ε, g (x) < et puisque g est continue sur le fermé borné I ε, on déduit qu il existe k ]0, [ tel que : x I ε, g (x) k < Pour appliquer le théorème, il suffit de vérifier que : g(i ε ) I ε. Or, par application du théorème des accroissements finis on a : x I ε, g(x) θ x θ Remarque..4. : 6

Si g (θ) =, la suite peut converger ou diverger Si g (θ) et si la suite possède une infinité de termes différents deθ, alors la suite ne peut converger. En effet, si on suppose que la suite converge versθ on obtient : u n+ θ = (u n θ)g (c n ) avec c n compris entre u n etθ et de là on aboutit à une contradiction en supposant que u n est assez proche deθ de telle sorte que : g (c n ) = u n+ θ u n θ Théorème..9. : Si la suite récurrente définie par : u 0 [a, b], u 0 donné et u n+ = g(u n ), n 0, converge linéairement versθ et si g est de classe C e sur[a, b], alors C = n+ lim = g (θ). n e n Preuve : Il suffit d appliquer le théorème des accroissements finis : e n+ = u n+ θ = g(u n ) g(θ) = (u n θ)g (c n ) et de là on obtient Remarque : e n+ lim = lim g (c n ) = g (θ) n e n n On veut résoudre numériquement l équation f(x) = 0. On constate qu il existe plusieurs façon d écrire cette équation sous la forme d un problème de point fixe c est-à-dire sous la forme g(x) = x. Par exemple on à les trois écritures suivantes : x x 3 = 0 = x = x+3 = x = g (x) = ± x+3 (..) x x 3 = 0 = x = x 3 = x = g (x) = x 3 (..3) x x 3 = 0 = x = x+3 = x = g 3 (x) = x+3 (..4) x Les trois équations..,..3 et..4 admettent pour points fixes et 3. Pour la convergence locale ou globale il faut étudier g i (x), g i ( ) et g i (3) i =,, 3. Méthode de Newton : En prenant la fonction g définie par : g(x) = x f(x) f (x), on obtient le procédé de Newton donné par : x 0 donné, x n+ = x n f(x n) f (x n ) pour n 0 avec f (x n ) = 0 7