I. 1 CHAPITRE I : Cinémaique du poin maériel I.1 : Inroducion La plupar des objes éudiés par les physiciens son en mouvemen : depuis les paricules élémenaires elles que les élecrons, les proons e les neurons qui consiuen les aomes, jusqu aux galaxies, en passan par les objes usuels e les corps céleses. On ne peu espérer bien comprendre commen foncionne la naure que si l on es capable de définir clairemen le mouvemen e de le mesurer. La branche de la physique qui éudie les mouvemens s appelle la mécanique. L éude de la mécanique se subdivise en cinémaique e dynamique. La cinémaique consise à décrire la manière don un corps se déplace dans l espace en foncion du emps sans s aacher aux causes qui produisen ce mouvemen. La dynamique, par conre, s inéresse à ces causes : les forces. Elle relie les forces au mouvemen. Nous limierons nore éude de la mécanique à l éude du mouvemen des poins maériels. Par définiion un poin maériel es un obje sans dimensions spaiales. Bien enendu, dans la plupar des cas, il s agi d une simplificaion, les objes réels occupan généralemen un cerain espace. Néanmoins, ce concep es uile dans bon nombre de siuaions réelles où on ne s inéresse pas aux roaions de l obje sur lui-même ou lorsque les dimensions de l obje peuven êre négligées. C es noammen le cas des charges élecriques en mouvemen dans un circui élecrique. On appelle rajecoire d un mobile l ensemble des posiions successives qu il occupe au cours du emps (voir figure I.1). Figure I.1.
I. 2 I.2 : Cinémaique à 1 dimension C es le cas pariculier de la rajecoire reciligne. I.2.1 : Repérage du mobile Le mobile es repéré par une coordonnée carésienne x () sur un axe x qui coïncide avec la rajecoire (ou qui lui es parallèle). Ceci implique le choix d une origine, d un sens e d une unié de mesure de longueur (voir figure I.2). I.2.2 : La viesse moyenne Figure I.2. La viesse d un mobile caracérise la variaion de sa posiion au cours du emps. Soi deux posiions du mobile P 1 e P 2 à deux insans 1 e 2 ( 1 < 2 ). La viesse moyenne du mobile enre les insans 1 e 2 es donnée par : v m( 1, 2) x2 x1 x 2 1 où x 1 e x 2 son les coordonnées des poins P 1 e P 2. x es le déplacemen du mobile pendan l inervalle de emps [ 1, 2 ]. (*) Remarques : A la fois x e v m on un signe. Ils seron ous deux posiifs si le mobile se déplace dans le sens de l axe x, négaifs dans le cas conraire. Sauf dans le cas d un mouvemen à viesse consane, v m dépend du choix de 1 e de 2. (*) Le symbole signifie es défini par
I. 3 I.2.3 : La viesse insananée Ean donnée la remarque 2) ci-dessus, la viesse moyenne ne peu servir à caracériser la viesse d un mobile à un insan donné,. En effe, v m (, 2 ) dépend en général de 2. Cee grandeur caracérise d auan mieux la manière don le mobile se déplace à l insan que l inervalle 2 es pei. Dès lors on défini la viesse insananée à l insan par : x x( + ) x() v() lim lim dx() La viesse insananée d un poin maériel es la dérivée de sa coordonnée spaiale x par rappor au emps, à l insan considéré (*) : dx v (I.1) Par conséquen, pour rerouver la posiion d un mobile à chaque insan, à parir de sa viesse insananée, on calcule l inégrale : x() x( ) + v(') ' (I.2) Ceci implique la connaissance de la posiion du mobile à un insan donné, soi : x( ). I.2.4 : L accéléraion L accéléraion d un mobile caracérise la variaion de sa viesse au cours du emps. Procédan comme pour la viesse, on défini l accéléraion à un insan donné par : v( + ) v() dv() a() lim (*) Pour alléger la noaion, nous omerons d indiquer expliciemen la dépendance en des variables cinémaiques lorsque ce n es pas indispensable à la compréhension : x x(), v v(), ec
I. 4 L accéléraion insananée d un mobile es la dérivée de sa viesse par rappor au emps, à l insan considéré : dv a (I.3) Par conséquen, pour rerouver la viesse d un mobile à chaque insan, à parir de son accéléraion, on calcule l inégrale : v() v( ) + a(') ' (I.4) Ceci implique la connaissance de la viesse du mobile à un insan donné, soi : v( ). I.2.5 : Deux cas pariculiers de mouvemen reciligne : le MRU e le MRUA a) Le mouvemen reciligne uniforme (MRU) Le MRU es un mouvemen reciligne à viesse consane : v() v Par conséquen : (I.5) a dv (en dérivan) a (I.6) dx ( en in égran) v x() x( ) + v ' x() x + v ( - ), pour le MRU, (I.7) où x x( ). C'es une équaion, représenée par une droie (voir figure I.3). Figure I.3.
I. 5 b) Le mouvemen reciligne uniformémen accéléré (MRUA ou MRUV) Le MRUA es un mouvemen reciligne à accéléraion consane : Par conséquen : dv où v v( ) dx() a a ( en in égran) a v() v( ) + a ' ( en in égran) v + a ( ) v() v + a ( - ), pour le MRUA, (I.8) (I.9) x() x + [ v + a (' ) ] ' 1 x() x 2 + v ( ) + a ( ), pour le MRUA (I.1) 2 La foncion x() es du second degré e la courbe à laquelle elle correspond es une parabole (voir figure I.4). Figure I.4. En éliminan enre les relaions (I.9) e (I.1), on rouve la relaion enre la variaion de viesse e le déplacemen, valable uniquemen pour le MRUA : (I.9) Dans (I.1) : v v a ( v v ) 2 v v 1 x x v + a a 2 a2 ( v2 v2 ) 1 2a
I. 6 Donc : v 2 v 2 + 2a (x x ), pour le MRUA (I.11) I.2.6 : Uniés L unié de longueur du sysème inernaional d uniés (S.I.) es le mère (m), celle du emps, la seconde (s). Par conséquen, dans le SI, les viesses se mesuren en mère par seconde (m/s) e les accéléraions en mère par seconde au carré (m/s 2 ). I.3 : Cinémaique à plusieurs dimensions I.3.1 : Repérage du mobile Dans le cas d une rajecoire quelconque dans l espace à 3 dimensions ou dans un plan, la posiion du mobile es enièremen déerminée par son veceur posiion à chaque insan : r( ). Figure I.5. r() OP() Ceci implique le choix d une origine O. Dans un référeniel Oxyz, le veceur posiion peu s exprimer en foncion de ses coordonnées carésiennes : x, y, e z.
I. 7 Figure I.6. x OP x y OP y z OP z où P x, P y e P z son respecivemen les projecions du poin P sur les axes Ox, Oy e Oz. Le veceur posiion r s écri en foncion de ses coordonnées : r x 1x + y 1y + z 1z (I.12) où 1, x 1 y e 1 z son des veceurs de longueur unié dirigés suivan les axes Ox, Oy e Oz. I.3.2 : La viesse insananée Tou naurellemen, on généralise la noion de viesse insananée vue dans le cas à une dimension, de la manière suivane : r v() lim dr() où r r( + ) r() es le veceur déplacemen enre les insans e +. dr v (I.13) La viesse insananée es donc un veceur qui es la dérivée du veceur posiion par rappor au emps.
I. 8 Le veceur v peu s écrire en foncion de ses coordonnées dans le référeniel Oxyz, soi v x, Figure I.7. v y e v z : D après (I.12) e (I.13), nous avons : v vx 1x + vy 1y + vz 1z (I.14) d v x 1x y 1y z 1 + + z dx dy dz 1x + 1y + 1 z car les veceurs unié 1, x 1 y e 1z son consans. Dès lors, en idenifian à (I.14), il vien : vx vy vz dx dy dz (I.15)
I. 9 A la limie où end vers zéro, le veceur r end vers un veceur angen à la rajecoire (voir figure I.7). Le veceur viesse es donc oujours angen à la rajecoire. On peu donc l écrire : v v 1 (I.16) où 1 es un veceur unié angen à la rajecoire au poin considéré, v es le module du veceur v. Il es donc donné par : v v 2 2 2 x + vy + vz I.3.3 : L accéléraion insananée L accéléraion insananée s obien de manière analogue : v a() lim dv, où v v( + ) v() es la variaion de viesse enre les insans e +. dv a (I.17) L accéléraion insananée es donc un veceur qui es la dérivée par rappor au emps du veceur viesse. Le veceur a peu s écrire en foncion de ses coordonnées dans le référeniel Oxyz, soi a x, a y e a z : a ax 1x + ay 1y + az 1z (I.18) D après (I.14) e (I.17), nous avons : a d vx 1x + vy 1y + vz 1z dv dv x y dv 1 z x + 1 y + 1z En comparan à (I.18) e en enan compe de (I.15), on obien :
I. 1 ax dv 2 x dx 2 ay dv 2 y d y 2 az dv 2 z d z 2 (I.19) Pour voir quelle es la direcion du veceur accéléraion, il fau dériver l expression (I.16) : d a v 1 dv d1 1 + v (I.2) En effe, le veceur unié 1 n es pas consan. Lorsque le mobile se déplace le long de sa rajecoire, le veceur 1, oujours angen à la rajecoire, change de direcion, sauf si la rajecoire es reciligne, auquel cas ce deuxième erme s annule e l accéléraion es elle aussi angene à la rajecoire. On peu monrer que dans le cas général, le deuxième erme de l expression ci-dessus es normal à la rajecoire : a a 1 + an 1n (I.21) dv où l accéléraion angenielle, a, es due à la variaion du module du veceur viesse e l accéléraion normale a n es due au changemen de direcion de v, auremen di à la courbure de la rajecoire ; le veceur 1 n es un veceur unié perpendiculaire à la rajecoire (voir figure I.8). I.3.4 : Cas pariculier du mouvemen circulaire uniforme (MCU) Supposons un mobile qui décri une rajecoire circulaire dans le plan Oxy ; la circonférence a un rayon R e es cenrée sur l origine des axes O. Dans ce cas il es plus commode de ravailler avec des coordonnées polaires ρ e ϕ, pluô qu avec des coordonnées carésiennes.
I. 11 Figure I.8. La coordonnée radiale ρ es la disance du poin P à l origine O e ϕ es l angle azimual. Il se mesure depuis l axe Ox, dans le sens rigonomérique (voir figure I.8). Dans le SI, les angles son mesurés en radian (rad). Cee unié es définie comme le rappor de l arc de circonférence s, inercepé par l angle au cenre ϕ, divisé par le rayon de la circonférence (voir figure I.9) : s ϕ[ rad] (I.22) R d où l on dédui : s Rϕ, à condiion que ϕ soi mesuré en radian. Figure I.9. Le radian éan un rappor de deux longueurs, il n a pas de dimensions. Les relaions enre cordonnées polaires e coordonnées carésiennes peuven êre éablies aisémen à parir des relaions rigonomériques du riangle recangle (voir figure I.8) : x ρ cos ϕ y ρ sin ϕ (I.23)
I. 12 Dans le cas d une rajecoire circulaire de cenre O, ρ R es consan e la seule coordonnée qui varie dans le emps es l angle ϕ; c es elle qui déermine la posiion du poin P à ou insan. Pour rouver l expression de la viesse dans un mouvemen circulaire, faisons appel à la définiion de celle-ci (voir secion I.3.2) : r v lim, ou en considéran seulemen le module des veceurs : r v lim. A la limie où, la longueur de la corde r end vers la longueur de l arc de circonférence s, inercepé par l angle ϕ (voir figure I.1). P( + ) Donc : s R ϕ dϕ v lim lim R Figure I.1. Ceci nous amène à définir la viesse angulaire ω comme la dérivée par rappor au emps de l angle azimual : dϕ ω (I.24) Nous pouvons donc écrire, pour ou mouvemen circulaire : v Rω (I.25) Cee relaion exprime que le module du veceur viesse es égal au rayon de la circonférence décrie par le mobile, muliplié par la viesse angulaire de celui-ci. On di que le mouvemen circulaire es uniforme (MCU) lorsque la viesse angulaire ω e donc la viesse v es consane. Le emps mis par le mobile pour effecuer un our comple es consan e es défini comme la période T du MCU.
I. 13 On a donc : 2πR T e donc : v 2π T (I.26) ω On appelle fréquence du mouvemen, le nombre de révoluions effecuées par unié de emps. La fréquence es donc l inverse de la période : ou encore, à l aide de (I.26) : 1 f, (I.27) T ω f (I.28) 2 π L unié de fréquence du SI es le herz (Hz) ; elle es égale à l inverse d une seconde. Bien que v soi consan l accéléraion n es pas nulle dans un MCU ; celle-ci es due au changemen d orienaion du veceur v avec le emps e es donc normale (voir I.21). Pour rouver l expression de l accéléraion dans un MCU, parons de sa définiion (voir I.3.3) e considérons uniquemen son module : v a an lim, Pour rouver v, considérons le mobile aux insans e + (voir figure I.11.a) : a) b) R Figure I.11. Nous avons vu que pour ou mouvemen, le veceur viesse es angen à la rajecoire. Les veceurs viesse v() e v( + ) fon donc enre eux un angle ϕ, le mobile ayan ourné de ce
I. 14 angle pendan le emps. Ayan même module, le mouvemen éan uniforme, ils formen donc avec v un riangle isocèle (voir figure I.11.b) semblable à celui de la figure I.1. Dès lors : v r v R E : v v r R Ce qui donne : v r v a an lim v R R Nous avons donc monré que dans un MCU, l accéléraion vau : v 2 a Rω 2, pour le MCU (I.29) R
I. 15 I.4 : Exercices 1. La figure suivane indique la coordonnée d'une paricule selon l'axe x en foncion du emps. x(m) 2 1-1 -2 1 2 3 4 5 6 7 8 (s) a) Déerminer la viesse insananée aux emps i),5 s, ii) 1,5 s, iii) 3 s, iv) 4,5 s, v) 6 s e vi) 7,5 s. (R : 2 m/s ; m/s ; -2 m/s ; m/s ; 1 m/s e m/s). b) Représener sur un graphique la viesse de la paricule en foncion du emps e sur un aure, l'accéléraion en foncion du emps. 2. Une boule se déplaçan à viesse consane frappe des quilles placées à l'exrémié d'une allée de 16,5 m de long. Le joueur a enendu le brui de l'impac 2,55 s après avoir lancé la boule. Quelle éai la viesse de la boule sachan que le son se propage à une viesse de 33 m/s (R : 6,6 m/s) 3. Un rain marchandise quie Namur pour Bruxelles à 8 h e roule avec une viesse consane de 6 km/h. Un rain passager quie Bruxelles pour Namur à 8 h 15 e roule avec une viesse consane de 12 km/h. Sachan que la disance enre les deux villes es de 6 km, a) à quelle heure se croiseron-ils? b) à quelle disance de Namur se croiseron ils? (R : 8 h 3 ; 3 km)
I. 16 4. Un avion doi aeindre la viesse de 5 m/s pour pouvoir décoller. En supposan son accéléraion consane, que doi valoir au minimum celle-ci, si la pise a 625 m de long? Quel emps l'avion me-il alors pour décoller? (R : 2 m/s² ; 25 s) 5. Un conduceur a garé sa voiure dans une rue inclinée. Il se rouve à une disance d en amon de sa voiure, au momen où les freins cèden. L'inclinaison es elle que la voiure prend une accéléraion consane de 2 m/s 2. Un conduceur essaie de raraper la voiure en couran à une viesse supposée consane de 18 km/h. Quelle es la valeur limie de d à parir de laquelle le conduceur ne pourra raraper son véhicule? (R: 6,25 m). 6. Une excursionnise quie son campemen (en O) e parcour successivemen les porions recilignes OA e AB (voir dessin). a) Déerminez les coordonnées carésiennes de chaque déplacemen OA e AB dans le repère indiqué. (R : OA (,7 km ;,7 km) ; AB (1 km ; - 3 km). b) Déerminez les coordonnées du déplacemen oal OB dans le même repère. (R : (1,7 km ; -1 km)). c) Déerminez la longueur e la direcion du déplacemen oal OB. (R : 2 km; ~-3 ).
I. 17 7. Un projecile es lancé depuis une haueur de 2 m avec une viesse iniiale de 15 m/s faisan un angle de 45 avec l'horizonale (voir dessin). a) dans le sysème de coordonnées schémaisé ci-dessus, exprimer les coordonnées iniiales du projecile. (R : x m ; y 2 m) b) quelles son les coordonnées du veceur viesse iniiale? ( R : v x 1,6 m/s ; v y 1,6 m/s) c) on peu monrer que la viesse insananée de ce projecile à ou insan ulérieur es donnée par : v x v ox v y v oy g, où g es une consane qui vau approximaivemen 1 m/s 2. Que vau la viesse de ce projecile après,45 s? Quel angle fai-elle avec l'horizonale à ce momen? (R : v 12,2 m/s ; θ 3 ). d) Que valen les coordonnées x e y du projecile en foncion du emps? (R : x v x ; y y + v y ½ g 2 ). e) A quel insan le projecile va--il enamer sa chue? (R : 1,6 s). f) Quelle es la haueur maximum aeine par le projecile? (R : y max 25,6 m).