Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48



Documents pareils
I. Polynômes de Tchebychev

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Chapitre 7 : Intégration sur un intervalle quelconque

3 Approximation de solutions d équations

Continuité et dérivabilité d une fonction

La fonction exponentielle

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Chapitre 2 Le problème de l unicité des solutions

Fonctions de plusieurs variables

Moments des variables aléatoires réelles

Résolution d équations non linéaires

Chapitre VI Fonctions de plusieurs variables

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

Théorème du point fixe - Théorème de l inversion locale

Simulation de variables aléatoires

Cours d Analyse. Fonctions de plusieurs variables

Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables

Différentiabilité ; Fonctions de plusieurs variables réelles

Fonctions de plusieurs variables. Sébastien Tordeux

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Pascal Viot Laboratoire de Physique Théorique des Liquides, Boîte 121, 4, Place Jussieu, Paris Cedex 05 viot@lptl.jussieu.

Commun à tous les candidats

Dérivées d ordres supérieurs. Application à l étude d extrema.

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Intégrales doubles et triples - M

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

Intégration et probabilités TD1 Espaces mesurés Corrigé

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

Continuité d une fonction de plusieurs variables

Corrigé du baccalauréat S Pondichéry 12 avril 2007

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v t

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Amphi 3: Espaces complets - Applications linéaires continues

CCP PSI Mathématiques 1 : un corrigé

Calcul différentiel. Chapitre Différentiabilité

Optimisation des fonctions de plusieurs variables

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Fonctions de deux variables. Mai 2011

Calcul différentiel sur R n Première partie

Calcul fonctionnel holomorphe dans les algèbres de Banach

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Image d un intervalle par une fonction continue

rf( 1 f(x)x dx = O. ) U concours externe de recrutement de professeurs agreg6s composition d analyse

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument

Équations non linéaires

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Méthodes de Simulation

Correction de l examen de la première session

Fonctions holomorphes

Continuité en un point

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions

Mathématiques I Section Architecture, EPFL

Première partie. Introduction à la méthodes des différences finies

IV- Equations, inéquations dans R, Systèmes d équations

Problème 1 : applications du plan affine

Fonctions de plusieurs variables et applications pour l ingénieur

Correction du Baccalauréat S Amérique du Nord mai 2007

Fonctions Analytiques

Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA

Examen optimisation Centrale Marseille (2008) et SupGalilee (2008)

Apprentissage non paramétrique en régression

Loi binomiale Lois normales

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

Cours 02 : Problème général de la programmation linéaire

Polynômes à plusieurs variables. Résultant

Chp. 4. Minimisation d une fonction d une variable

Les travaux doivent être remis sous forme papier.

Fonctions de plusieurs variables

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

Sujet 4: Programmation stochastique propriétés de fonction de recours

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

Pour l épreuve d algèbre, les calculatrices sont interdites.

La mesure de Lebesgue sur la droite réelle

Théorie de la Mesure et Intégration

Mesures gaussiennes et espaces de Fock

Programmes des classes préparatoires aux Grandes Ecoles

ENS de Lyon TD septembre 2012 Introduction aux probabilités. A partie finie de N

Comparaison de fonctions Développements limités. Chapitre 10

Chapitre 3. Mesures stationnaires. et théorèmes de convergence

RO04/TI07 - Optimisation non-linéaire

Quantification Scalaire et Prédictive

Quelques contrôle de Première S

Les algorithmes de base du graphisme

Économetrie non paramétrique I. Estimation d une densité

Table des matières. I Mise à niveau 11. Préface

Capes Première épreuve

Espérance conditionnelle

Développements limités

Corrigé du baccalauréat S Asie 21 juin 2010

Chapitre 1 Régime transitoire dans les systèmes physiques

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie

Développements limités, équivalents et calculs de limites

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Intégration et probabilités TD1 Espaces mesurés

Contexte. Pour cela, elles doivent être très compliquées, c est-à-dire elles doivent être très différentes des fonctions simples,

MATHÉMATIQUES EN PREMIER CYCLE PRÉSENTATION DU PROGRAMME

3. Conditionnement P (B)

Transcription:

Méthodes de Polytech Paris-UPMC - p. 1/48

Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48

Polynôme d interpolation de Théorème (Polynôme d interpolation) Soient les n + 1 points distincts (a 0 < a 1 <, a n ) IR n+1, il existe un unique polynôme P de degré n qui coupe la fonction f sur ces points i.e. tel que : i {0,...,n} P(a i ) = f(a i ) Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes C est le polynôme interpolateur de de f sur les points a i. - p. 3/48

Preuve et polynôme de Soient les n + 1 points distincts (a 0 < a 1 <, a n ) IR n+1, on appelle base de les polynômes de la forme : L i (x) = n k=0,k i x a k a i a k Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 4/48

Preuve et polynôme de Soient les n + 1 points distincts (a 0 < a 1 <, a n ) IR n+1, on appelle base de les polynômes de la forme : L i (x) = n k=0,k i i, j L i (a j ) = x a k a i a k { 1 si i = j 0 si i j Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 4/48

Preuve et polynôme de Soient les n + 1 points distincts (a 0 < a 1 <, a n ) IR n+1, on appelle base de les polynômes de la forme : L i (x) = n k=0,k i i, j L i (a j ) = x a k a i a k { 1 si i = j 0 si i j Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes Le polynôme : P(x) = f 0 L 0 (x) + f 1 L 1 (x) + + f n L n (x) Convient. On l appelle polynôme d interpolation de L unicité est à démontrer en exercice. - p. 4/48

Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 5/48

Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes a 1 - p. 5/48

a 6 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes a 1 - p. 5/48

a 3 a 6 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes a 1 - p. 5/48

Polynôme d interpolation de Preuve et polynôme de a 3 a 4 a 6 Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes a 1 - p. 5/48

Polynôme d interpolation de Preuve et polynôme de a 0 a 3 a 4 a 6 Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes a 1 - p. 5/48

Polynôme d interpolation de Preuve et polynôme de a 0 a 1 a 2 a 3 a 4 a 5 a 6 Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 5/48

Calcul de l erreur d interpolation Si on interpole la fonction f C n+1 sur l intervalle [a, b], par le polynôme P(x) de degré n, grâce au points d interpolation a 0 < a 1 < < a n. Théorème x [a, b] il existe η [a 0, a n ] tel que f(x) P(x) = 1 (n + 1)! f(n+1) (η)φ(x) avec φ(x) = (x a 0 )(x a 1 ) (x a n ) Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 6/48

Calcul de l erreur d interpolation Si on interpole la fonction f C n+1 sur l intervalle [a, b], par le polynôme P(x) de degré n, grâce au points d interpolation a 0 < a 1 < < a n. Théorème x [a, b] il existe η [a 0, a n ] tel que f(x) P(x) = 1 (n + 1)! f(n+1) (η)φ(x) avec φ(x) = (x a 0 )(x a 1 ) (x a n ) Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes Idée de la preuve : On étudie la fonction g(z) = f(z) P(z) (f(x) P(x)) φ(z) φ(x) - p. 6/48

Calcul de l erreur d interpolation Si on interpole la fonction f C n+1 sur l intervalle [a, b], par le polynôme P(x) de degré n, grâce au points d interpolation a 0 < a 1 < < a n. Théorème x [a, b] il existe η [a 0, a n ] tel que f(x) P(x) = 1 (n + 1)! f(n+1) (η)φ(x) avec φ(x) = (x a 0 )(x a 1 ) (x a n ) Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes Idée de la preuve : On étudie la fonction g(z) = f(z) P(z) (f(x) P(x)) φ(z) φ(x) g s annule n + 2 fois - p. 6/48

Calcul de l erreur d interpolation Si on interpole la fonction f C n+1 sur l intervalle [a, b], par le polynôme P(x) de degré n, grâce au points d interpolation a 0 < a 1 < < a n. Théorème x [a, b] il existe η [a 0, a n ] tel que f(x) P(x) = 1 (n + 1)! f(n+1) (η)φ(x) avec φ(x) = (x a 0 )(x a 1 ) (x a n ) Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes Idée de la preuve : On étudie la fonction g(z) = f(z) P(z) (f(x) P(x)) φ(z) φ(x) g s annule n + 2 fois g s annule n + 1 fois - p. 6/48

Calcul de l erreur d interpolation Si on interpole la fonction f C n+1 sur l intervalle [a, b], par le polynôme P(x) de degré n, grâce au points d interpolation a 0 < a 1 < < a n. Théorème x [a, b] il existe η [a 0, a n ] tel que f(x) P(x) = 1 (n + 1)! f(n+1) (η)φ(x) avec φ(x) = (x a 0 )(x a 1 ) (x a n ) Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes Idée de la preuve : On étudie la fonction g(z) = f(z) P(z) (f(x) P(x)) φ(z) φ(x) g s annule n + 2 fois g s annule n + 1 fois... g (n+1) s annule une fois en η - p. 6/48

Calcul de l erreur d interpolation Si on interpole la fonction f C n+1 sur l intervalle [a, b], par le polynôme P(x) de degré n, grâce au points d interpolation a 0 < a 1 < < a n. Théorème x [a, b] il existe η [a 0, a n ] tel que f(x) P(x) = 1 (n + 1)! f(n+1) (η)φ(x) avec φ(x) = (x a 0 )(x a 1 ) (x a n ) Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes Idée de la preuve : On étudie la fonction g(z) = f(z) P(z) (f(x) P(x)) φ(z) φ(x) g s annule n + 2 fois g s annule n + 1 fois... g (n+1) s annule une fois en η Or φ (n+1) = (n + 1)! et P (n+1) = 0. - p. 6/48

Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 7/48

Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 7/48

Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 7/48

Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 7/48

Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes f(x) = 0.5 + 2 e 10x2 - p. 7/48

Étude de la formule d erreur f(x) P(x) = 1 (n+1)! f(n+1) (η)φ(x) avec φ(x) = (x a 0 )(x a 1 ) (x a n ) L erreur dépend de : Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 8/48

Étude de la formule d erreur f(x) P(x) = 1 (n+1)! f(n+1) (η)φ(x) avec φ(x) = (x a 0 )(x a 1 ) (x a n ) L erreur dépend de : qui tend vers 0 si n. 1 (n+1)! Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 8/48

Étude de la formule d erreur f(x) P(x) = 1 (n+1)! f(n+1) (η)φ(x) avec φ(x) = (x a 0 )(x a 1 ) (x a n ) L erreur dépend de : qui tend vers 0 si n. 1 (n+1)! φ(x) qui tend vers quand x. Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 8/48

Étude de la formule d erreur f(x) P(x) = 1 (n+1)! f(n+1) (η)φ(x) avec φ(x) = (x a 0 )(x a 1 ) (x a n ) L erreur dépend de : qui tend vers 0 si n. 1 (n+1)! φ(x) qui tend vers quand x. problèmes quand x Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 8/48

Étude de la formule d erreur f(x) P(x) = 1 (n+1)! f(n+1) (η)φ(x) avec φ(x) = (x a 0 )(x a 1 ) (x a n ) L erreur dépend de : qui tend vers 0 si n. 1 (n+1)! φ(x) qui tend vers quand x. problèmes quand x f (n+1) (η) qui dépend de la fonction f et de l intervalle [a 0, a n ]. Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 8/48

Étude de la formule d erreur f(x) P(x) = 1 (n+1)! f(n+1) (η)φ(x) avec φ(x) = (x a 0 )(x a 1 ) (x a n ) L erreur dépend de : qui tend vers 0 si n. 1 (n+1)! φ(x) qui tend vers quand x. problèmes quand x f (n+1) (η) qui dépend de la fonction f et de l intervalle [a 0, a n ]. problèmes si un point est très différent des autres (f (n+1) >> 1) le polynôme a tendance à osciller entre les points d interpolations Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 8/48

Étude de la formule d erreur f(x) P(x) = 1 (n+1)! f(n+1) (η)φ(x) avec φ(x) = (x a 0 )(x a 1 ) (x a n ) L erreur dépend de : qui tend vers 0 si n. 1 (n+1)! φ(x) qui tend vers quand x. problèmes quand x f (n+1) (η) qui dépend de la fonction f et de l intervalle [a 0, a n ]. problèmes si un point est très différent des autres (f (n+1) >> 1) le polynôme a tendance à osciller entre les points d interpolations Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes Certaines fonctions simples seront mal interpolées par un polynôme. - p. 8/48

Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 9/48

Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 9/48

Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 9/48

Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 9/48

Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 9/48

Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 9/48

Autres méthodes Comment améliorer l interpolation? Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 10/48

Autres méthodes Comment améliorer l interpolation? On découpe l intervalle en petits morceaux, Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 10/48

Autres méthodes Comment améliorer l interpolation? On découpe l intervalle en petits morceaux, On utilise des polynômes de petit degré pour approcher la fonction sur chaque sous-intervalle. Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes Par exemple : - p. 10/48

Autres méthodes Comment améliorer l interpolation? On découpe l intervalle en petits morceaux, On utilise des polynômes de petit degré pour approcher la fonction sur chaque sous-intervalle. Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes Par exemple : Fonctions linéaires par morceaux - p. 10/48

Autres méthodes Comment améliorer l interpolation? On découpe l intervalle en petits morceaux, On utilise des polynômes de petit degré pour approcher la fonction sur chaque sous-intervalle. Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes Par exemple : Fonctions linéaires par morceaux Fonctions quadratiques par morceaux - p. 10/48

Autres méthodes Comment améliorer l interpolation? On découpe l intervalle en petits morceaux, On utilise des polynômes de petit degré pour approcher la fonction sur chaque sous-intervalle. Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes Par exemple : Fonctions linéaires par morceaux Fonctions quadratiques par morceaux Les splines cubiques (polynôme de degré 3 par morceau). - p. 10/48

Intégration numérique Principe Principe (suite) - p. 11/48

Intégration numérique On cherche à approcher l intégrale d une fonction : Dont on ne connaît la valeur qu en certains points mesures Dont on peut calculer les valeurs, mais dont on ne peut pas calculer la primitive pas de formule analytique trop complexe Intégration numérique Principe Principe (suite) Il faut approcher I(f) = b a f(t)dt - p. 12/48

Principe Intégration numérique Principe Principe (suite) - p. 13/48

Principe On dispose de la valeur de f sur des points régulièrement espacés f(y 0 ), f(y 1 ),...,f(y m ) avec y 0 = a < y 1 < < y m 1 < y m = b et y i+1 y i = b a m Intégration numérique Principe Principe (suite) - p. 13/48

Principe On dispose de la valeur de f sur des points régulièrement espacés f(y 0 ), f(y 1 ),...,f(y m ) avec y 0 = a < y 1 < < y m 1 < y m = b et y i+1 y i = b a m On sépare [a, b] en sous-intervalles i.e. on regroupe les points y i par paquets de un, deux ([y i, y i+1 ]) ou trois ([y i, y i+1, y i+2 ]) points consécutifs. Intégration numérique Principe Principe (suite) - p. 13/48

Principe On dispose de la valeur de f sur des points régulièrement espacés f(y 0 ), f(y 1 ),...,f(y m ) avec y 0 = a < y 1 < < y m 1 < y m = b et y i+1 y i = b a m On sépare [a, b] en sous-intervalles i.e. on regroupe les points y i par paquets de un, deux ([y i, y i+1 ]) ou trois ([y i, y i+1, y i+2 ]) points consécutifs. On interpole la fonction sur chaque sous-intervalle par des polynômes g i (t). Intégration numérique Principe Principe (suite) - p. 13/48

Principe On dispose de la valeur de f sur des points régulièrement espacés f(y 0 ), f(y 1 ),...,f(y m ) avec y 0 = a < y 1 < < y m 1 < y m = b et y i+1 y i = b a m On sépare [a, b] en sous-intervalles i.e. on regroupe les points y i par paquets de un, deux ([y i, y i+1 ]) ou trois ([y i, y i+1, y i+2 ]) points consécutifs. On interpole la fonction sur chaque sous-intervalle par des polynômes g i (t). On calcule l intégrale du polynôme d interpolation de chaque sous intervalle, cela s exprime simplement en fonction des valeurs f i = f(y i ) : Intégration numérique Principe Principe (suite) - p. 13/48

Principe On dispose de la valeur de f sur des points régulièrement espacés f(y 0 ), f(y 1 ),...,f(y m ) avec y 0 = a < y 1 < < y m 1 < y m = b et y i+1 y i = b a m On sépare [a, b] en sous-intervalles i.e. on regroupe les points y i par paquets de un, deux ([y i, y i+1 ]) ou trois ([y i, y i+1, y i+2 ]) points consécutifs. On interpole la fonction sur chaque sous-intervalle par des polynômes g i (t). On calcule l intégrale du polynôme d interpolation de chaque sous intervalle, cela s exprime simplement en fonction des valeurs f i = f(y i ) : Intégration numérique Principe Principe (suite) yi+k y i g i (t)dt = k α l f i+l l=0 - p. 13/48

Principe (suite) - p. 14/48

Principe (suite) La somme de ces valeurs est une approximation de l intégrale de f sur [a, b]. Cette somme s exprime aussi simplement en fonction des valeurs f i I(f) m β i f i (1) i=0 - p. 14/48

Principe (suite) La somme de ces valeurs est une approximation de l intégrale de f sur [a, b]. Cette somme s exprime aussi simplement en fonction des valeurs f i I(f) m β i f i (1) La différence entre les méthodes vient du nombre de points d interpolations dans les paquets : 1 point 2 points 3 points n points i=0 - p. 14/48

Principe (suite) La somme de ces valeurs est une approximation de l intégrale de f sur [a, b]. Cette somme s exprime aussi simplement en fonction des valeurs f i I(f) m β i f i (1) La différence entre les méthodes vient du nombre de points d interpolations dans les paquets : 1 point approximation de degré 0 méthode des rectangles 2 points 3 points n points i=0 - p. 14/48

Principe (suite) La somme de ces valeurs est une approximation de l intégrale de f sur [a, b]. Cette somme s exprime aussi simplement en fonction des valeurs f i I(f) m β i f i (1) La différence entre les méthodes vient du nombre de points d interpolations dans les paquets : 1 point approximation de degré 0 méthode des rectangles 2 points approximation de degré 1 méthode des trapèzes 3 points n points i=0 - p. 14/48

Principe (suite) La somme de ces valeurs est une approximation de l intégrale de f sur [a, b]. Cette somme s exprime aussi simplement en fonction des valeurs f i I(f) m β i f i (1) La différence entre les méthodes vient du nombre de points d interpolations dans les paquets : 1 point approximation de degré 0 méthode des rectangles 2 points approximation de degré 1 méthode des trapèzes 3 points approximation de degré 2 méthode de SIMPSON n points i=0 - p. 14/48

Principe (suite) La somme de ces valeurs est une approximation de l intégrale de f sur [a, b]. Cette somme s exprime aussi simplement en fonction des valeurs f i I(f) m β i f i (1) La différence entre les méthodes vient du nombre de points d interpolations dans les paquets : 1 point approximation de degré 0 méthode des rectangles 2 points approximation de degré 1 méthode des trapèzes 3 points approximation de degré 2 méthode de SIMPSON n points approximation de degré n 1 méthode de NEWTON-CÔTES i=0 - p. 14/48

Principe (suite) La somme de ces valeurs est une approximation de l intégrale de f sur [a, b]. Cette somme s exprime aussi simplement en fonction des valeurs f i I(f) m β i f i (1) La différence entre les méthodes vient du nombre de points d interpolations dans les paquets : 1 point approximation de degré 0 méthode des rectangles 2 points approximation de degré 1 méthode des trapèzes 3 points approximation de degré 2 méthode de SIMPSON n points approximation de degré n 1 méthode de NEWTON-CÔTES Pour chaque méthode, il existe des constantes β i qui permettent d appliquer la formule (1) et une majoration de l erreur que l on va calculer. i=0 - p. 14/48

Méthode des rectangles (suite) Méthode des trapèzes Calcul de la formule (suite) (fin) Méthode de SIMPSON Méthode de SIMPSON (suite) Explication - p. 15/48

Méthode des rectangles Les points (y i ) i = 0,..., m sont pris régulièrement espacés sur [a, b] : y i = a + i b a m Sur chaque intervalle I i = [y i, y i+1 ], la fonction f est approchée par la fonction constante g i tel que g i (t) = f(y i ). yi+1 g i (t)dt = (y i+1 y i )f(y i ) = b a y i m f(y i) b a f(t)dt = y1 y 0 f(t)dt + y2 y 1 f(t)dt +... + ym y m 1 f(t)dt L approximation de b f(t)dt par la méthode des rectangles est a donnée par : Méthode des rectangles (suite) Méthode des trapèzes Calcul de la formule (suite) (fin) Méthode de SIMPSON Méthode de SIMPSON (suite) Explication - p. 16/48

Méthode des rectangles Les points (y i ) i = 0,..., m sont pris régulièrement espacés sur [a, b] : y i = a + i b a m Sur chaque intervalle I i = [y i, y i+1 ], la fonction f est approchée par la fonction constante g i tel que g i (t) = f(y i ). yi+1 g i (t)dt = (y i+1 y i )f(y i ) = b a y i m f(y i) b a f(t)dt = y1 y 0 f(t)dt + y2 y 1 f(t)dt +... + ym y m 1 f(t)dt L approximation de b f(t)dt par la méthode des rectangles est a donnée par : Méthode des rectangles (suite) Méthode des trapèzes Calcul de la formule (suite) (fin) Méthode de SIMPSON Méthode de SIMPSON (suite) Explication I R = b a m m 1 i=0 f(y i ) - p. 16/48

3 2 1 1 1 1 2 3 4 5 6 Méthode des rectangles (suite) Méthode des trapèzes Calcul de la formule (suite) (fin) Méthode de SIMPSON Méthode de SIMPSON (suite) Explication - p. 17/48

On applique la formule d erreur de l interpolation de : t [y i, y i + 1] il existe η(t) [y i, y i + 1] tel que Méthode des rectangles (suite) Méthode des trapèzes Calcul de la formule (suite) (fin) Méthode de SIMPSON Méthode de SIMPSON (suite) Explication - p. 18/48

On applique la formule d erreur de l interpolation de : t [y i, y i + 1] il existe η(t) [y i, y i + 1] tel que yi+1 y i f(t) g i (t) = f (η(t))(t y i ) f(t)dt b a m f(y i) = yi+1 y i f (η(t))(t y i )dt Méthode des rectangles (suite) Méthode des trapèzes Calcul de la formule (suite) (fin) Méthode de SIMPSON Méthode de SIMPSON (suite) Explication - p. 18/48

On applique la formule d erreur de l interpolation de : t [y i, y i + 1] il existe η(t) [y i, y i + 1] tel que yi+1 y i f(t) g i (t) = f (η(t))(t y i ) f(t)dt b a m f(y i) = Soit M = sup t [a,b] f (t) yi+1 y i f (η(t))(t y i )dt Méthode des rectangles (suite) Méthode des trapèzes Calcul de la formule (suite) (fin) Méthode de SIMPSON Méthode de SIMPSON (suite) Explication - p. 18/48

On applique la formule d erreur de l interpolation de : t [y i, y i + 1] il existe η(t) [y i, y i + 1] tel que yi+1 y i f(t) g i (t) = f (η(t))(t y i ) f(t)dt b a m f(y i) = yi+1 Soit M = sup t [a,b] f (t) yi+1 f(t)dt b a m f(y i) M y i y i f (η(t))(t y i )dt yi+1 y i (t y i )dt M (y i+1 y i ) 2 2 (b a)2 M 2m 2 Méthode des rectangles (suite) Méthode des trapèzes Calcul de la formule (suite) (fin) Méthode de SIMPSON Méthode de SIMPSON (suite) Explication - p. 18/48

(suite) Finalement Méthode des rectangles (suite) Méthode des trapèzes Calcul de la formule (suite) (fin) Méthode de SIMPSON Méthode de SIMPSON (suite) Explication - p. 19/48

(suite) Finalement Remarques : b a f(t)dt I R M (b a) 2 2m Méthode des rectangles (suite) Méthode des trapèzes Calcul de la formule (suite) (fin) Méthode de SIMPSON Méthode de SIMPSON (suite) Explication - p. 19/48

(suite) Finalement Remarques : b a f(t)dt I R M (b a) 2 Pour trouver une valeur approchée de b a de prendre m plus grand que M (b a)2 2ε 2m f(t)dt à ε près, il suffit Méthode des rectangles (suite) Méthode des trapèzes Calcul de la formule (suite) (fin) Méthode de SIMPSON Méthode de SIMPSON (suite) Explication - p. 19/48

(suite) Finalement Remarques : b a f(t)dt I R M (b a) 2 Pour trouver une valeur approchée de b a de prendre m plus grand que M (b a)2 2ε L approximation est exacte si 2m f(t)dt à ε près, il suffit Méthode des rectangles (suite) Méthode des trapèzes Calcul de la formule (suite) (fin) Méthode de SIMPSON Méthode de SIMPSON (suite) Explication - p. 19/48

(suite) Finalement Remarques : b a f(t)dt I R M (b a) 2 Pour trouver une valeur approchée de b f(t)dt à ε près, il suffit a de prendre m plus grand que M (b a)2 2ε L approximation est exacte si la dérivée f est nulle c est-à-dire si la fonction f est constante. 2m Méthode des rectangles (suite) Méthode des trapèzes Calcul de la formule (suite) (fin) Méthode de SIMPSON Méthode de SIMPSON (suite) Explication - p. 19/48

Méthode des trapèzes Les points (y i ) i = 0,..., m sont pris régulièrement espacés sur [a, b] : y i = a + i b a m. Sur chaque intervalle I i = [y i, y i+1 ], la fonction f est approchée par la fonction affine g i coïncidant avec f en y i et y i+1 soit : g i (t) = f(y i ) + (t y i) (y i+1 y i ) (f(y i+1) f(y i )). Remarque : g i est la fonction affine par morceaux reliant les points de coordonnées (y i, f(y i )). Méthode des rectangles (suite) Méthode des trapèzes Calcul de la formule (suite) (fin) Méthode de SIMPSON Méthode de SIMPSON (suite) Explication - p. 20/48

Calcul de la formule yi+1 y i g i (t)dt = y i+1 y i [ t y i+1 y i (f(y i+1 ) f(y i )) y i y i+1 y i (f(y i+1 ) f(y i ))+f(y i )]dt = y i+1 2 2 y i 2(y i+1 y i ) (f(y i+1) f(y i )) y i (f(y i+1 ) f(y i )) + (y i+1 y i )f(y i ) = y i+1+y i 2 (f(y i+1 ) f(y i )) y i f(y i+1 ) + y i+1 f(y i ) = y i+1 y i 2 (f(y i+1 ) + f(y i )) = b a 2m (f(y i+1) + f(y i )) Or b a f(t)dt = y 1 y 0 f(t)dt + y 2 y 1 f(t)dt +... + y m y m 1 f(t)dt Donc l approximation de b f(t)dt par la méthode des trapèzes est a donnée par : Méthode des rectangles (suite) Méthode des trapèzes Calcul de la formule (suite) (fin) Méthode de SIMPSON Méthode de SIMPSON (suite) Explication - p. 21/48

Calcul de la formule yi+1 y i g i (t)dt = y i+1 y i [ t y i+1 y i (f(y i+1 ) f(y i )) y i y i+1 y i (f(y i+1 ) f(y i ))+f(y i )]dt = y i+1 2 2 y i 2(y i+1 y i ) (f(y i+1) f(y i )) y i (f(y i+1 ) f(y i )) + (y i+1 y i )f(y i ) = y i+1+y i 2 (f(y i+1 ) f(y i )) y i f(y i+1 ) + y i+1 f(y i ) = y i+1 y i 2 (f(y i+1 ) + f(y i )) = b a 2m (f(y i+1) + f(y i )) Or b a f(t)dt = y 1 y 0 f(t)dt + y 2 y 1 f(t)dt +... + y m y m 1 f(t)dt Donc l approximation de b f(t)dt par la méthode des trapèzes est a donnée par : Méthode des rectangles (suite) Méthode des trapèzes Calcul de la formule (suite) (fin) Méthode de SIMPSON Méthode de SIMPSON (suite) Explication I T = b a 2m (f(y 0) + 2f(y 1 ) +... + 2f(y m 1 ) + f(y m )) - p. 21/48

3 2 1 1 1 1 2 3 4 5 6 Méthode des rectangles (suite) Méthode des trapèzes Calcul de la formule (suite) (fin) Méthode de SIMPSON Méthode de SIMPSON (suite) Explication - p. 22/48

On applique la formule d erreur de l interpolation de : t [y i, y i + 1] il existe η(t) [y i, y i + 1] tel que - p. 23/48

On applique la formule d erreur de l interpolation de : t [y i, y i + 1] il existe η(t) [y i, y i + 1] tel que f(t) g i (t) = 1 2 f (η(t))(t y i )(t y i+1 ) yi+1 y i f(t)dt b a 2m (f(y i+1) + f(y i )) = 1 2 yi+1 y i f (η(t))(t y i )(t y i+1 )dt d où si M = sup t [a,b] f (t) yi+1 y i f(t)dt b a 2m (f(y i+1) + f(y i )) M yi+1 y i (t y i )(y i+1 t)dt - p. 23/48

(suite) Pour le calcul de y i+1 y i (t y i )(y i+1 t)dt, on effectue un changement de variable. Soit x = t y i (t = x + y i ) yi+1 y i Donc (t y i )(y i+1 t)dt = y i+1 y i 0 x(y i+1 y i x)dx y i+1 y i = y i+1 y i x 2 + x(y 0 i+1 y i )dx = (y i+1 y i ) 3 3 + (y i+1 y i ) 2 2 (y i+1 y i ) = (y i+1 y i ) 3 6 f(t)dt b a 2m (f(y i+1) + f(y i )) M (y i+1 y i ) 3 12 Méthode des rectangles (suite) Méthode des trapèzes Calcul de la formule (suite) (fin) Méthode de SIMPSON Méthode de SIMPSON (suite) Explication - p. 24/48

(suite) Pour le calcul de y i+1 y i (t y i )(y i+1 t)dt, on effectue un changement de variable. Soit x = t y i (t = x + y i ) yi+1 y i Donc (t y i )(y i+1 t)dt = y i+1 y i 0 x(y i+1 y i x)dx y i+1 y i = y i+1 y i x 2 + x(y 0 i+1 y i )dx = (y i+1 y i ) 3 3 + (y i+1 y i ) 2 2 (y i+1 y i ) = (y i+1 y i ) 3 6 f(t)dt b a 2m (f(y i+1) + f(y i )) M (y i+1 y i ) 3 12 b a f(t)dt I T M (b a)3 12m 2 Méthode des rectangles (suite) Méthode des trapèzes Calcul de la formule (suite) (fin) Méthode de SIMPSON Méthode de SIMPSON (suite) Explication - p. 24/48

(fin) Finalement Remarques : b a f(t)dt I T M (b a) 3 12m 2 Pour trouver une valeur approchée de b f(t)dt à ε près, il suffit a de prendre m plus grand que M (b a)3 12ε Méthode des rectangles (suite) Méthode des trapèzes Calcul de la formule (suite) (fin) Méthode de SIMPSON Méthode de SIMPSON (suite) Explication - p. 25/48

(fin) Finalement Remarques : b a f(t)dt I T M (b a) 3 12m 2 Pour trouver une valeur approchée de b f(t)dt à ε près, il suffit a de prendre m plus grand que M (b a)3 12ε L approximation est exacte si Méthode des rectangles (suite) Méthode des trapèzes Calcul de la formule (suite) (fin) Méthode de SIMPSON Méthode de SIMPSON (suite) Explication - p. 25/48

(fin) Finalement Remarques : b a f(t)dt I T M (b a) 3 12m 2 Pour trouver une valeur approchée de b f(t)dt à ε près, il suffit a de prendre m plus grand que M (b a)3 12ε L approximation est exacte si la dérivée seconde f est nulle c est-à-dire si la fonction f est affine. Méthode des rectangles (suite) Méthode des trapèzes Calcul de la formule (suite) (fin) Méthode de SIMPSON Méthode de SIMPSON (suite) Explication - p. 25/48

Méthode de SIMPSON On considère les 2n + 1 points z i = a + i b a 2n (i = 0,..., 2n) Méthode des rectangles (suite) Méthode des trapèzes Calcul de la formule (suite) (fin) Méthode de SIMPSON Méthode de SIMPSON (suite) Explication - p. 26/48

Méthode de SIMPSON On considère les 2n + 1 points z i = a + i b a 2n (i = 0,..., 2n) Sur chaque intervalle I i = [z 2i, z 2i+2 ], la fonction f est approchée par la parabole g i passant par les points Donc (z 2i, f(z 2i )) (z 2i+1, f(z 2i+1 )) (z 2i+2, f(z 2i+2 )) g i (t) = f(z 2i ). +f(z 2i+1 ). +f(z 2i+2 ). (t z 2i+1 )(t z 2i+2 ) (z 2i z 2i+1 )(z 2i z 2i+2 ) (t z 2i )(t z 2i+2 ) (z 2i+1 z 2i )(z 2i+1 z 2i+2 ) (t z 2i )(t z 2i+1 ) (z 2i+2 z 2i )(z 2i+2 z 2i+1 ) Méthode des rectangles (suite) Méthode des trapèzes Calcul de la formule (suite) (fin) Méthode de SIMPSON Méthode de SIMPSON (suite) Explication - p. 26/48

Méthode de SIMPSON (suite) Ce qui donne, tout calcul fait : z2i+2 z 2i g i (t)dt = b a 6n (f(z 2i) + 4f(z 2i+1 ) + f(z 2i+2 )) L approximation de l intégrale par la méthode de SIMPSON est donc I S avec - p. 27/48

Méthode de SIMPSON (suite) Ce qui donne, tout calcul fait : z2i+2 z 2i g i (t)dt = b a 6n (f(z 2i) + 4f(z 2i+1 ) + f(z 2i+2 )) L approximation de l intégrale par la méthode de SIMPSON est donc I S avec I S = b a 6n ( f(z 0 ) + 4f(z 1 ) + 2f(z 2 ) + 4f(z 3 ) + 2f(z 4 ) + ) + 2f(z 2n 2 ) + 4f(z 2n 1 ) + f(z 2n ) - p. 27/48

3 2 1 1 1 1 2 3 4 5 6 Méthode des rectangles (suite) Méthode des trapèzes Calcul de la formule (suite) (fin) Méthode de SIMPSON Méthode de SIMPSON (suite) Explication - p. 28/48

Soit M = max t [a,b] f (4) (t) Remarques : b a f(t)dt I S M(b a)5 2880n 4 Pour trouver une valeur approchée de b a de prendre m plus grand que 4 L approximation est exacte si M (b a)5 2880ε f(t)dt à ε près, il suffit. Méthode des rectangles (suite) Méthode des trapèzes Calcul de la formule (suite) (fin) Méthode de SIMPSON Méthode de SIMPSON (suite) Explication - p. 29/48

Soit M = max t [a,b] f (4) (t) Remarques : b a f(t)dt I S M(b a)5 2880n 4 Pour trouver une valeur approchée de b a de prendre m plus grand que 4 M (b a)5 2880ε f(t)dt à ε près, il suffit L approximation est exacte si la dérivée f (4) est nulle c est-à-dire si la fonction f est un polynôme de degré inférieur ou égal à 3. Méthode des rectangles (suite) Méthode des trapèzes Calcul de la formule (suite) (fin) Méthode de SIMPSON Méthode de SIMPSON (suite) Explication - p. 29/48