D.S. nº1 : Espace, Dérivées, Continuité. Vendredi 4 octobre 2013, 2h, Calculatrices autorisées. Ce sujet est à rendre avec la copie.

Documents pareils
Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

Activités numériques [13 Points]

I. Ensemble de définition d'une fonction

Géométrie dans l espace

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

1S Modèles de rédaction Enoncés

Le théorème de Thalès et sa réciproque

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.

EXERCICE 4 (7 points ) (Commun à tous les candidats)

Représentation géométrique d un nombre complexe

Correction du Baccalauréat S Amérique du Nord mai 2007

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

C f tracée ci- contre est la représentation graphique d une

Continuité et dérivabilité d une fonction

Mais comment on fait pour...

Angles orientés et trigonométrie

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en Énoncé.

5 ème Chapitre 4 Triangles

Correction : E = Soit E = -1,6. F = 12 Soit F = y = 11. et G = -2z + 4y G = 2 6 = 3 G = G =

PROBLEME(12) Première partie : Peinture des murs et du plafond.

Quelques contrôle de Première S

Commun à tous les candidats

Séquence 10. Géométrie dans l espace. Sommaire

Corrigé du baccalauréat S Asie 21 juin 2010

6. Les différents types de démonstrations

chapitre 4 Nombres de Catalan

Fonctions de plusieurs variables

DOCM Solutions officielles = n 2 10.

Fonctions homographiques

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

O, i, ) ln x. (ln x)2

Sommaire de la séquence 12

Le seul ami de Batman

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS

Du Premier au Second Degré

Deux disques dans un carré

Exercices de géométrie

Géométrie dans l espace Produit scalaire et équations

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Cours Fonctions de deux variables

Exercice numéro 1 - L'escalier

La fonction exponentielle

La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques

Date : Tangram en carré page

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE

Fonctions de deux variables. Mai 2011

Comparaison de fonctions Développements limités. Chapitre 10

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument

Démontrer qu'un point est le milieu d'un segment

Résolution d équations non linéaires

Chapitre 14. La diagonale du carré

Développements limités, équivalents et calculs de limites

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Développements limités. Notion de développement limité

Cours d Analyse. Fonctions de plusieurs variables

Paris et New-York sont-ils les sommets d'un carré?

La médiatrice d un segment

Chapitre 2 Le problème de l unicité des solutions

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Trois personnes mangent dans un restaurant. Le serveur

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Eté LIVRET de RÉVISIONS en MATHÉMATIQUES

Statistique : Résumé de cours et méthodes

Le contexte. Le questionnement du P.E.R. :

Seconde MESURER LA TERRE Page 1 MESURER LA TERRE

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES

III- Raisonnement par récurrence

Proposition de programmes de calculs en mise en train

Image d un intervalle par une fonction continue

Corrigé du baccalauréat S Pondichéry 12 avril 2007

108y= 1 où x et y sont des entiers

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

Dérivées d ordres supérieurs. Application à l étude d extrema.

Séquence 2. Repérage dans le plan Équations de droites. Sommaire

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

IV- Equations, inéquations dans R, Systèmes d équations

Construction d un cercle tangent à deux cercles donnés.

Etude de fonctions: procédure et exemple

Corrigés Exercices Page 1

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Calcul intégral élémentaire en plusieurs variables

Chapitre 2 : Vecteurs

315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre?

CCP PSI Mathématiques 1 : un corrigé

OLYMPIADES ACADÉMIQUES DE MATHÉMATIQUES

Introduction à. Version 4.4. Traduction et adaptation française.

Diviser un nombre décimal par 10 ; 100 ; 1 000

Intégration et probabilités TD1 Espaces mesurés Corrigé

«Aucune investigation humaine ne peut être qualifiée de science véritable si elle ne peut être démontrée mathématiquement.

Continuité en un point

Devoir 2 avec une figure en annexe, à renvoyer complétée. Corrigés d exercices sections 3 à 6. Liste des exos recommandés :

Transcription:

SUJET D D.S. nº1 : Espace, Dérivées, Continuité TS1 Vendredi 4 octobre 2013, 2h, Calculatrices autorisées. Ce sujet est à rendre avec la copie. Nom :.................... Prénom :................. Communication: + ± Technique : + ± Raisonnement : + ± Note : 20 /4 Exercice 1. On a tracé ci-contre la courbe représentative c de la fonction f définie par f (x)= 2 x+1. Soit A le point de c d'abscisse 4. 1) Déterminer l'équation de T 4, la tangente à c au point A et tracer T 4 sur la figure. 2) L'objectif de cette question est de montrer que c est toujours en dessous de T 4. Soit g la /1 /6 /1 /3,5 fonction définie par g ( x)= 2 x+1 x 3 5 3 a) Déterminez le tableau de variations de g sur son domaine de définition b) Conclure. Exercice 2. Frites Un vendeur de frites souhaite vendre des portions normales servies dans des cornets de 150cm 3 et des portions «Maxi» servies dans des cornets de 300 cm 3. Il fabrique ses cornets de frites en enlevant un secteur angulaire d'un disque en carton de rayon 9 cm, voir figures ci-contre. On rappelle que le volume d'un cône est donné par la formule V= 1 3 π r2 h où h et r sont exprimés en cm et V en cm 3. Dans tout ce qui suit, on prendra ces unités. 1) a) Exprimer r en fonction de h. b) Montrer que V s'exprime en fonction de h par V= 1 3 π (81 h2 )h. 2) Déterminer le tableau de variations de V pour 0 h 9. On enlève la partie hachurée du disque représenté à gauche puis on colle les deux bords ensemble pour obtenir le cornet de frites représenté à droite. Suivant la taille du secteur angulaire enlevé, on obtiendra des cornets plus ou moins pointus. 3) a) Le cône peut-il avoir un volume de 300 cm 3? Si oui, donner un encadrement au mm près la (les) hauteur(s) correspondantes. b) Le cône peut-il avoir un volume de 150 cm 3? Si oui, donner un encadrement au mm près la (les) hauteur(s) correspondantes.

/11 Exercice 3. ABCDEFGH est un cube d'arête 4 cm. /3 /4 /2,5 1) Mise en route, quelques intersections...ou pas! a) Quelle est la position relative des droites (AF) et (HG)? Si elles sont sécantes, construire leur point d'intersection. b) Construire l'intersection des plans (AFH) et (AGE). Justifier. c) Construire l'intersection des plans (AFH) et (ABC). Justifier. Bonus: Donner deux justifications de la construction. Elles doivent être différentes et indépendantes l'une de l'autre. 2) L objectif de cette question est de montrer que la droite (EC) est orthogonale au plan (AFH). a) Montrer que la droite (AF) est orthogonale au plan (BEC). b) En déduire que les droites (AF) et (EC) sont orthogonales. c) Compléter sans justification: On montrerait de même que la droite (AH) est orthogonale au plan...... puis que la droite (AH) est orthogonale à (EC). d) En déduire que la droite (EC) est orthogonale au plan (AFH). 3) Soit M le point d'intersection de la droite (EC) et du plan (AFH). L objectif de cette question est de construire M. a) Montrer que M appartient au plan (AGE). b) En déduire la construction de M (à faire directement sur la figure). Justifier. 4) Étude du tétraèdre AEFH. a) Représenter en vue de face et en vraie grandeur le plan (AGE). Tous les éléments (points, segments, droites) de la figure contenus dans ce plan doivent figurer sur votre dessin, notamment M. On rappelle que AE=4 cm. b) Préciser la nature du triangle AHF et calculer son aire. c) Bonus: Calculer le volume du tétraèdre AEFH puis la longueur ME.

Corrigé du DS 1 Exercice 1. On a tracé ci-contre la courbe représentative c de la fonction f définie par f (x)= 2 x+1. Soit A le point de c d'abscisse 4. 1) Déterminer l'équation de T 4, la tangente à c au point A et tracer T 4 sur la figure. f (x)= 2 x+1. f est dérivable en x dès que 2 x+1>0 càd x> 1 2 et sur ] 12 [ ;+ 2, f ' (x)= 2 2 x+1 = 1. La tangente à c au point d abscisse 4 a pour équation 2 x+1 y= f ' (4) ( x 4 )+ f (4 ). Avec f (4)=3 et f ' (4)= 1 3, on obtient y= 1 3 (x 4)+3 càd y= 1 3 x+ 5 3. 2) L'objectif de cette question est de montrer que c est toujours en dessous de T 4. Soit g la fonction définie par g ( x)= 2 x+1 x 3 5 3 a) Déterminez le tableau de variations de g sur son domaine de définition. g( x)= f ( x) x 3 5 3 ] donc sur 1 2 [ ;+, g est dérivable comme somme de fonctions dérivables avec g ' ( x)= 1 2 x+1 1 3 2 x+1 =. Comme une racine est toujours positive, par la règle des signes, g ' ( x) 3 2 x+1 est du signe de son numérateur 3 2 x+1. Méthode 1 : g ' ( x) 0 3 2 x+1 0 3 2 x+1 { (i) 9 2 x+1 2 x+1 0 0 2 x+1 9 1 2 x 4. L'équivalence (i) est obtenue dans le sens en appliquant la fonction carré et en remarquant que 3+ 2 x+1 n'existe que si 2 x+1 0. Elle est obtenue dans le sens en appliquant la fonction racine carré aux nombres positfs 9 et 2 x+1. Méthode 2 : En utilisant l'expression conjuguée ( C'est celle que nous avions faite en classe pour une dérivée similaire). (3 2 x+1) (3+ 2 x+1) 9 (2 x+1) { g ' ( x) 0 3 2 x+1 0 0 0 (ii) 9 (2 x+1) 0 1 3+ 2 x+1 3+ 2 x+1 2 x+1 0 2 x 4 L'équivalence (ii) est obtenue dans le sens en remarquant d'une part que le dénominateur est toujours positif donc le quotient est du signe de son numérteur et d'autre part que le dénominateur 3+ 2 x+1 n'existe que si 2 x+1 0. L'équivalence (ii) est obtenue dans le sens en remarquant d'une part que 2 x+1 0 donc la quantité 3+ 2 x+1 existe et d'autre part que diviser par une quantité positive ne change pas le signe d'une expression. Le tableau de variations de g sur son domaine de définition est donc x 1 2 4 + signe de g'(x) + 0 g 0 b) Conclure. D'après le tableau de variation de g, pour tout réel x d f, g(x) 0. Autrement dit, x d f, 2 x+1 x 3 +5 3. Géométriquement, comme x 3 + 5 3 est l'ordonnée du point de la tangente T 4 d'abscisse x, cette inégalité veut dire que le point de c d'abscisse x est toujours en-dessous du point de même abscisse de la tangente T 4. Autrement dit, c est toujours en dessous de T 4. 3

Exercice 2. Frites 1) a) Grâce au théorème de Pythagore dans le triangle rectangle d'hypoténuse 9 et de côtés r et h, on obtient r 2 +h 2 =9 2 d'où r 2 =81 h 2 càd r= 81 h 2. b) En remplaçant r 2 =81 h 2 dans V= 1 3 π r2 h, on obtient V= 1 3 π (81 h2 )h. 2) Déterminer le tableau de variations de V pour 0 h 9. Pour dériver V comme une somme plutôt que comme un produit, remarquons d'abord que V= π 3 (81h h3 ). V est dérivable sur R car c'est un polynôme en h et V '= π 3 (81 3h2 ) qui est du signe de 81 3 h 2. Le trinôme 81 3h 2 a deux racines distinctes x 1 = 81 3 2= = 27= 9 3=3 3 et x 81 3 = 3 3. 81 3h 2 est un polynôme de degré deux, il est donc du signe de a= 3<0 à l extérieur de ses racines et du signe contraire entre les racines. On en déduit que sur [ 0;9], 81 3h 2 0 ssi h [ 0 ; 3 3]. Son tableau de variations est donc x 0 3 3 9 signe de V'(x) + 0 Variations de V 54 π 3 0 0 3) a) Le maximum de V sur [ 0;9] est 54 π 3 294 cm 3 donc le cône ne peut pas avoir un volume de 300 cm 3 b) Le cône peut-il avoir un volume de 150cm 3? Si oui, donner un encadrement au mm près la (les) hauteur(s) correspondantes. Méthode : On applique le corollaire du théorème des valeurs intermédiaires sur [ 0;3 3] puis sur [ 3 3; 9]. Sur [ 0;3 3] : V est continue et strictement croissante sur [ 0;3 3] } donc V (0)=0<150 V (3 3)>150 d'après le corollaire du théorème des valeurs intermédiaires, l'équation V ( x)=150 admet une unique solution dans [ 0;3 3] que l'on notera par la suite α. On cherche ensuite une valeur approchée de α en faisant un tableau de valeurs à la calculatrice: V (1,8) 146,6<150 et V (1,9) 154>150 donc 1,8<α <1,9. On pourrait de même prouver que 1,84< α< 1,85 donc α 1,8 cm. On recommence sur [ 3 3; 9] : V est continue et strictement décroissante sur [ 3 3; 9] } donc V (3 3)>150 V (9)=0<150 d'après le corollaire du théorème des valeurs intermédiaires, l'équation V ( x)=150 admet une unique solution dans [ 0;3 3] que l'on notera par la suite β. On cherche ensuite une valeur approchée de α en faisant un tableau de valeurs à la calculatrice: V (7,9) 154>150 et V (8) 142<150 donc 7,9<β<8,0. On pourrait de même prouver que 7,93<β<7,94 donc β 7,9cm. 4

Exercice 3. ABCDEFGH est un cube d'arête 4 cm. [Vous aurez reconnu la configuration vue dans un exercice fait en TD où il fallait justement construire le point M. Avec CarMetal, on pouvait visualiser la situation, en coloriant le plan (AGE) et faisant tourner la figure. Mais si, rappelez--vous, c'est le premier de la liste http://dbmaths.nuxit.net/carmetal/diaporamas/deux/exo Espace/index.html] 1) Mise en route, quelques intersections...ou pas! a) Les droites (AF) et (HG) sont non coplanaires sinon A appartiendrait au plan (FGH). b) Construire l'intersection des plans (AFH) et (AGE). Les droites (EG) et (HF) sont coplanaires dans le plan (EFG). On construit leur point d'intersection L. Montrons que le point L ainsi construit est bien dans l'intersection des plans (AFH) et (AGE) : L (FH AFH ) donc L ( AFH ) ( AEG). L (EG) (AEG)} Comme le point A appartient lui aussi à l'intersection des plans (AFH) et (AGE), l'intersection des plans (AFH) et (AGE) est la droite (AL). c) Construire l'intersection des plans (AFH) et (ABC). Justifier. Justification 1: Par le théorème du toit ( FH ) (BD) ( FH ) ( AFH ) (BD) ( ABC)} Les plans (AFH) et (ABC) contiennent respectivement les droites (FH) et (BD) qui sont parallèles. Par le théorème du toit, leur intersection est une droite parallèle à (FH) et (BD). («gouttières» et «haut du toit» en violet sur la figure) Comme de plus A est un point commun aux plans (AFH) et (ABC) leur droite d'intersection est la parallèle à (HF) passant par A. (en violet sur la figure) Justification 2: Par le théorème d'incidence D'après le théorème d'incidence, le plan (AFH) coupe les plans parallèles (EFH) et (ABC) selon des droites parallèles. Comme le plan (AFH) coupe (EFH) selon (FH), il coupe (ABC) selon une droite parallèle à (FH). Comme de plus A est un point commun aux plans (AFH) et (ABC) leur droite d'intersection est la parallèle à (FH) passant par A. (en violet sur la figure) 2) L objectif de cette question est de montrer que la droite (EC) est orthogonale au plan (AFH). a) Montrer que la droite (AF) est orthogonale au plan (BEC). (AF) est perpendiculaire à (BE) car (AF) et (BE) sont les diagonales du carré ABFE. (AF) est orthogonale à (BC) car dans le cube ABCDEFGH l'arête (BC) est orthogonale à la face ABFE donc à toute droite de (ABF), en particulier à (AF). Finalement, (AF) est orthogonale à (BE) et (BC) qui sont deux droites sécantes du plan (BEC) donc par le théorème de la porte, (AF) est orthogonale au plan (BEC). b) (AF) est orthogonale au plan (BEC) donc à toute droite de (BEC), en particulier à (EC). (EC ) ( AF ) c) Compléter sans justification: On montrerait de même que la droite (AH) est orthogonale au plan (CDE) puis que la droite (AH) est orthogonale à (EC). (EC ) ( AH ) Les détails (non demandés): (AH) est perpendiculaire à (DE) car (AH) et (DE) sont les diagonales du carré ADHE. (AH) est orthogonale à (CD) car dans le cube ABCDEFGH l'arête (CD) est orthogonale à la face ADHE donc à toute droite de (ADH), en particulier à (AH). Finalement, (AH) est orthogonale à (DE) et (DC) qui sont deux droites sécantes du plan (CDE) donc par le théorème de la porte, (AH) est orthogonale au plan (CDE). (AH) est donc orthogonale à toute droite de (CDE), en particulier à (EC). (EC ) ( AH ) 5

d) D'après les questions 2b) et 2c) la droite (EC) est orthogonale à (AF) et (AH) qui sont deux droites sécantes du plan (AFH) donc par le théorème de la porte, (EC) est orthogonale au plan (AFH). 3) Soit M le point d'intersection de la droite (EC) et du plan (AFH). L objectif de cette question est de construire M. a) M appartient à la droite (EC) qui est contenu dans (AGE) donc M appartient au plan (AGE). b) En déduire la construction de M (à faire directement sur la figure). Justifier. Par définition, M appartient au plan (AFH). Comme de plus on vient de voir que M appartient au plan (AGE), M appartient au plan (AGE), M appartient donc à l'intersection des plans (AFH) et (AGE), qui est la droite (AL) d'après le 1b). M appartient à la droite (AL). Comme de plus M appartient à la droite (EC), on construit L comme le point d'intersection des droites (AL) et (EC). 4) Étude du tétraèdre AEFH. a) Représenter en vue de face et en vraie grandeur le plan (AGE). Tous les éléments (points, segments, droites) de la figure contenus dans ce plan doivent figurer sur votre dessin, notamment M. Explications: [AC] et [EG] sont des diagonale de carrés de côté 4 cm donc AC=EG=4 2 cm. Dans le cube ABCDEFGH l'arête (AE) est orthogonale à la face EFGH donc à toute droite de EFGH, en particulier à (EG) donc l'angle ÂEG est droit. Pour des raisons similaires, les trois autres angles de ACGE sont droits donc ACGE est un rectangle. On a vu au 2d) que (EC) est orthogonale au plan (AFH) donc à toute droite de (AFH), en particulier à (AL) donc l'angle ÊMA est droit. b) Préciser la nature du triangle AHF et calculer son aire. Les trois côtés de ce triangle sont des diagonale de carrés de côté 4 cm donc les trois côtés sont égaux (ils mesurent tous 4 2 cm) donc le triangle AHF est équilatéral. La hauteur d'un triangle équilatéral de côté a mesure a 3 (Pythagore...) donc la hauteur de AFH mesure 2 4 2 3 2 =2 6 cm. L'aire de AHF est a AHF= 4 2 2 6 =4 12=8 3cm 2. a 2 AHF =8 3cm 2. c) Bonus: Calculer le volume du tétraèdre AEFH puis la longueur ME. Dans le tétraèdre AEFH, la hauteur correspondant à la base AEF est EH. Comme AEH a pour aire v = 32 3 et que 1 3 (8 3 ME )=32 32 8 3 ME=32 ME = 3 8 3 = 4 3 = 4 3 cm., le volume du tétraèdre 3 est v = 1 3 8 4=32 3. v =32 3 cm3 Pour déterminer ME, on calcule de nouveau le volume du tétraèdre mais en considérant cette fois la base AFH et la hauteur correspondante est [ME]. On a en effet prouvé au 2d) que (EC) est orthogonale au plan (AFH). Comme d'après 4b) AEH a pour aire a AHF =8 3cm 2, le volume du tétraèdre est v = 1 3 (8 3 ME )cm3. Or on vient de voir que v = 32 3 1 3 (8 3 ME )=32 3 ce qui nous donne une équation d'inconnue ME: 32 8 3 ME=32 ME = 8 3 = 4 3 = 4 3 4 3 cm. ME = 3 3 cm. Remarque: On aurait pu aussi calculer ME par des considérations de géométrie plane en se basant sur la figure du 4a). 6