pgcd, ppcm dans Z, théorème de Bézout. Applications

Documents pareils
Exercices - Polynômes : corrigé. Opérations sur les polynômes

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Développement décimal d un réel

Cours d arithmétique Première partie

1 Définition et premières propriétés des congruences

avec des nombres entiers

Probabilités sur un univers fini

Extrait du poly de Stage de Grésillon 1, août 2010

108y= 1 où x et y sont des entiers

Groupe symétrique. Chapitre II. 1 Définitions et généralités

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

UNIVERSITE IBN ZOHR Faculté des sciences Agadir. Filière SMA & SMI. Semestre 1. Module : Algèbre 1

FONDEMENTS DES MATHÉMATIQUES

3 Approximation de solutions d équations

Pour l épreuve d algèbre, les calculatrices sont interdites.

Résolution de systèmes linéaires par des méthodes directes

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

Limites finies en un point

Triangle de Pascal dans Z/pZ avec p premier

Cours d Analyse. Fonctions de plusieurs variables

Résolution d équations non linéaires

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://

Intégration et probabilités TD1 Espaces mesurés Corrigé

I. Ensemble de définition d'une fonction

Angles orientés et trigonométrie

Continuité en un point

Chapitre VI - Méthodes de factorisation

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Cours arithmétique et groupes. Licence première année, premier semestre

Journées Télécom-UPS «Le numérique pour tous» David A. Madore. 29 mai 2015

DOCM Solutions officielles = n 2 10.

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Introduction à l étude des Corps Finis

EXERCICE 4 (7 points ) (Commun à tous les candidats)

NOMBRES COMPLEXES. Exercice 1 :

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Logique. Plan du chapitre

I. Polynômes de Tchebychev

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES.

Coefficients binomiaux

Fonctions homographiques

Corrigé du baccalauréat S Asie 21 juin 2010

Mathématiques Algèbre et géométrie

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Cryptographie et fonctions à sens unique

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions

Correction du baccalauréat S Liban juin 2007

Probabilités sur un univers fini

Quelques tests de primalité

Fonctions de plusieurs variables

Représentation d un entier en base b

Chapitre 2. Matrices

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.

Chapitre 6. Fonction réelle d une variable réelle

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Le produit semi-direct

Capes Première épreuve

Comparaison de fonctions Développements limités. Chapitre 10

Nombres premiers. Comment reconnaître un nombre premier? Mais...

Chapitre 1 : Évolution COURS

Géométrie dans l espace Produit scalaire et équations

Cours d analyse numérique SMI-S4

Complément d information concernant la fiche de concordance

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.

Définition : On obtient les nombres entiers en ajoutant ou retranchant des unités à zéro.

Comment démontrer des formules sans effort? exposé de maîtrise

Structures algébriques

Commun à tous les candidats

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Séquence 10. Géométrie dans l espace. Sommaire

Corrigé Problème. Partie I. I-A : Le sens direct et le cas n= 2

Continuité et dérivabilité d une fonction

Construction d un cercle tangent à deux cercles donnés.

Cours de mathématiques

Développements limités, équivalents et calculs de limites

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Le théorème de Thalès et sa réciproque

Optimisation des fonctions de plusieurs variables

Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E

Proposition. Si G est un groupe simple d ordre 60 alors G est isomorphe à A 5.

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

Approximations variationelles des EDP Notes du Cours de M2

Exercices Corrigés Premières notions sur les espaces vectoriels

Examen optimisation Centrale Marseille (2008) et SupGalilee (2008)

Texte Agrégation limitée par diffusion interne

Corrigé du baccalauréat S Pondichéry 12 avril 2007

Licence Sciences et Technologies Examen janvier 2010

Introduction à la théorie des graphes. Solutions des exercices

Intégration et probabilités TD1 Espaces mesurés

Polynômes à plusieurs variables. Résultant

1/24. I passer d un problème exprimé en français à la réalisation d un. I expressions arithmétiques. I structures de contrôle (tests, boucles)

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie

Programmation linéaire et Optimisation. Didier Smets

Image d un intervalle par une fonction continue

Transcription:

7 pgcd, ppcm dans Z, théorème de Bézout. Applications Le théorème de division euclidienne et les sous-groupes de (Z, +) sont supposés connus. Pour tout entier relatif n, on note : nz = {n q q Z} l ensemble de tous les entiers relatifs multiples de n et : D n = {d N d divise n} l ensemble de tous les diviseurs positifs de n (pour n 0, on a D n N ). 7.1 Plus grand commun diviseur La caractérisation des sous-groupes de (Z, +) peut être utilisée pour définir le pgcd de deux ou plusieurs entiers relatifs, non tous nuls. Théorème 7.1 Soient a, b deux entiers relatifs non tous deux nuls. Il existe un unique entier naturel δ tel que : az + bz = δz. Cet entier s écrit δ = au + bv avec (u, v) Z 2 et c est le plus grand entier naturel qui divise a et b. Démonstration. az + bz étant un sous groupe de (Z, +), le théorème 6.5 nous dit qu il existe un unique entier naturel δ tel que az + bz = δz. Comme δ δz = az + bz, il existe (u, v) Z 2 tel que δ = au + bv. De az δz et bz δz, on déduit que δ un diviseur commun à a et b. Si d N est un diviseur commun à a et b, il divise aussi δ = au + bv et d δ (a et b n étant pas tous les deux nuls, on a δ 0). Donc δ est bien le plus grand entier naturel qui divise a et b. On peut donc donner la définition suivante. Définition 7.1 Soient a, b deux entiers relatifs non tous deux nuls. On appelle plus grand commun diviseur de a et b le plus grand entier naturel qui divise a et b. On le note pgcd (a, b) ou a b. La relation a b = au + bv avec (u, v) Z 2 est l identité de Bézout. 145

146 pgcd, ppcm dans Z, théorème de Bézout. Applications Exercice 7.1 Soient a, b deux entiers relatifs non tous deux nuls et D a D b l ensemble des diviseurs communs à a et b dans N. Montrer que a b est le plus grand élément pour l ordre de la division dans N de D a D b et que D a D b = D a b. Solution 7.1 On sait déjà que δ = a b divise a et b, donc δ D a D b et tout entier d D a D b divisant a et b va diviser δ = au + bv. Comme tout d D a D b divise δ, on a D a D b D δ et comme tout d D δ divise δ qui divise lui même a et b, d va diviser a et b, soit d D a D b. On a donc D a D b = D a b. On peut aussi donner une définition de pgcd (a, b) sans référence directe aux sous-groupes de Z comme indiqué dans l exercice suivant. Exercice 7.2 Montrer, sans référence directe aux sous-groupes de Z, que l ensemble D a D b défini à l exercice précédent admet donc un plus grand élément δ (δ est alors le plus grand diviseur communs à a et b). Solution 7.2 L ensemble D a D b est non vide car il contient 1. Comme a et b ne sont pas tous deux nuls, cet ensemble est fini puisqu un entier relatif non nul n a qu un nombre fini de diviseurs dans N. L ensemble D a D b est donc non vide et majoré dans N, il admet donc un plus grand élément δ N qui est bien le plus diviseur communs à a et b. Théorème 7.2 La fonction pgcd vérifie les propriétés suivantes : (a, b) Z 2 {(0, 0)}, a b N ; a Z, a 0 = a a = a ; a Z, a 1 = 1 ; (a, b) Z 2 {(0, 0)}, a b = a b = a b = a b ; (a, b) Z 2 {(0, 0)}, a b = b a (commutativité du pgcd) ; pour b Z et a Z, on a a b = b si, et seulement si, b divise a ; (a, b) Z 2 {(0, 0)}, c Z, (ac) (bc) = c (a b) ; si d Z est un diviseur commun de a et b non tous deux nuls, alors a d b d = a b ; d pour a, b, c non tous nuls dans Z, on a a (b c) = (a b) c (associativité du pgcd). Démonstration. Laissée au lecteur. Exercice 7.3 Soient a, b deux entiers naturels non nuls. Montrer que : { (a b) b si a b a b = a (b a) si b > a En déduire un algorithme simple de calcul de a b. Solution 7.3 Si a = b, alors a b = a a = a = 0 a. Si a > b, on note δ = a b et δ = (a b) b. Comme δ divise a et b, il divise a b et b, donc il divise leur pgcd δ. De même δ qui divise a b et b va diviser a = (a b) + b et b, il divise donc δ et δ = δ. Pour a < b, on a a b = b a = a (b a). Un algorithme simple de calcul de a b, pour a, b entiers relatifs est donc le suivant : Début Lecture de a et b ; a = a ; b = b ;

Plus grand commun diviseur 147 Tant que a b Faire Début Si a > b Alors remplacer a par a b ; Sinon remplacer b par b a ; Fin si ; Fin ; pgcd = a ; Fin. Par exemple, pour (a, b) = (128, 28), on a : a b = 100 28 = 72 28 = 44 28 = 16 28 = 16 12 = 4 12 = 4 8 = 4 4 = 4. Cet algorithme n est évidemment pas très performant, il sera amélioré par l algorithme d Euclide au paragraphe 7.3. Exercice 7.4 Soient a et b deux entiers relatifs non tous deux nuls. Montrer que : a b = a (a + b) = b (a + b). Solution 7.4 On remarque que si (a, b) (0, 0), alors (a, a + b) (0, 0) et (b, a + b) (0, 0). En notant δ = a b et δ = a (a + b), on a : donc δz δ Z et : δ = au + bv = a (u v) + (a + b) v az + (a + b) Z = δ Z δ = au + (a + b) v = a (u + v ) + bv az + bz = δz donc δ Z δz et donc δz = δ Z, ce qui équivaut à δ = δ. On peut aussi dire que comme δ divise a et b, il divise a et a + b, donc il divise leur pgcd δ. De même δ qui divise a et a + b va diviser a et b = (a + b) a, il divise donc δ et δ = δ. On a donc, en permutant les rôles de a et b : a b = a (a + b) = b (a + b). On définit de manière analogue le pgcd d une famille a 1,, a p formée de p entiers non tous nuls comme le plus grand des diviseurs communs à a 1,, a p. On le note pgcd (a 1,, a p ) ou a 1 a 2 a p et c est un entier supérieur ou égal à 1. Cette définition est justifiée par le théorème suivant. Théorème 7.3 Soient a 1,, a p des entiers relatifs non tous nuls. Il existe un unique entier naturel δ tel que : a 1 Z + + a p Z = δz. p Cet entier s écrit δ = u k a k avec (u 1,, u p ) Z p et c est le plus grand entier naturel qui divise a 1,, a p.

148 pgcd, ppcm dans Z, théorème de Bézout. Applications Démonstration. Analogue au cas où p = 2. Comme dans le cas où p = 2, on vérifie que a 1 a p est aussi le plus grand élément pour l ordre de la division dans N de l ensemble des diviseurs positifs communs à a 1,, a p. p L égalité δ = u k a k est l identité de Bézout. La notation a 1 a 2 a p ne pose pas de problème du fait de la commutativité et l associativité du pgcd (elle est indépendante de l ordre des a k ). 7.2 Nombres premiers entre eux. Les théorèmes de Bézout et de Gauss On a vu que, par définition du pgcd, on a a b = au + bv avec u, v entiers relatifs, mais en général la réciproque est fausse, c est-à-dire que si δ est entier naturel tel que δ = au + bv avec u, v entiers relatifs, il n y a aucune raison pour que δ soit le pgcd de a et b. Par exemple 2 = 3 2 + 2 ( 2) et 3 2 = 1. Mais pour δ = 1, cette réciproque est vrai et ce résultat est très souvent utilisé. Définition 7.2 Soient (a, b) Z 2 {(0, 0)}. On dit que a et b sont premiers entre eux (ou étrangers) si leur pgcd est égal à 1. De manière équivalente, on peut dire que a et b sont premiers entre eux si, et seulement si, 1 et 1 sont leurs seuls diviseurs communs de a et b. Exercice 7.5 Soient (a k ) 1 k p et (b k ) 1 k q deux suites finies d entiers relatifs non nuls. Montrer que si n = p a k et m = q b k sont premiers entre eux, alors chaque a k, pour k compris entre 1 et p, est premier avec chacun des b j, pour j compris entre 1 et q. Solution 7.5 Soit δ = a k b j où 1 k p et 1 j q. Comme δ est un entier naturel non nul qui divise a k et b j, il divise n et m et vaut nécessairement 1. De manière plus générale, on peut donner la définition suivante. Définition 7.3 Soient a 1,, a p des entiers relatifs non tous nuls. On dit que a 1,, a p sont premiers entre eux dans leur ensemble si leur pgcd est égal à 1. Exercice 7.6 Est-il équivalent de dire a 1,, a p sont premiers entre eux dans leur ensemble et a 1,, a p sont deux à deux premiers entre eux? Solution 7.6 On vérifie immédiatement que la réponse est négative en considérant le triplet (2, 3, 8). Théorème 7.4 Soient (a, b) Z 2 {(0, 0)} et δ = a b. Il existe deux entiers p et q premiers entre eux tels que a = δp et b = δq. Démonstration. Comme δ divise a et b il existe deux entiers p et q tels que a = δp et b = δq. Le pgcd δ = p q est un diviseur de p et q, donc l entier naturel δδ divise a = δp et b = δq et nécessairement δδ δ, soit δ (1 δ ) 0 avec δ > 0. On a donc δ 1. Mais δ est supérieur ou égal à 1 comme tout pgcd qui se respecte. En définitive, on a δ = 1, c est-à-dire que p et q sont premiers entre eux. De manière plus générale, on a le résultat suivant.

Nombres premiers entre eux. Les théorèmes de Bézout et de Gauss 149 Théorème 7.5 Soient a 1,, a p des entiers relatifs non tous nuls. et δ = a 1 a 2 a p. Il existe des entiers a 1,, a p premiers entre eux dans leur ensemble tels que a k = δa k pour tout k compris entre 1 et p. Démonstration. Analogue au cas où p = 2. Exercice 7.7 Déterminer tous les couples (a, b) d entiers naturels non nuls tels que a b = 3 et a + b = 12. Solution 7.7 On a a = 3p, et b = 3q où p, q sont des entiers naturels non nuls premiers entre eux et a + b = 12 équivaut à p + q = 4. Réciproquement si a = 3p, b = 3q où p, q sont des entiers naturels non nuls premiers entre eux tels que p + q = 4, alors a b = 3 et a + b = 12. Les seuls couples (p, q) possibles sont (1, 3) et (3, 1). Donc (a, b) = (3, 9) ou (a, b) = (9, 3). Exercice 7.8 Soient a, n deux entiers naturels non nuls. Montrer que : (a + 1) n 1 a Solution 7.8 On remarque d abord que : a = a n. n 1 (a + 1) n 1 = a (a + 1) k est divisible par a, donc (a + 1)n 1 est un entier. a Soit δ = (a + 1)n 1 a. Pour tout k 0, on a : a k=0 (a + 1) k 1 (mod a) (pour k = 0, c est clair et pour k 1, on utilise la formule du binôme) et donc : b = (a + 1)n 1 a n 1 = (a + 1) k n (mod a) k=0 de sorte que δ qui divise a et b divise aussi n = b pa (p Z). Il en résulte que δ divise δ = a n. Comme δ divise a et n, il divise aussi b = n + pa et en conséquence δ divise δ. On a donc bien δ = δ. Exercice 7.9 On se donne un entier naturel a 2 et on définit la suite (u n ) n N par : n N, u n = a 2n + 1. 1. Montrer que : 2. Montrer que : n N, u n+1 = (u n 1) 2 + 1. n n N, u n+1 = (a 1) u k + 2. k=0

150 pgcd, ppcm dans Z, théorème de Bézout. Applications 3. Montrer que, pour n m dans N, on a : { 1 si a est pair u n u m = 2 si a est impair 4. Calculer u p n u p m pour n m dans N et p dans N. Solution 7.9 1. On a : 2. On procède par récurrence sur n 0. Pour n = 0, on a : u n+1 = a 2n+1 + 1 = ( a 2n) 2 + 1 = (un 1) 2 + 1. u 1 = a 2 + 1 = ( a 2 1 ) + 2 = (a 1) u 0 + 2. En supposant le résultat acquis pour n 1 0, on a : 3. Supposons que m > n. On a : n 1 u n+1 = u n (u n 2) + 2 = u n (a 1) u k + 2 = (a 1) k=0 m 1 m 1 u m = (a 1) u k + 2 = (a 1) u n k=0 k=0 k n n u k + 2. k=0 u k + 2 = qu n + 2 Le pgcd de u n et u m divise alors 2 et il vaut 2 ou 1. Si a est pair, alors u n est impair et δ = 1 puisqu il divise u n, ce qui signifie que u n et u n sont premiers entre eux (pour a = 2, c est le cas des nombres de Fermat). Si a est impair, alors tous les u n sont pairs et δ vaut 2. 4. En utilisant le résultat de l exercice 8.5, on a : { u p n u p m = (u n u m ) p 1 si a est pair = 2 p si a est impair Théorème 7.6 (Bézout) Deux entiers relatifs a et b non tous deux nuls sont premiers entre eux si et seulement si il existe deux entiers relatifs u et v tels que au + bv = 1. Démonstration. On sait déjà, par définition, que la condition est nécessaire. Réciproquement s il existe deux entiers relatifs u et v tels que au + bv = 1 alors δ = a b est un entier naturel qui divise a et b, il divise donc 1 = au + bv et δ = 1, c est-à-dire que a et b sont premiers entre eux. Remarque 7.1 La relation de Bézout au + bv = 1 implique que u et v sont aussi premiers entre eux. On a aussi a b = a b = a b = a b = 1. Ce théorème peut se généraliser comme suit.

Nombres premiers entre eux. Les théorèmes de Bézout et de Gauss 151 Théorème 7.7 (Bézout) Des entiers relatifs a 1, a 2,, a p non tous nuls sont premiers entre eux dans leur ensemble si et seulement si il existe deux entiers relatifs u 1, u 2,, u p tels que p u k a k = 1. Démonstration. On sait déjà, par définition, que la condition est nécessaire. p Réciproquement s il existe deux entiers relatifs u 1, u 2,, u p tels que u k a k δ = a 1 a 2 a p est un entier naturel qui divise tous les a k, il divise donc 1 = δ = 1, c est-à-dire que a 1, a 2,, a p sont premiers entre eux dans leur ensemble. = 1 alors p u k a k et Corollaire 7.1 Soient a, b, c des entiers relatifs non nuls. Si c est premier avec a alors a b = a (bc) (le pgcd de deux entiers est inchangé si on multiplie l un d eux par un nombre premier avec l autre). Démonstration. Soient δ = a b et δ = a (bc). Comme δ divise a et b, il divise a et bc ainsi que leur pgcd δ. De au + cv = 1, on déduit que abu + bcv = b et δ qui divise a et bc va diviser a et b ainsi que leur pgcd δ. On a donc δ = δ. Corollaire 7.2 Soient a 1, a 2,, a p et c des entiers relatifs non nuls. Si c est premier avec p chacun des a k, pour k compris entre 1 et p, il est alors premier avec leur produit a k. Démonstration. En utilisant le corollaire précédent, on a : ( ) p p p c a k = c a k = c puisque a 1 est premier avec c et par récurrence finie, on déduit que : c p a k = c a 1 p a k = c k=2 k=2 k=2 a k p a k = = c a p = 1 puisque chaque a k, pour k compris entre 1 et p, est premier avec c. Une conséquence importante du théorème de Bézout est le résultat suivant. Théorème 7.8 (Gauss) Soient a, b, c des entiers relatifs non nuls. Si a divise bc et a est premier avec b alors a divise c. Démonstration. Comme a et b sont premiers entre eux, il existe deux entiers u, v tels que au + bv = 1 et pour tout entier c, on a acu + bcv = c, de sorte que si a divise bc, il va diviser c = acu + bcv. Ce résultat peut être utilisé pour donner une unique représentation des nombres rationnels non nuls. k=3 Corollaire 7.3 Tout nombre rationnel non nul r s écrit de manière unique r = p q et q N premiers entre eux. avec p Z

152 pgcd, ppcm dans Z, théorème de Bézout. Applications Démonstration. Un nombre rationnel non nul r s écrit r = a b avec (a, b) dans Z N. En notant δ = a b on a a = δp, b = δq et r = p q avec p et q premiers entre eux. Si r = p q = p q avec (p, q), (p, q ) dans Z N tels que p q = p q = 1, on a alors pq = p q avec q premier avec p et q qui divise pq, donc q divise q d après le théorème de Gauss. De manière analogue, on voit que q divise q. On a donc q = q (q, q sont des entiers naturels non nuls) et p = p. L écriture est donc unique. Corollaire 7.4 Si un entier relatif non nul n est divisible par des entiers a 1, a 2,, a p deux à deux premiers entre eux, il est alors divisible par leur produit. Démonstration. On procède par récurrence sur p 2. Supposons que n soit divisible par a 1 et a 2 premiers entre eux. On a alors n = a 1 q 1 et a 2 divise n en étant premier avec a 2, il va donc diviser q 1 (théorème de Gauss), c est-à-dire que q 1 = q 2 a 2 et n = a 1 a 2 q 2 est divisible par a 1 a 2. En supposons le résultat acquis au rang p 1 2, soient a 1, a 2,, a p deux à deux premiers entre eux qui divisent n. L hypothèse de récurrence nous dit que n est divisible par a = p 1 a k. Comme a p est premier avec chacun des a k, pour k compris entre 1 et p 1, il est premier avec leur produit a (corollaire 7.2) et n qui est divisible par a et a p est aussi divisible par leur produit p a k. 7.3 L algorithme d Euclide Le lemme qui suit permet de déduire du théorème de division euclidienne un algorithme de calcul du pgcd de deux entiers positifs. C est l algorithme d Euclide. Cet algorithme permet également de déterminer des entiers u et v tels que au + bv = a b. Théorème 7.9 Soient a, b deux entiers naturels non nuls et r le reste dans la division euclidienne de a par b. On a alors a b = b r. Démonstration. Par division euclidienne, on a a = bq + r avec 0 r < b. L entier naturel δ = a b qui est un diviseur commun à a et b va diviser r = a bq, c est donc un diviseur commun à b et r et δ δ = b r. L entier naturel δ = b r qui est un diviseur commun à b et r va diviser a = bq + r, c est donc un diviseur commun à a et b et δ δ. On a donc bien δ = δ. Le principe de l algorithme d Euclide est le suivant pour a > b dans N (par symétrie, on peut supposer que a b et pour a = b, on a a a = a). On note r 0 = b et on désigne par r 1 le reste dans la division euclidienne de a par b. On a alors 0 r 1 < r 0 et d après le lemme précédent : a b = r 0 r 1. Si r 1 = 0 alors r 0 r 1 = r 0 = b et c est terminé. Si r 1 0 on désigne alors par r 2 le reste dans la division euclidienne de r 0 par r 1 et on a 0 r 2 < r 1 et : a b = r 0 r 1 = r 1 r 2. Si r 2 = 0 alors r 1 r 2 = r 1 et c est terminé. Sinon on continu. On définit donc ainsi une suite d entiers (r n ) n 0 par :

L algorithme d Euclide 153 r 0 = b ; r 1 est le reste dans la division euclidienne de a par b ; on a donc 0 r 1 < b ; pour n 2, si r n 1 = 0 alors r n = 0 et sinon r n est le reste dans la division euclidienne de r n 2 par r n 1 et on a 0 r n < r n 1. Dans tous les cas on r n r n 1 l égalité étant réalisée si et seulement si les deux termes sont nuls. La suite (r n ) n 1 ainsi construite est donc une suite décroissante d entiers positifs, elle est donc stationnaire à partir d un certain rang. Précisément il existe un entier p 1 tel que r p = 0 < r p 1 < < r 1 < r 0 et : a b = r 0 r 1 = = r p 1 r p = r p 1. C est à dire que a b est le dernier reste non nul dans cette suite de divisions euclidiennes. Par exemple pour calculer le pgcd de a = 128 et b = 28, on procède comme suit : a = 128 = 4 28 + 16 = q 1 r 0 + r 1 r 0 = 28 = 1 16 + 12 = q 2 r 1 + r 2 r 1 = 16 = 1 12 + 4 = q 3 r 2 + r 3 (7.1) r 2 = 12 = 3 4 + 0 = q 4 r 3 + r 4 r 4 = 0, r 3 = 4 = 128 28 On peut utiliser un tableau pour effectuer la suite des calculs. Sur la deuxième ligne, on place d abord a et b, puis sur la première ligne on place au dessus de b le quotient q 1 et sur la troisième ligne, on place au dessous de a le reste r 1, ce même reste r 1 étant aussi placé en deuxième ligne après b. On recommence alors avec le couple (b, r 1 ). Sur la première ligne apparaissent les quotients successifs sur la troisième les restes successifs. Le dernier reste non nul, qui apparaît en fin de deuxième ligne, donne alors le pgcd. q 1 q 2 q 3 q 4 a b r 1 r 2 r 3 r 1 r 2 r 3 r 4 = 0 4 1 1 3 128 28 16 12 4 16 12 4 r 4 = 0 On a donc construit, avec l algorithme d Euclide, deux suites d entiers (r n ) 0 n p et (q n ) 1 n p de la manière suivante : a = q 1 r 0 + r 1 (0 < r 1 < r 0 = b) r 0 = q 2 r 1 + r 2 (0 < r 2 < r 1 ) r 1 = q 3 r 2 + r 3 (0 < r 3 < r 2 ). r p 3 = q p 1 r p 2 + r p 1 (0 < r p 1 < r p 2 ) r p 2 = q p r p 1 + r p (r p = 0) On vérifie alors, par récurrence finie sur n {0, 1,, p 1}, qu il existe des entiers u n et v n tels que r n = au n + bv n. Pour n = 0 et n = 1 on a : r 0 = b = a 0 + b 1, r 1 = a 1 + b ( q 1 ). En supposant le résultat acquis jusqu à l ordre n 1 pour 0 n 1 p 2 on a : r n = q n r n 1 + r n 2 = q n (au n 1 + bv n 1 ) + au n 2 + bv n 2 = a (u n 2 q n u n 1 ) + b (v n 2 q n v n 1 ) = au n + bv n.

154 pgcd, ppcm dans Z, théorème de Bézout. Applications En particulier pour n = p 1 on a a b = r p 1 = au p 1 + bv p 1 = au + bv. Un tel couple d entiers (u, v) n est pas unique puisque si (u, v) est une solution, pour tout entier λ, le couple (u, v ) = (u + λv, v λa) est aussi solution. On a en effet : a (u + λb) + b (v λa) = au + bv = a b. Une équation dans Z de la forme au + bv = δ, où a, b, δ sont donnés et u, v sont les inconnues est une équation diophantienne. Ce type d équation est étudié plus en détails au paragraphe 7.5.1. Les suites (r n ) 0 n p 1 (u n ) 0 n p 1 et (v n ) 0 n p 1 vérifient la même relation de récurrence : avec les conditions initiales : x n = x n 2 q n x n 1 (2 n p 1) (r 0, r 1 ) = (b, 1), (u 0, u 1 ) = (0, 1), (v 0, v 1 ) = (1, q 1 ) où q 1, r 1 sont, respectivement, le quotient et le reste dans la division euclidienne de a par b. On peut donner une interprétation matricielle de ces calculs comme suit. On a : ( ) ( ) ( ) xn qn 1 xn 1 = (2 n p 1) 1 0 et : ( xp 1 x p 2 x n 1 x n 2 ) ( ) ( qp 1 1 qp 2 1 = 1 0 1 0 ( ) x1 = A p 1. x 0 Pour l exemple précédent, la suite de calculs (7.1) donne : ) ( q2 1 1 0 p 1 = 3, (q 1, q 2, q 3 ) = (4, 1, 1) ) ( x1 x 0 ) et : ( ) ( q3 1 q2 1 A 3 = 1 0 1 0 ( ) 2 1 = 1 1 ) = ( 1 1 1 0 ) ( 1 1 1 0 ) d où : ( u3 u 2 ( v3 v 2 ) ( ) ( ) ( ) ( ) u1 2 1 1 2 = A 3 = =, u 0 1 1 0 1 ) ( ) ( ) ( ) ( ) 2 1 q1 2 1 4 = = = 1 1 1 1 1 1 ( 9 5 ) soit (u, v) = (u 3, v 3 ) = (2, 9). Si on veut se passer du calcul matriciel, on peut procéder comme suit. Les divisions successives : a = q 1 r 0 + r 1 r 0 = q 2 r 1 + r 2 r 1 = q 3 r 2 + r 3 r 2 = q 4 r 3

Plus petit commun multiple 155 donne : a b = r 3 = r 1 q 3 r 2 = r 1 q 3 (r 0 q 2 r 1 ) = r 1 (1 + q 3 q 2 ) q 3 r 0 = (a q 1 r 0 ) (1 + q 3 q 2 ) q 3 r 0 = (a q 1 b) (1 + q 3 q 2 ) q 3 b = au + bv (on commence par la fin), soit pour les valeurs particulières 128 et 28 : 128 = 4 28 + 16 28 = 1 16 + 12 16 = 1 12 + 4 12 = 3 4 qui donne : 128 28 = 4 = 16 12 = 16 (28 16) = 2 16 28 = 2 (128 4 28) 28 = 2 128 9 28 = ua + vb 7.4 Plus petit commun multiple La caractérisation des sous-groupes de (Z, +) peut aussi être utilisée pour définir le ppcm de deux ou plusieurs entiers relatifs, non tous nuls. Théorème 7.10 Soient a, b sont deux entiers relatifs. Il existe un unique entier naturel µ tel que : az bz = µz. Si a = 0 ou b = 0, alors µ = 0. Si a 0 et b 0, alors µ est le plus petit entier naturel non nul multiple de a et de b. Démonstration. az bz étant un sous groupe de (Z, +), l existence et l unicité de µ se déduit du théorème 6.5. Si a = 0 ou b = 0, on a µz 0Z = {0} et µ = 0. Si a 0 et b 0, de µz az et µz bz, on déduit que µ est multiple de a et b. Si m N est un multiple commun à a et b, il est dans az bz = µz et c est donc un multiple de µ, ce qui implique m µ. Donc, µ est bien le plus petit entier naturel non nul multiple de a et de b. On peut donc donner la définition qui suit. Définition 7.4 Soient a, b deux entiers relatifs. On appelle plus petit commun multiple de a et b le plus petit entier naturel multiple de a et b. On le note ppcm (a, b) ou a b. Remarque 7.2 La définition de ppcm (a, b) peut aussi se justifier directement sans référence directe aux sous-groupes de Z. Pour ce faire, on utilise l ensemble az bz des multiples communs à a et b. Si a 0 et b 0, alors l ensemble az bz N des multiples communs à a et b qui sont strictement positifs est non vide car il contient ab, il admet donc un plus petit élément µ qui est bien plus petit commun multiple de a et b. Pour a = 0 ou b = 0, on a az bz = {0} et µ = 0.

156 pgcd, ppcm dans Z, théorème de Bézout. Applications Remarque 7.3 Le ppcm de a et b est aussi le plus petit élément pour l ordre de la division dans Z de l ensemble az bz N des multiples communs à a et b qui sont strictement positifs. En effet, a b est un multiple de a et b et tout multiple commun m à a et b qui est dans az bz N = µz est un multiple de a b. On vérifie facilement les propriétés suivantes. Théorème 7.11 La fonction ppcm vérifie les propriétés suivantes : (a, b) (Z ) 2, a b N ; a Z, a 1 = a a = a ; (a, b) Z 2, a b = a b = a b = a b ; (a, b) Z 2, a b = b a (commutativité du ppcm) ; pour b Z et a Z, on a a b = b si, et seulement si, b est multiple de a ; (a, b, c) Z 3, (ac) (bc) = c (b a) ; si d Z est un diviseur commun de a et b, alors a d b d = a b ; d pour a, b, c non tous nuls dans Z, on a a (b c) = (a b) c (associativité du ppcm). Démonstration. Laissée au lecteur. On définit de manière analogue le ppcm d une famille a 1,, a p formée de p entiers non tous nuls comme le plus petit des multiples communs à a 1,, a p. On le note ppcm (a 1,, a p ) ou a 1 a 2 a p et c est un entier supérieur ou égal à 1. Cette définition est justifiée par le théorème suivant. Théorème 7.12 Soient a 1,, a p des entiers relatifs non tous nuls. Il existe un unique entier naturel µ tel que : a 1 Z a p Z = µz. µ est le plus petit entier naturel divisible par a 1, a 2, et a p. Démonstration. Analogue au cas où p = 2. La notation a 1 a 2 a p ne pose pas de problème du fait de la commutativité et l associativité du ppcm (elle est indépendante de l ordre des a k ). Comme dans le cas où p = 2, on vérifie que a 1 a p est aussi le plus petit élément pour l ordre de la division dans N de l ensemble des multiples positifs communs à a 1,, a p. Lemme 7.1 Soient a, b deux entiers relatifs premiers entre eux. On a alors : a b = ab. Démonstration. Du fait que ab est un multiple de a et b on déduit que µ = a b divise ab. D autre part il existe deux entiers k, k tels que µ = ka = k b et comme a est premier avec b et divise k b, il divise k (théorème de Gauss). Ce qui donne µ = k ab et ab divise µ. D où l égalité µ = ab. Nous verrons que la réciproque du résultat précédent est vraie. Théorème 7.13 Soient a, b deux entiers relatifs. On a alors : (a b) (a b) = ab.

Plus petit commun multiple 157 Démonstration. On note δ = a b et on a a = δa, b = δb avec a et b premiers entre eux. Ce qui donne : µ = a b = (δa ) (δb ) = δ (a b ) = δa b et δµ = δa δb = ab. Du lemme et du théorème précédent, on déduit que : a b = 1 a b = ab. On a donc pour a, b dans Z a b = ab a b. On peut donc définir de manière naturelle le ppcm de deux entiers relatifs non tous deux nuls par : a b = ab a b. On peut aussi utiliser cette relation pour calculer le ppcm de deux entiers. On calcule d abord le pgcd en utilisant l algorithme d Euclide, puis on divise ab par ce pgcd. Exercice 7.10 Montrer que si a 1,, a p sont des entiers relatifs non nuls deux à deux premiers entre eux alors a 1 a p = a 1 a p. Ce résultat est-il encore valable si on suppose que a 1,, a p sont premiers entre eux dans leur ensemble. Solution 7.10 On sait déjà que si a 1 et a 2 sont premiers entre eux alors a 1 a 2 = a 1 a 2. Supposons le résultat acquis pour p 1 2 et soient a 1,, a p deux à deux premiers entre eux. Les entiers a 1 a p 1 et a p sont alors premiers entre eux (corollaire 7.2) et en utilisant l associativité du ppcm, on a : a 1 a p = (a 1 a p 1 ) a p = a 1 a p 1 a p = a 1 a p. Ce résultat n est plus valable si on suppose seulement que les a k sont premiers entre eux dans leur ensemble comme le montre l exemple suivant : 2 3 4 = 12 2 3 4 = 24 Exercice 7.11 A-t-on (a 1 a p ) (a 1 a p ) = a 1 a p dans Z? Solution 7.11 La réponse est non pour n 3 comme le montre l exercice précédent. Exercice 7.12 Peut-on trouver des entiers a, b tels que a b = 7 et a b = 36. Solution 7.12 Comme a b = 7 divise a et b, il divise a b et a b = 36 est alors impossible. Exercice 7.13 Déterminer tous les couples (a, b) d entiers naturels non nuls tels que a b = 3 et a b = 12. Solution 7.13 De a b = 12 on déduit que a, b sont des diviseurs de 12 donc dans {1, 2, 3, 4, 6, 12}. de a b = 3, on déduit que a et b sont multiples de 3, donc dans {3, 6, 12}. De ab = (a b) (a b) = 36, on déduit que : a = 3 [resp. b = 3] donne b = 12 [resp. a = 12] et (3, 12), (12, 3) sont deux solutions possibles ; a = 6 [resp. b = 6] donne b = 6 [resp. a = 6] et a b = 6 3.

158 pgcd, ppcm dans Z, théorème de Bézout. Applications En définitive, (a, b) {(3, 12), (12, 3)}. Exercice 7.14 On se propose de montrer que pour tout entier naturel n 2, on a : 1. Montrer le résultat pour n = 2 et n = 3. 2. Pour tout entier naturel n, on, note : (a) Montrer que : µ n = ppcm (1, 2,, n) 2 n 2. I n = 1 0 x n (1 x) n dx. n N, 0 < I n 1 4 n. (b) Montrer que, pour tout n N, il existe un entier naturel non nul a n tel que I n = a n µ 2n+1. (c) En déduire que : n N, µ 2n+1 2 2n. (d) En déduire le résultat annoncé (On peut en fait montrer que µ n 2 n pour tout n 7). Solution 7.14 1. On a : 2. µ 2 = ppcm (1, 2) = 2 1 et µ 3 = ppcm (1, 2, 3) = 6 2. (a) Pour 0 < x < 1, on a 0 < x (x 1) sup x (1 x) = 1, ce qui donne le résultat. [0,1] 4 (b) On a : I n = 1 ( n ) x n Cn k ( 1) k x k dx k=0 n 1 = Cn k ( 1) k x n+k dx 0 k=0 = n k=0 et en réduisant au même dénominateur I n = (c) On a alors µ 2n+1 I n = a n 1 et : (d) Pour n N, on a : C k n µ 2n+1 1 I n 4 n = 2 2n. 0 ( 1) k n + k + 1 a n µ 2n+1, où a n N. µ 2n+2 = µ 2n+1 (2n + 2) 2 2n. On a donc montré que µ n 2 n 2 pour tout n 4. On peut en fait montrer que µ n 2 n pour tout n 7.

Applications 159 7.5 Applications Les théorème de Bézout, de Gauss et l algorithme d Euclide peuvent être utilisés pour étudier les équations diophantiennes ax + by = c ou ax b (n). 7.5.1 Équations diophantiennes ax + by = c Soient a, b, c trois entiers relatifs, avec a et b non nuls. On s intéresse ici à l équation diophantienne dans Z 2 : ax + by = c (7.2) En notant δ le pgcd de a et b, on a a = δa, b = δb avec a et b premiers entre eux. Lemme 7.2 L équation diophantienne (7.2) a des solutions entières si, et seulement si, δ divise c. Démonstration. Si c n est pas un multiple de δ, comme δ divise ax + by pour tous entiers x, y, l équation (7.2) n a pas de solutions. Si c = δc est un multiple de δ, en écrivant que δ = au 0 + bv 0 avec u 0, v 0 dans Z (théorème de Bézout) on déduit que (x 0, y 0 ) = (u 0 c, v 0 c ) est une solution de (7.2). Théorème 7.14 Si c est multiple de δ, alors l ensemble des solutions de (7.2) est : où (x 0, y 0 ) est une solution particulière. S = {(x 0 kb, y 0 + ka ) k Z} Démonstration. Si (x, y) est une solution de (7.2), on a alors : { ax0 + by 0 = c, ax + by = c, ce qui donne par soustraction : et divisant par δ, on obtient : a (x 0 x) = b (y y 0 ) a (x 0 x) = b (y y 0 ). Avec le théorème de Gauss on en déduit alors que a divise y y 0. On a donc y y 0 = ka avec k Z, ce qui entraîne a (x 0 x) = b ka et x 0 x = kb. En définitive on a : (x, y) = (x 0 kb, y 0 + ka ) avec k Z. Réciproquement on vérifie que pour tout k Z, (x 0 kb, y 0 + ka ) est bien solution de (7.2). En effet on a : ax + by = ax 0 + by 0 + k (a b ab ) = c + kδ (a b a b ) = c. L algorithme d Euclide nous permet d obtenir une solution particulière (x 0, y 0 ) = ( c u 0 δ, v 0 c δ ).

160 pgcd, ppcm dans Z, théorème de Bézout. Applications Exemple 7.1 Soit à résoudre l équation : 370x + 45y = 15. Le pgcd de 370 et 45 est égal à 5 qui divise 15. On cherche tout d abord une solution particulière de 74x + 9y = 1. En utilisant l algorithme d Euclide, on a : et donc : 74 = 8 9 + 2 9 = 4 2 + 1 1 = 9 4 2 = 9 4 (74 8 9) = 74 ( 4) + 9 33 Le couple ( 12, 99) est solution de 74x + 9y = 3 et de 370x + 45y = 15. D un point de vue géométrique l ensemble des solutions de (7.2) est formé de la suite de points de Z 2 définie par : ( ) x0 M 0 =, x 0 ( ) b M k = M 0 + k, k Z. Les points M k sont sur la droite passant par M 0 et dirigée par le vecteur v = ( b a ou encore par le vecteur colinéaire v = ( ) a u =. b a ( b ). Ces vecteurs sont orthogonaux au vecteur a ) Exercice 7.15 Résoudre dans Z 2 l équation diophantienne : 128x + 28y = 8. Solution 7.15 En notant (a, b) = (128, 28), c = 8 et δ = a b, on a vu au paragraphe précédent que : δ = 4 = 2 128 9 28 = au 0 + bv 0 ( c et (x 0, y 0 ) = u 0 δ, v c ) 0 = (4, 18) est une solution particulière de notre équations. Toutes les δ solutions étant données par : où k décrit Z. (x, y) = (x 0 kb, y 0 + ka ) = (4 7k, 18 + 32k)

Applications 161 7.5.2 Équations ax b (n) Voir le paragraphe 9.8.2. Soient n un entier supérieur ou égal à 2, a un entier supérieur ou égal à 1 et b un entier relatif. On veut résoudre dans Z l équation diophantienne : On s intéresse tout d abord au cas où b = 1. ax b (n) (7.3) Lemme 7.3 Soient n un entier supérieur ou égal à 2, a un entier supérieur ou égal à 1. L équation ax 1 (n) (7.4) a des solutions dans Z si et seulement si a est premier avec n. Démonstration. Le théorème de Bézout nous dit que a est premier avec n si, et seulement si, il existe des entiers relatifs x et k tels que ax kn = 1, ce qui équivaut à dire que x Z est solution de (7.4). Si a et n sont premiers entre eux alors l algorithme d Euclide nous permet de trouver une solution x 0 Z de (7.4). Et pour tout autre solution x Z l entier a (x x 0 ) est divisible par n. Comme n est premier avec a, le théorème de Gauss nous dit que nécessairement n divise x x 0. Il est clair que réciproquement pour tout k Z, x 0 + kn est solution de (7.4). En définitive, l ensemble des solutions de (7.4) est : où x 0 est une solution particulière de (7.4). S = {x 0 + kn k Z} Remarque 7.4 Si a et n sont premiers entre eux alors il existe une unique solution de (7.4) dans {1,, n 1}. En effet, si S est l ensemble des solutions de (7.4) alors S N est non vide et donc admet un plus petit élément x > 0. Si x n on a alors x = qn + r avec q 1 et 0 r < n. Comme ar ax 1 modulo n, on a r S N et nécessairement r = 0. Mais x = qn entraîne ax 0 modulo n en contradiction avec x S. On a donc x < n. On s intéresse maintenant au cas où les entiers a et n sont premiers entre eux et b est un entier relatif. Dans ce cas on peut trouver une solution x 0 de l équation (7.4) et pour tout entier relatif k, x = bx 0 + kn est solution de (7.3). Réciproquement si x est solution de (7.3) alors a (x bx 0 ) est divisible par n avec n premier avec a. Le théorème de Gauss nous dit alors que x bx 0 est divisible par n. En définitive, pour a et n premiers entre eux, l ensemble des solutions de (7.3) est : S = {bx 0 + kn k Z} où x 0 est une solution particulière de (7.3). Considérons maintenant le cas où δ = a n n est pas nécessairement égal à 1 et b est un entier relatif. On a alors a = δa, n = δn et si l équation (7.3) admet une solution x Z alors δn divise δa b, donc δ divise δa b et δ divise b. En conclusion si b n est pas un multiple de δ alors l équation (7.3) n a pas de solution dans Z. On suppose donc que b est un multiple de δ, soit b = δb. Si x Z est solution de (7.3) alors x est solution de : a x b (n )

162 pgcd, ppcm dans Z, théorème de Bézout. Applications avec a et n premiers entre eux. On sait alors que x est de la forme x = b x 0 + kn où x 0 est une solution de a x 1 modulo n et k est un entier relatif. Réciproquement on peut vérifier que pour tout entier k Z, x = b x 0 + kn est solution de (7.3). En effet on a : ax = a x 0δb + a kδn = (1 + k n ) δb + a kn = b + n (k b + ka ) b (n). En définitive, si b = δb où δ = a n, alors l ensemble des solutions de (7.3) est : S = {b x 0 + kn k Z} où x 0 est une solution particulière de a x 1 modulo n, où a = δa, n = δn. 7.5.3 Le théorème Chinois Voir le paragraphe 9.8.3. 7.5.4 Éléments inversibles de Z n = Z nz Théorème 7.15 Soit a un entier relatif. Les propriétés suivantes sont équivalentes : 1. a est inversible dans Z n ; 2. a est premier avec n ; 3. a est un générateur de (Z n, +). Démonstration. Voir le théorème 9.5 (on utilise le théorème de Bézout). 7.5.5 Générateurs d un groupe cyclique Théorème 7.16 Soit G = g un groupe cyclique d ordre n. Les générateurs de G sont les g k, où k est un entier compris entre 1 et n 1 premier avec n Démonstration. Voir le théorème 2.5 (on utilise le théorème de Bézout). 7.5.6 n est irrationnel si n est sans facteurs carrés Théorème 7.17 Si n 2 est un entier sans facteur carré, n est alors irrationnel. Démonstration. Voir l exercice 8.15 (on utilise le théorème de Gauss). 7.5.7 Le théorème de Fermat pour n = 2 et n = 4 On s intéresse aux solutions dans N 3 de l équation de Fermat : x n + y n = z n pour n = 2 et n = 4.

Applications 163 Théorème 7.18 Les solutions dans N 3 de l équation de Fermat : sont les triplets d entiers naturels de la forme : ou : où δ N et n, m sont premiers entre eux. x 2 + y 2 = z 2 (7.5) (x, y, z) = ( 2δnm, δ ( n 2 m 2), δ ( n 2 + m 2)) (x, y, z) = ( δ ( n 2 m 2), 2δnm, δ ( n 2 + m 2)) Démonstration. Soit (x, y, z) une solution de (7.5). Si (x, y) = (0, 0), on a alors z = 0. On suppose que (x, y) (0, 0) et on note δ 1 = x y, δ 2 = y z et δ 3 = x z. On a δ 1 0 puisque (x, y) (0, 0) et avec a 2 b 2 = (a b) 2 (exercice 8.5) et a b = a (a + b) (exercice 7.4), on déduit que : et : δ 2 3 = x 2 z 2 = x 2 ( x 2 + y 2) = x 2 y 2 = δ 2 1 δ 2 2 = y 2 z 2 = y 2 ( x 2 + y 2) = y 2 x 2 = δ 2 1 ce qui donne δ 1 = δ 2 = δ 3 puisque tous ces entiers sont positifs. En notant δ ce pgcd commun, on peut alors écrire x = δx, y = δy, z = δz avec x, y, z deux à deux premiers entre eux et l équation (7.5) avec δ 0 nous donne (x ) 2 + (y ) 2 = (z ) 2. Les entiers x, y sont alors nécessairement de parités différentes. En effet : si x et y sont impairs, (z ) 2 est pair, donc z est pair et (z ) 2 0 mod (4) est incompatible avec (x ) 2 + (y ) 2 2 mod (4) ; et comme x, y sont premiers entre eux, ils ne peuvent être tous deux pairs. Comme x et y jouent des rôles symétriques, on peut supposer que x est pair et y impair, soit x = 2a, y = 2b + 1 et : (z ) 2 = 4a 2 + (2b + 1) 2 ce qui impose z impair. On définit donc des entiers en notant u = y + z, v = z y et on a y = u v, z = u + v. 2 2 Le pgcd de u et v divisant y et z divise aussi leur pgcd qui vaut 1, donc u v = 1. On a alors : uv = (z ) 2 (y ) 2 = (x ) 2 = a 2 4 4 les entiers u et v étant premiers entre eux, ce qui impose que ces entiers sont des carrés. En effet, si u n est pas un carré, il est différent de 1 et sa décomposition en facteurs premiers nous donne u = p 2α+1 q avec p premier ne divisant ni q ni v (u et v sont premiers entre eux), ce qui donne a 2 = p 2α+1 r avec p ne divisant pas r, ce qui est impossible. On a donc u = n 2 et v = m 2 avec n, m premiers entre eux puisque 1 = n 2 m 2 = (n m) 2. On a donc : y = u v = n 2 m 2, z = u + v = n 2 + m 2, (x ) 2 = 4a 2 = 4uv = 4n 2 m 2 avec x 0, ce qui donne : x = 2nm, y = n 2 m 2, z = n 2 + m 2

164 pgcd, ppcm dans Z, théorème de Bézout. Applications où n, m sont des entiers naturels premiers entre eux et : Pour x impair et y pair, on obtient : (x, y, z) = ( 2δnm, δ ( n 2 m 2), δ ( n 2 + m 2)) (x, y, z) = ( δ ( n 2 m 2), 2δnm, δ ( n 2 + m 2)) Réciproquement, on vérifie facilement que ces triplets d entiers naturels sont bien solutions de notre équation. En effet, on a : et δ = 0 nous donne la solution triviale. 4δ 2 n 2 m 2 + δ 2 ( n 2 m 2) 2 = δ 2 ( n 2 + m 2) 2 Théorème 7.19 L équation : n a pas de solution dans (N ) 3. x 4 + y 4 = z 4 (7.6) Démonstration. Il suffit de montrer que l équation : x 4 + y 4 = z 2 (7.7) n a pas de solution dans (N ) 3. S il existe des solutions dans (N ) 3, on en choisit une telle que z soit minimal dans N. Dans ces conditions les entiers x, y, z sont deux à deux premiers entre eux. En effet, s il existe un diviseur premier p de x et y [resp. de x et z, ou ( de y et z], p 4 va diviser x z 2 [resp. p 2 va diviser y 4, ou x 4 ] donc p va diviser z [resp. y ou x] et p, y p, z ) est une autre p 2 solution avec 1 z < z, ce qui contredit le caractère minimal de z. p2 En reprenant la démonstration du théorème précédent, on peut supposer x pair (x et y jouent des rôles symétriques) et il existe des entiers naturels non nuls u, v premiers entre eux tels que : ( x 2, y 2, z ) = ( 2uv, u 2 v 2, u 2 + v 2) Si u est pair, v est nécessairement impair et y 2 = u 2 v 2 1 mod (4), ce qui est impossible puisqu un est congru à 0 ou 1 modulo 4. On a donc u impair et v pair. Comme (u, v, y) est solution de v 2 + y 2 = u 2 avec u, v, y deux à deux premiers entre eux (u v = 1 et u 2 + y 2 = v 2 nous dit qu un diviseur premier de y et v va diviser u et un diviseur premier de y et u va diviser v), il existe des entiers naturels non nuls r, s premiers entre eux tels que : (v, y, u) = ( 2rs, r 2 s 2, r 2 + s 2) ce qui nous donne : ( x 2, y 2, z ) = (4rs ( r 2 + s 2), ( r 2 s 2) 2, ( r 2 + s 2) 2 + 4r 2 s 2 ) En particulier, on a x 2 = 4rs (r 2 + s 2 ) avec r, s, r 2 + s 2 deux à deux premiers entre eux, ce sont donc tous des carrés, c est-à-dire qu il existe des entiers strictement positifs a, b, c tels que r = a 2, s = b 2 et r 2 + s 2 = c 2 et on a a 4 + b 2 = c 2 avec c c 2 = r 2 + s 2 = u < u 2 + v 2 = z, ce qui contredit le caractère minimal de z. D où le résultat annoncé.