Terminle ES
Loi à densité sur un intervlle On considère une expérience létoire et un univers ssocié muni d une proilité. I Vrile létoire continue Définition Une vrile létoire continue X est une fonction qui à chque issue de ssocie un nomre réel d un intervlle I de. Exemple : L vrile létoire égle à l durée de on fonctionnement d un équipement produit en grnde série est une vrile létoire continue. 2
Loi à densité sur un intervlle II Loi de proilité à densité Définition X est une vrile létoire continue à vleurs dns un intervlle I et f est une fonction continue, positive sur I telle que : f t dt = si I = [;] x lim f t dt = si I = [; + [ x + Dire que P est l loi de proilité de densité f de X signifie que pour tout intervlle J inclus dns I, P(X J) est égle à l ire du domine {M(x;y) / x J et 0 y f(x)}. C f C f P( X ) = P(c X d) 3
Loi à densité sur un intervlle Conséquences. Pour tout réel c de I, P(X = c) = 0 c En effet, P(X = c) = P(c X c) = f t dt = 0. c 2. On déduit de () que : P(c X d) = P(c X < d) = P(c < X d) = P(c < X < d) d 3. Si J = [c;d], lors P(X J) = f t dt. c 4. Si I = ]; + [ et si c est un réel tel que c > : c P(X > c) = P( < X < c) = - f t dt. P(X>c) Remrques : Les propriétés des proilités d événements rencontrés dns le cs discret s étendent nturellement u cs continu. Pr exemple : Si J est le complémentire de J dns I, lors P(J ) = P(J); Si I I et P(I ) 0, si J I, lors P I (J) = P(I J) P(I ) 4
L loi uniforme sur [;] III Définition et propriétés Définition et désignent deux nomres réels distincts. Dire qu une vrile létoire X suit l loi uniforme sur l intervlle [;] signifie que l densité de proilité de l loi X est une fonction constnte sur [;]. Propriété L densité de proilité de l loi uniforme sur [;] est l fonction f définie sur [;] pr f(x) =. Démonstrtion f est une fonction constnte sur [;] définie pr f(x) =. On dt =, c est-à-dire [ t] = ; soit ( ) = ; d où =. 5
L loi uniforme sur [;] Propriété X est une vrile létoire qui suit l loi uniforme sur [;]. Pour tout intervlle [c;d] inclus dns [;], P(c X d) = d c. Démonstrtion P(c X d) = d dt = t d d c c = c Remrque Pour l loi uniforme sur [0;] et pour tous réels c et d de [0;] : d c P(c X d) = 0 = d c. Donc l proilité de choisir un nomre u hsrd entre c et d est égle à l longueur de l intervlle [c;d]. 6
L loi uniforme sur [;] IV Espérnce Définition L espérnce d une vrile létoire X de densité f sur [;] est le nomre réel : E(X) = tf t dt Propriété X est une vrile létoire qui suit l loi uniforme sur [;]. Son espérnce est E(X) = + 2. Démonstrtion E(X) = tdt = 2 t² ² ² = 2 = 2 ( )(+) = + 2. 7
Loi normle centrée réduite N(0;) V Une pproche historique X n est une vrile létoire qui suit l loi inomile B(n;p). L vrile létoire centrée et réduite ssociée à X n est Z n = X n np ; son espérnce np( p) est E(Z n ) = 0 et son écrt-type est (Z n ) =. A l loi discrète de Z n on ssocie des ires de rectngles fin d otenir un histogrmme comme ci-contre (cs n = 00 et p = 0,5). Tester l nimtion GeoGer en ligne Plus n est grnd, plus les ords supérieurs des rectngles se rpprochent d une coure régulière et symétrique. Le mthémticien Arhm de Moivre (7 ème siècle) découvert que cette coure représente l fonction : f : x 2π e 2 x² et donc que P( Z n ) tend vers f x dx lorsque n tend vers +. 8
Loi normle centrée réduite N(0;) VI L loi normle centrée réduite Définition Dire qu une vrile létoire T suit l loi normle centrée réduite, notée N(0;),signifie que s densité de proilité est l fonction f définie sur pr f x = 2π e 2 x². Premières propriétés ) f est continue sur. 2) Pour tous nomres réels et, P( T ) = f x dx. 3) L ire totle sous l coure est égle à ; elle représente l proilité P(T ] - ; + [). 4) L coure de f est symétrique pr rpport à l xe des ordonnées, donc P(T ] 0; + [)= 2. On dit que l coure de f est une «coure en cloche». 9
Loi normle centrée réduite N(0;) Premières propriétés 5) Pour tout réel u : P(T -u) = P(T > -u), or pour des risons de symétrie P(T > -u) = P(T u) Donc P(T -u) = P(T u). 6) P(-,96 T,96) 0,95 Environ, 95% des rélistions de T se trouvent entre -,96 et,96. 0
Loi normle N( ; ²) VII Loi normle d espérnce et d écrt-type Définition Dire qu une vrile létoire X suit une loi normle N( ; ²) signifie que l vrile létoire T = X μ σ suit l loi normle N(0;). Propriété Si une vrile létoire suit une loi normle N( ; ²), lors son espérnce est, s vrince est ² et son écrt-type.
Loi normle N( ; ²) VIII Influence des prmètres Coure représenttive de l fonction de densité lorsque = ; elle dmet l droite d éqution x = comme xe de symétrie. Coure représenttive de l fonction de densité lorsque = 2; plus l écrt-type est grnd, plus l coure est élrgie. Tester en ligne une nimtion GeoGer qui fit vrier les prmètres et. 2
Loi normle N( ; ²) IX Les intervlles «un, deux, trois sigms» X μ X est une vrile létoire qui suit N( ; ²) et T = σ suit N(0;). P( - X + ) = P(- T ) 0,68 (vec l clcultrice). Donc P( - X + ) 0,68. De l même fçon, on otient : P( - 2 X + 2 ) 0,95 P( - 3 X + 3 ) 0,997 3