LEÇON N 56 : 56.1 Monotonie de la suite

Documents pareils
EXERCICE 4 (7 points ) (Commun à tous les candidats)

Continuité en un point

Leçon 01 Exercices d'entraînement

Limites finies en un point

Chapitre 2 Le problème de l unicité des solutions

Image d un intervalle par une fonction continue

Continuité et dérivabilité d une fonction

Suites numériques 4. 1 Autres recettes pour calculer les limites

Résolution d équations non linéaires

Commun à tous les candidats

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Cours d Analyse. Fonctions de plusieurs variables

Développements limités. Notion de développement limité

Développement décimal d un réel

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

3 Approximation de solutions d équations

Théorème du point fixe - Théorème de l inversion locale

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Calcul fonctionnel holomorphe dans les algèbres de Banach

Chp. 4. Minimisation d une fonction d une variable

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Continuité d une fonction de plusieurs variables

La fonction exponentielle

Université Paris-Dauphine DUMI2E 1ère année, Applications

Fonctions de plusieurs variables

Chapitre 6. Fonction réelle d une variable réelle

Problème 1 : applications du plan affine

O, i, ) ln x. (ln x)2

3. Conditionnement P (B)

Raisonnement par récurrence Suites numériques

Suites numériques 3. 1 Convergence et limite d une suite

4. Martingales à temps discret

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

CCP PSI Mathématiques 1 : un corrigé

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Amphi 3: Espaces complets - Applications linéaires continues

Rappels sur les suites - Algorithme

Calcul différentiel. Chapitre Différentiabilité

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Moments des variables aléatoires réelles

Cours Fonctions de deux variables

Développements limités, équivalents et calculs de limites

Dualité dans les espaces de Lebesgue et mesures de Radon finies

Construction d un cercle tangent à deux cercles donnés.

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v t

chapitre 4 Nombres de Catalan

IV- Equations, inéquations dans R, Systèmes d équations

EXERCICES - ANALYSE GÉNÉRALE

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

Équations non linéaires

I. Ensemble de définition d'une fonction

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.

Comparaison de fonctions Développements limités. Chapitre 10

Relation d ordre. Manipulation des relations d ordre. Lycée Pierre de Fermat 2012/2013 Feuille d exercices

Intégration et probabilités TD1 Espaces mesurés Corrigé

Calcul différentiel sur R n Première partie

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs

Approximations variationelles des EDP Notes du Cours de M2

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

Complément d information concernant la fiche de concordance

Fonctions homographiques

Optimisation des fonctions de plusieurs variables

Cours d Analyse I et II

BACCALAUREAT GENERAL MATHÉMATIQUES

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

Dérivation : cours. Dérivation dans R

Cours de mathématiques

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

1 Définition et premières propriétés des congruences

Sur certaines séries entières particulières

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

Logique. Plan du chapitre

I. Polynômes de Tchebychev

Chap 4. La fonction exponentielle Terminale S. Lemme : Si est une fonction dérivable sur R telle que : = et 0! = 1 alors ne s annule pas sur R.

Correction de l examen de la première session

Nombre dérivé et tangente

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé

Chapitre III : Fonctions réelles à une variable réelle. Notion de Limite (ses variantes) et Théorèmes d'analyse

LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples.

Correction du baccalauréat ES/L Métropole 20 juin 2014

Différentiabilité ; Fonctions de plusieurs variables réelles

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Chapitre 3 : Fonctions d une variable réelle (1)

Loi binomiale Lois normales

Cours d Analyse 3 Fonctions de plusieurs variables

6 Equations du première ordre

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Polynômes à plusieurs variables. Résultant

Corps des nombres complexes, J Paul Tsasa

Calcul Différentiel. I Fonctions différentiables 3

Texte Agrégation limitée par diffusion interne

Équations non linéaires

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Chapitre 3. Mesures stationnaires. et théorèmes de convergence

Chapitre VI Fonctions de plusieurs variables

Transcription:

LEÇON N 56 : Étude de suites de nombres réels définies par une relation de récurrence u n+1 = f(u n ) et une condition initiale. L exposé pourra être illustré par un ou des exemples faisant appel à l utilisation d une calculatrice. Pré-requis : Suites numériques : monotonie, convergence, divergence ; Théorème des valeurs intermédiaires ; R est complet : toute suite de Cauchy y est convergente. Notations : Soient I un intervalle non vide de R et f une application définie sur I telle que f(i) I. Il existe alors une unique suite (u n ) n N (notée simplement (u n ) dans la suite) définie par : { u0 I, On note encore F = {x I f(x) = x}. u n+1 = f(u n ), n N. 56.1 Monotonie de la suite Théorème 1 : (i) Si f est croissante sur I alors (u n ) est monotone et de plus, a. Si f(u 0 ) u 0, alors (u n ) est croissante, b. Si f(u 0 ) u 0, alors (u n ) est décroissante ; (ii) Si f est décroissante sur I, alors (u n ) n est pas monotone, mais les sous-suite (p n ) = (u 2n ) et (i n ) = (u 2n+1 ) le sont, et a. Si u 2 u 0, alors (p n ) est croissante et (i n ) décroissante, b. Si u 2 u 0, alors (p n ) est décroissante et (i n ) croissante. (i) Montrons par récurrence que pour tout entier naturel n, u n+1 u n (resp. ). L initialisation est assurée par l hypothèse. Supposons alors que u n u n 1 (resp. ). Alors f croissante f(u n ) f(u n 1 ) (resp. ) déf. u n+1 u n (resp. ).

2 Étude des suites définie par une relation de récurrence u n+1 = f(u n ) (ii) Supposons que u n 1 u n. Alors f décroissante f(u n 1 ) f(u n ) (resp. ) déf. u n u n+1 (resp. ), donc (u n ) n est pas monotone. Notons que p n+1 = f f(p n ) et i n+1 = f f(i n ), et f f est croissante. En supposant u 2 u 0 (resp., ce qui précède nous permet d affirmer que u 3 u 1 (resp. ). Par application de (i), on en déduit que (p n ) est croissante (resp. décroissante) et (i n ) décroissante (resp. croissante). Représentation et interprétation graphiques Dans un repère orthonormé, on trace la première bissectrice (la droite d équation y = x) et la courbe représentative de f. Expliquer comment on construit la suite (u n ). y = x u 0 u 2 u 4 u 6 u 5 u 3 u 1 Remarque 1 : Si I est un fermé, alors toute suite (u n ) monotone converge dans I. À partir de maintenant, on suppose que I est fermé. 56.2 Comportement asymptotique de la suite Notons F l ensemble des points fixes de la fonction f. Proposition 1 : Supposons f continue sur I. Si la suite (u n ) converge vers une limite finie L, alors L F.

Étude des suites définie par une relation de récurrence u n+1 = f(u n ) 3 Supposons que (u n ) converge vers une limite finie L. Dans ce cas, ( ) lim u n = lim u n+1 = lim f(u n) fcont. = f lim u n. n n n n Puisque lim n u n = L I (car I fermé), on a L = f(l) par unicité de la limite. Remarque 2 : Il en résulte qu une condition nécessaire pour que (u n ) converge est que F. 56.2.1 Cas où f est croissante D après le théorème 1, (u n ) est monotone. Si I = [a,b], alors (u n ) converge et donc F. Étudions le cas (u n ) croissante (l autre cas s étudiant de manière analogue). Proposition 2 : (i) Si F [u 0, + [ =, alors lim n = + ; (ii) Si F [u 0, + [, alors (u n ) converge en croissant vers min(f [u 0, + [). (i) On raisonne par contraposée. Supposons u n L < +. Alors L F (proposition 1), et (u n ) est croissante implique que L u 0, d où F [u 0, + [. (ii) Puisque nous sommes dans le cas où f est croissante, et qu il en est de même de (u n ) par supposition, le théorème 1 nous assure que f(u 0 ) u 0. Puisque f est continue, et que F [u 0, + [, on en déduit qu il existe un espace entre la courbe de f et la première bissectrice (entre les abscisses u 0 et min(f [u 0, + [)), dans lequel reste l escargot de la construction de la suite (u n ) strictement croissante (en effet, si la suite possédait deux termes consécutifs égaux, c est qu à partir de ce rang, u n = min(f [u 0, + [), et la convergence est assurée). La suite (u n ) est strictement croissante et bornée dans [ u 0, min(f [u 0, + [) ], elle converge donc vers une limite finie L qui est donc un point fixe de f (proposition 1). Le seul point fixe de cet intervalle est min(f [u 0, + [). Représentations graphiques : u 0 u 1 u 2 u3 u 4u5 u 0 u 1 u 2 Cas (i) Cas (ii)

4 Étude des suites définie par une relation de récurrence u n+1 = f(u n ) 56.2.2 Cas où f est décroissante Proposition 3 : La suite (u n ) converge si et seulement si ses sous-suites (i n ) = (u 2n+1 ) et (p n ) = (u 2n ) sont adjacentes. " " : Trivial, en utilisant le théorème 1. " " : Par la proposition 1, les suites (i n ) et (p n ) convergent chacune vers un point fixe de f f. Notons L leur limite commune et soit ε > 0. Il existe alors N N tel que n N vérifie u 2n L < ε et u 2n+1 L < ε. Par inégalité triangulaire, on trouve que u 2n u 2n+1 < 2ε. Soient p, q N tels que p < q. On a alors u p u q u p u p+1 + + u q 1 u q = u p+i 1 u p+i (q p) 2ε, donc (u n ) est une suite de Cauchy dans I, qui converge alors vers une valeur notée l I (I fermé). D après la proposition 1, l = f(l), donc l = f(l) = f f(l) et l est point fixe de f f, d où L = l. q p i=1 56.2.3 Cas où f est contractante Définition 1 : f est dite contractante si k [0, 1[ x, y I, f(x) f(y) k x y. Théorème 2 : Si f est contractante, alors f admet un unique point fixe L vers lequel converge la suite (u n ), convergence contrôlée par l inégalité u n L k n u 0 L. Convergence : Montrons que la suite (u n ) est une suite de Cauchy. Pour tous entiers n et p, on a Posons alors S n = u n+p u n u n+i+1 u n+i f(u n+i ) f(u n+i 1 ) k u n+i u n+i 1 k i u n+1 u n ( ) k i u n+1 u n ( ) k i+n u 1 u 0. n k i, de sorte que k i+n = S n+ S n 1. ( ) k i k n u 1 u 0

Étude des suites définie par une relation de récurrence u n+1 = f(u n ) 5 Or k [0, 1[, donc (S n ) est convergente, et est donc une suite de Cauchy. On en déduit que Finalement, on trouve que ε > 0, N N n N, p N, S n+ S n 1 < ε. u n+p u n S n+ S n 1 u 1 u 0 < ε u 1 u 0, nous amenant à écrire que (u n ) est une suite de Cauchy, qui converge donc vers une limite L I. Existence du point fixe : Par la proposition 1, L est point fixe de f. Unicité du point fixe : Supposons qu il existe deux points fixes distincts L et L de f. Alors ce qui est impossible. L L = f(l) f(l ) k L L < L L car k < 1, Convergence contrôlée : On vérifie l inégalité par récurrence. L initialisation au rang n = 0 est évidente. Supposons alors l hypothèse de récurrence (H.R.) vraie au rang n, et montrons qu elle l est toujours au rang (n + 1) : u n+1 L = f(u n ) f(l) k u n L H.R. k n+1 u 0 L. Remarque 3 : Soit (u n ) une suite définie par une relation de récurrence qui converge vers une limite L inconnue. À la calculatrice, lorsqu il s agit de trouver l entier N tel que n N, u n L 10 p (p donné), il faut utiliser l une des méthodes suivantes : Si (u n ) est non monotone, alors (proposition 3) les sous-suites (i n ) et (p n ) sont adjacentes, donc il suffit de comparer p n i n à 10 p. Si (u n ) est monotone, alors il est nécessaire d avoir une majoration a priori de l erreur, par exemple par le théorème 2. ATTENTION : Soit u n = 1 + 1 2 + + 1 n. À cause de la précision limitée des calculatrices (10 ou 12 chiffres, généralement) en mode "flottant" (calculs avec virgule), cette suite convergera vers la valeur 1 + 1 2 + + 1 N, 1 où N sera l entier tel que = 0 (au sens de la calculatrice!! en effet, au bout d un certain temps, le N+1 nombre 1 devient si petit quand n augmente que la calculatrice le remplacera par 0). Or cette suite tend n clairement vers + (série harmonique), donc la convergence à la calculatrice n entraîne pas celle en réalité... 56.3 Applications 56.3.1 Méthode des Babyloniens Soient a R + et la suite de Héron définie par u 0 R + u n+1 = 1 2 (u n + aun ), n N.

6 Étude des suites définie par une relation de récurrence u n+1 = f(u n ) (i) Montrer que pour tout entier naturel n, on a u n+1 a = (u n a) 2. (ii) En déduire que (u n ) est décroissante et que (u n ) converge vers a. Solution : (i) Soit n N. Alors (u n a) 2 = un 2 a + a = un 2 a + a = u n+1 a. Remarquons alors que puisqu un carré est toujours positif et que u n 0 (facile à montrer par récurrence), on a alors u n+1 a 0 pour tout n N. (ii) On a que u n+1 u n = a>0 = (u n a) 2 0 (rem. du (i)) {}}{ ( a un ) 2 u n }{{} 0 u n + a = un 2 a + a 0 ( {}} ) { a + un 0. 2un 2 + a = a u2 n prouvant ainsi que la suite (u n) est décroissante. De plus, elle est minorée par 0 puisque tous ses termes sont par construction positifs, donc elle converge vers une limite L qui (d après la proposition 1) vérifie L = 1 ( L + a ) 1 2 L 2 L = 1 a 2 L L2 = a, en utilisant la fonction f : R + R + x 1 ( x + 1 ). 2 x On en déduit alors que L = a, l autre solution de l équation précédente ne convient pas puisque a R +. 56.3.2 Méthode de Newton Supposons f strictement convexe sur I = [a,b] et f(a) f(b) < 0. Par le théorème des valeurs intermédiaires, il existe un unique x ]a,b[ tel que f(x) = 0. La suite définie par converge alors vers x. u 0 [a,b] u n+1 = u n f(u n) f (u n ), n N Exemple : f(x) = x 2 a, pour a > 0. On a alors f (x) = 2x, d où u n+1 = u n u2 n a = 1 2 (u n + aun ). On pourra montrer, par approfondissement, que la convergence de cette suite vers a est beaucoup plus rapide qu avec la méthode des Babyloniens. c 2010 par Martial LENZEN. Aucune reproduction, même partielle, autres que celles prévues à l article L. 122-5 du code de la propriété intellectuelle, ne peut être faite sans l autorisation expresse de l auteur.