Divisibilité, congruences

Documents pareils
108y= 1 où x et y sont des entiers

1 Définition et premières propriétés des congruences

Chapitre 6. Fonction réelle d une variable réelle

Représentation d un entier en base b

Fonctions de plusieurs variables

La question est : dans 450 combien de fois 23. L opération est donc la division. Le diviseur. Le quotient

Chapitre 1 : Évolution COURS

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Cours d arithmétique Première partie

Exercices Corrigés Premières notions sur les espaces vectoriels

Développement décimal d un réel

Angles orientés et trigonométrie

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Limites finies en un point

Chapitre VI - Méthodes de factorisation

Seconde Généralités sur les fonctions Exercices. Notion de fonction.

Introduction à l étude des Corps Finis

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Cours de mathématiques

EXERCICE 4 (7 points ) (Commun à tous les candidats)

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en Énoncé.

PROBLEME(12) Première partie : Peinture des murs et du plafond.

6. Les différents types de démonstrations

CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!»

Fonctions homographiques

FONDEMENTS DES MATHÉMATIQUES

EXERCICES DE REVISIONS MATHEMATIQUES CM2

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Définition : On obtient les nombres entiers en ajoutant ou retranchant des unités à zéro.

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.

Logique. Plan du chapitre

DOCM Solutions officielles = n 2 10.

Triangle de Pascal dans Z/pZ avec p premier

Mathématiques Algèbre et géométrie

Représentation géométrique d un nombre complexe

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Le produit semi-direct

Comparaison de fonctions Développements limités. Chapitre 10

Date : Tangram en carré page

Vous revisiterez tous les nombres rencontrés au collège, en commençant par les nombres entiers pour finir par les nombres réels.

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Nombres premiers. Comment reconnaître un nombre premier? Mais...

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

O, i, ) ln x. (ln x)2

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

Glossaire des nombres

UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux.

Sites web éducatifs et ressources en mathématiques

Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E

III- Raisonnement par récurrence

Groupe symétrique. Chapitre II. 1 Définitions et généralités

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Problème 1 : applications du plan affine

Construction d un cercle tangent à deux cercles donnés.

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.

avec des nombres entiers

Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007

La persistance des nombres

Continuité et dérivabilité d une fonction

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument

Technique opératoire de la division (1)

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Licence Sciences et Technologies Examen janvier 2010

THEME : CLES DE CONTROLE. Division euclidienne

COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE

Complément d information concernant la fiche de concordance

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

chapitre 4 Nombres de Catalan

Le contexte. Le questionnement du P.E.R. :

Continuité en un point

Cours Fonctions de deux variables

Manuel d utilisation 26 juin Tâche à effectuer : écrire un algorithme 2

a) b)

Cours d Analyse. Fonctions de plusieurs variables

Développements limités, équivalents et calculs de limites

La fonction exponentielle

UNIVERSITE IBN ZOHR Faculté des sciences Agadir. Filière SMA & SMI. Semestre 1. Module : Algèbre 1

Commun à tous les candidats

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

Chapitre 2 Le problème de l unicité des solutions

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux

Compter à Babylone. L écriture des nombres

Capes Première épreuve

Section «Maturité fédérale» EXAMENS D'ADMISSION Session de février 2014 RÉCAPITULATIFS DES MATIÈRES EXAMINÉES. Formation visée

Université Paris-Dauphine DUMI2E 1ère année, Applications

Dérivation : Résumé de cours et méthodes

Problèmes de Mathématiques Filtres et ultrafiltres

Proposition. Si G est un groupe simple d ordre 60 alors G est isomorphe à A 5.

Cours de Probabilités et de Statistique

Moments des variables aléatoires réelles

Taux d évolution moyen.

CCP PSI Mathématiques 1 : un corrigé

La maison Ecole d ' Amortissement d un emprunt Classe de terminale ES. Ce qui est demandé. Les étapes du travail

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Correction du Baccalauréat S Amérique du Nord mai 2007

Séquence 3. Expressions algébriques Équations et inéquations. Sommaire

Dérivation : cours. Dérivation dans R

Transcription:

Divisibilité, congruences 1. Divisibilité dans Notation. L ensemble des entiers naturels 0, 1, 2, se note. L ensemble des entiers relatifs, 2, 1, 0, 1, 2, se note. Définition. On dit que l entier relatif divise l entier relatif lorsqu il existe un entier relatif tel que. On note. On dit aussi que est un diviseur de ou que est divisible par. est alors un multiple de. Remarque. Tout entier relatif avec ou possède au moins quatre diviseurs : 1, 1,,. Tout entier possède un nombre fini de diviseurs, compris entre et. Soit un entier divisible par 2 et par 3. Il existe deux entiers et tels que et. On a alors Cela montre que est aussi divisible par 6. Théorème. Soit,, trois entiers relatifs. Si divise et divise, alors divise. Démonstration. Il existe deux entiers et tels que et, d où, ce qui prouve que divise. divise et divise, donc divise. Théorème. Soit, et trois entiers relatifs. Si divise et, alors divise toute combinaison linéaire de et, c est-à-dire tout entier de la forme où et sont des entiers. Démonstration. Il existe deux entiers et tels que et, d où l on déduit, ce qui prouve que divise. divise et divise, donc divise. Déterminons les entiers naturels tels que divise. Pour un tel entier, divise et divise, donc divise toute combinaison linéaire de ces nombres, en particulier. Les diviseurs de étant,, et on en déduit que ou, d où. Réciproquement, on vérifie que toutes ces valeurs conviennent. Divisibilité, congruences Classe de Terminale S Page 1

Système décimal Le système décimal, ou la base 10, est notre système usuel d écriture des nombres. Dire qu un entier s écrit dans le système décimal sous la forme où,, sont des chiffres de 0 à 9 avec, c est dire qu il est égal à. Soit un entier ayant 5 pour chiffre des unités. Montrer que a également 5 pour chiffre des unités. On peut écrire, où est un entier. On a alors en développant où est un entier. Cela montre que se termine par un 5. Soit un carré dont l écriture se termine par 6. Montrons que le chiffre des dizaines de est impair (par exemple ; ; ; ) Remarquons tout d abord qu un nombre ayant un chiffre des dizaines impair s écrit avec et où est un entier impair. On raisonne par disjonction de cas, en fonction du dernier chiffre de l entier tel que. Supposons est impair, c est-à-dire se terminant par 0, 2, 4, 6 ou 8. Il existe un entier tel que, donc ce qui montre que est impair, son chiffre des unités ne peut donc pas être 6. Supposons pair et soit le chiffre des unités de et son nombre de dizaines. On a, d où Il ne faut pas en déduire que est le chiffre des unités de car il se peut que soit supérieur ou égal à 10. Il faut donc envisager tous cas, pour. Si, alors et le chiffre des unités de est 0. Si, alors et le chiffre des unités de est 4. Si, alors Cela montre que le chiffre des unités de est 6, et le nombre de dizaine est bien impair, puisque celui-ci est. Si, alors Cela montre que le chiffre des unités de est 6, et le nombre de dizaine est bien impair, puisque celui-ci est. Si, alors et le chiffre des unités de est 4. En conclusion, on constate que le chiffre des unités de est 6 si et seulement si le chiffre des unités de est 4 ou 6, et dans ces cas-là, le chiffre des dizaines est impair. Divisibilité, congruences Classe de Terminale S Page 2

2. Division euclidienne Théorème Définiton. Soit et deux entiers naturels avec non nul. Il existe un unique couple d entiers naturels tels que et. On dit que est le dividende, le diviseur, le quotient et le reste. Remarque. est la partie entière de et se calcule par. D après l écran de la calculatrice ci-contre, la division euclidienne de 147 par 11 s écrit Démonstration. 1. Existence de et. Soit. Comme, on a donc n est pas vide. D après l axiome du plus petit élément (qui affirme que toute partie non vide de admet un plus petit élément), il existe un entier, plus petit élément de tel que. En posant et, on a bien et. En effet, comme, on a alors, ce qui en simplifiant donne. 2. Unicité de et. Supposons qu il existe deux couples et vérifiant la propriété. On a avec et. De, on déduit, d où en ajoutant à l inégalité Par ailleurs, ce qui montre que est un multiple de compris strictement entre et, ce peut être que. Ainsi, d où. Par suite et comme, c est que et donc. On peut étendre le résultat de la façon suivante. Théorème. Soit et deux entiers avec non nul. Il existe un unique couple d entiers tels que et. La division euclidienne de par s écrit. Théorème. Soit un entier supérieur ou égal à 2. Parmi entiers consécutifs, l un est multiple de. Démonstration. Soit le plus grand de ces entiers consécutifs. L entier s écrit avec. L entier, qui est l un des entiers consécutifs,,,, considérés s écrit donc : c est un multiple de. Divisibilité, congruences Classe de Terminale S Page 3

Montrons que pour tout entier, l entier est un multiple de 6. D après l exemple vu dans la partie 1, il suffit de montrer qu il est divisible par 2 et par 3. Parmi les deux entiers consécutifs et, l un d entre eux est un multiple de 2, il en est donc de même de. Parmi les trois entiers consécutifs, et, l un d entre eux est un multiple de 3. Si c est ou, alors est un multiple de 3. Si c est, alors est une combinaison linéaire de deux multiples de 3, c est aussi un multiple de 3, ainsi que. Théorème. Soit un entier supérieur ou égal à 2 et entiers consécutifs,,. Tout entier s écrit sous une et une seule des formes ; ; ; où est un entier. Démonstration. Parmi les entiers consécutifs,,,, l un est divisible par, par exemple (avec ). Il existe donc un entier relatif tel que, d où. Supposons qu il existe deux écritures distinctes de de la forme annoncée : et, avec et et deux entiers. On a alors. Comme les entiers,,, sont entiers consécutifs, on a et, donc, avec. Comme dans la preuve de l unicité de la division euclidienne, il vient, d où, puis et enfin. Tout entier s écrit ou. Tout entier s écrit, ou. Tout entier s écrit, ou. Montrons que est divisible par 8 si et seulement si est impair. 1. Si est pair, alors est pair, donc est impair, il n est pas divisible par 8. 2. Si est impair, il s écrit pour un certain. Alors Parmi les entiers consécutifs et l un des deux est pair, donc l entier est pair et s écrit pour un certain. Ainsi, ce qui prouve que est divisible par 8. 3. Cela montre que est divisible par 8 si et seulement si est impair (on dit qu on a raisonné par disjonction de cas). Divisibilité, congruences Classe de Terminale S Page 4

3. Congruences Définition. Soit un entier naturel non nul. Deux entiers et sont dits congrus modulo si divise. On notera cela, ou, ou.$ car. car. Théorème. Soit un entier naturel non nul. Deux entiers et sont congrus modulo si et seulement s ils ont le même reste dans leur division euclidienne par. Démonstration. Supposons que et ait le même reste dans la division euclidienne par. On peut écrire et, d où, ce qui prouve que est divisible par. Réciproquement, si, on a pour un certain, d où. La division euclidienne de par permet d écrire avec. Il en résulte que, c est l écriture de la division euclidienne de par, le reste est bien. Remarques. est un multiple de si et seulement si. Les nombres congrus à modulo sont les nombres,. est le reste de la division euclidienne de par si et seulement si et. Théorème. Soit un entier supérieur ou égal à 2 et entiers consécutifs,,. Tout entier est congru modulo à un et un seul des entiers,,. Un entier vérifie une et une seule des égalités suivantes : ; ; ; ;. Théorème (Transitivité). Soit,,, quatre entiers (. Si et, alors. Démonstration. Il existe et des entiers tels que et, on en déduit, ce qui prouve que est divisible par, c est-à-dire. Théorème (Compatibilité des congruences avec l addition et la multiplication). Soit,,,, cinq entiers (. Si et, alors ; et pour tout entier naturel,. Démonstration. Il existe et des entiers tels que et. On a alors Divisibilité, congruences Classe de Terminale S Page 5

, ce qui prouve que., ce qui prouve que. La seconde propriété se déduit immédiatement par récurrence. Soit. Comme, on a. Comme de plus, on déduit, ce qui montre que est divisible par 3. Montrons que pour tout entier naturel, est divisible par 8. Vu que, on a. Cela nous amène à envisager deux cas, selon la parité de. Si est pair, on peut l écrire, et on a alors ainsi que, donc Si est impair, on peut l écrire. On a alors et, donc. Dans le deux cas, est bien divisible par 8. Critère de divisibilité par 3, par 9. Soit un entier s écrivant en base 10. Cela signifie que Comme, on en déduit que pour tout entier naturel, on a et donc On retrouve la propriété bien connue qui affirme qu un entier est divisible par 3 si et seulement si la somme de ses chiffres l est également. Le critère est le même pour la division par 9. Montrons que l équation n a pas de solution en nombres entiers. Réduisons modulo 3 pour faire disparaître l une des lettres. On a et, donc si est solution de cette équation, on a. À l aide d un tableau, calculons toutes les valeurs possibles de modulo 3. Tout entier est congru soit à, soit à, soit à modulo 3. n a donc jamais lieu, ce qui prouve que l équation n a pas de solu- L égalité tion. Dans un triangle rectangle à côtés entiers, l une des trois longueurs est divisible par 3. En effet pour tout entier, est congru à 0 ou à 1 modulo 3, selon que est congru à 0 modulo 3 ou pas. Si aucun des côtés,, n est divisible par 3, l égalité de Pythagore conduit à, ce qui est faux. Divisibilité, congruences Classe de Terminale S Page 6