Méthodes de Résolution de problèmes En Intelligence Artificielle

Dimension: px
Commencer à balayer dès la page:

Download "Méthodes de Résolution de problèmes En Intelligence Artificielle"

Transcription

1 Méthodes de Résolution de problèmes En Intelligence Artificielle

2 Résolution de Problèmes et Intelligence Artificielle Résoudre des puzzles Jouer aux échecs Faire des mathématiques Et même conduire une voiture Sont des activités humaines qui requièrent de l intelligence 2

3 Les machines munies de programmes qui peuvent entreprendre de telles tâches, possèdent un certain degré d intelligence La résolution de problèmes exclut les méthodes de calcul ordinaire comme l inversion d une matrice ou la résolution des équations différentielles 3

4 Méthode basée Trial and error Les méthodes étudiées en Intelligence Artificielle utilisent souvent une recherche basée sur des essais et erreurs ( trial-anderror): Elles recherchent une solution dans un espace de solutions possibles 4

5 D autres thématiques de l Intelligence Artificielle Apprentissage automatique Compréhension du langage naturel Raisonnement automatique Il n existe pas de théorie unifiée pour l organisation de l intelligence. Cependant, comme les techniques de résolution de problèmes sont d une utilité d ordre général, elles peuvent être utilisées dans tous les axes de recherche de l Intelligence Artificielle 5

6 Les puzzles et les jeux comme exemples de problèmes Les puzzles et les jeux constituent une source riche d exemples de problèmes Pour l illustration des techniques Pour le test des méthodes Il existe des programmes de jeux qui battent les experts humains comme les jeux d échec 6

7 Le Taquin à 2 dimensions L exemple de problème utilisé dans ce cours est le taquin à 2 dimensions ou le puzzle à 15 carreaux Configuration initiale configuration cible

8 Approche Espace des états 8

9 Etat du problème Lors du processus de résolution, le problème transite d un état vers un autre. Dans le cas du taquin, un état est une configuration du tableau 4x4 On distingue: L état initial Un ou plusieurs états finaux 9

10 Opérateurs Un opérateur transforme un état en un autre état. Il existe quatre opérateurs pour le taquin: déplacer la case vide en haut déplacer la case vide en bas déplacer la case vide à gauche déplacer la case vide à droite 10

11 L application des opérateurs sur les états en démarrant de l état initial conduit à la construction d une arborescence 11

12 Exemple de portion d une arborescence

13 La racine correspond à la configuration initiale Un nœud représente une configuration quelconque Un arc correspond à l application d un opérateur 13

14 Réduction des problèmes en sous problèmes

15 Fractionnement du problème Le problème est divisé en plusieurs sous problèmes de petites tailles Le fractionnement s arrête lorsque le sous problème correspondant est solvable 15

16 Construction d une arborescence Un processus récursif permet la construction d une arborescence de sous problèmes. La racine correspond au problème à résoudre Un nœud à un sous problème Les sous problèmes d un niveau de l arbre ont une taille inférieure aux sous problèmes des niveaux supérieurs Les feuilles de l arbre correspondent aux sous problèmes solvables 16

17 Exemple Conduire d Oran à Annaba Conduire d Oran à Chlef Conduire de Chlef à Alger Conduire d Alger à Sétif Conduire de Sétif à Annaba 17

18 Exemple de portion d une arborescence Conduire d Oran à Annaba Conduire d Oran à Chlef Conduire De Chlef à Alger Conduire d Alger à Sétif Conduire De Sétif à Annaba Conduire De Chlef à Blida Conduire De Blida à Alger Conduire D Alger à Bouira 18

19 Remarque importante 1- C est la taille du problème qui est réduite à chaque fois que le problème est insolvable 2- La technique de résolution est la même pour tous les sous problèmes 19

20 Démonstration de théorèmes 20

21 Utilisation de la logique dans la résolution de problèmes Que ce soit par l approche espace des états ou par la réduction de problèmes, la résolution de problèmes fait appel souvent à la logique 21

22 Exemple d utilisation de la logique dans l approche Espace des états Dans le jeu du taquin, il a été démontré que les opérateurs de transition tels que définis précédemment conduisent à la création de deux sous-ensembles disjoints contenant les états du problème Un état quelconque d un sous ensemble ne peut donc avoir des successeurs appartenant à l autre sous ensemble Cet important résultat peut aider grandement à la résolution du problème, car à chaque génération d une configuration, il peut nous renseigner sur la possibilité d atteindre ou non l état cible 22

23 Troisième approche basée sur la logique: La démonstration de théorèmes Tout problème à résoudre peut être transformé en un théorème à démontrer Résoudre un problème équivaut donc à démontrer le théorème correspondant La logique est employée comme outil théorique pour la preuve 23

24 Deux éléments fondamentaux pour la résolution de problèmes La représentation La recherche Dans ce cours, nous nous intéressons plus particulièrement aux méthodes de recherche de solutions dans un espace d états. 24

25 Démarche générale pour la résolution d un problème 1- Choix de l approche de résolution Espace des états Réduction de problèmes Démonstration de théorèmes 2- Choix d une représentation Pour un même problème, il peut exister plusieurs représentations 3- Choix de la méthode de résolution 25

26 Panorama sur les méthodes de recherche Méthodes aveugles recherche en largeur d abord recherche en profondeur d abord Les méthodes heuristiques: l algorithme A* les méta-heuristiques Le recuit simulé Les algorithmes génétiques Les colonies de fourmis La recherche taboue 26

27 Les méthodes de recherche dans l approche espace des états 27

28 Processus de recherche dans un graphe Le processus de recherche d une solution opère sur une représentation de graphe comme suit: 1- Le nœud initial correspond à l état initial 2- Les successeurs d un nœud sont calculés à l aide des opérateurs. Soit, l opérateur qui calcule tous les successeurs 3- Parmi les successeurs, s il existe un état final, la solution est obtenue en parcourant le graphe de cet état vers l état initial. Les arcs doivent alors être orientés dans les deux sens dans le cas contraire, on continue l expansion des noeuds 28

29 Recherche aveugle Si l expansion des nœuds se fait selon l ordre dans lequel ils ont été engendrés, le processus est appelé recherche en largeur d abord Si la stratégie de l expansion considère des nœuds les plus récemment engendrés, le processus est appelé recherche en profondeur d abord 29

30 Dans les méthodes aveugles, l ordre dans lequel les nœuds sont engendrés ne tient pas compte de la position de l état cible dans le graphe. 30

31 Les méthodes heuristiques Dans les procédures non aveugles, on fait appel à des heuristiques Une heuristique signifie aider à découvrir L heuristique a pour rôle de diriger l expansion des nœuds vers l état but en développant les nœuds les plus prometteurs Par souci de simplification, les méthodes décrites ultérieurement utilisent une structure d arbre. L extension aux graphes sera considérée par la suite. 31

32 La recherche en largeur d abord ou recherche horizontale L expansion des nœuds les moins récemment engendrés s effectue en premier L arborescence est construite niveau après niveau et donc de manière horizontale 32

33 Un algorithme simple de recherche en largeur d abord 1- Insérer le nœud initial s dans une liste appelée OPEN 2- Si OPEN est vide alors échec sinon continuer 3- Retirer le premier nœud de OPEN et l insérer dans une liste appelée CLOSED. Soit n ce nœud. 4- S il n existe pas de successeur alors aller à 2. Engendrer les successeurs de n et les insérer à la queue de OPEN. Créer un chaînage de ces nœuds vers n 5- Si parmi les successeurs, il existe un état final alors succès: la solution est obtenue en suivant le chaînage arrière de ce nœud vers la racine, sinon aller à 2 33

34 Exercice 1: taquin 3x3 Appliquer la recherche en largeur d abord sur la donnée suivante: Configuration initiale configuration cible

35 35

36 Méthode de coût uniforme: une version plus générale de la recherche en largeur d abord Soient: - c(n i,n j ) le coût de l arc reliant ni à son successeur n j - g(n) le coût minimal de la chaîne allant de s à n La méthode garantit le calcul de la chaîne de coût minimal 36

37 Algorithme du coût uniforme 1- Insérer s dans une liste appelée OPEN. Soit g(s) = 0 2- Si OPEN est vide alors échec sinon continuer 3- Retirer de OPEN, le nœud qui a la plus petite valeur g et l insérer dans CLOSED. Soit n ce nœud. En cas de conflit, choisir arbitrairement n. 4- Si n est un état final alors succès sinon continuer 5- Engendrer les successeurs de n. S il n existe pas de successeur aller à 2 sinon calculer et insérer dans OPEN pour chaque successeur n i, g(n i )=g(n)+c(n,n i ). Etablir le chaînage arrière. 6- Aller à 2 37

38 Profondeur d un arbre La profondeur d un nœud dans un arbre est calculée comme suit: profondeur(racine) = 0 profondeur(n) = profondeur(parent(n))+1 38

39 La recherche en profondeur d abord ou recherche verticale L expansion des nœuds les plus récemment engendrés s effectue en premier Le nœud le plus profond est choisi pour l expansion. Lorsqu un certain seuil de profondeur est atteint, le processus considère un nœud du niveau précédent 39

40 Un algorithme de recherche en profondeur 1- Insérer le nœud initial s dans une liste appelée OPEN 2- Si OPEN est vide alors échec sinon continuer 3- Retirer le premier nœud de OPEN et l insérer dans une liste appelée CLOSED. Soit n ce nœud. 4- Si la profondeur de l arbre est égale au seuil de profondeur aller à 2 sinon continuer 5- Engendrer les successeurs de n et les empiler dans OPEN. Créer un chaînage de ces nœuds vers n 5- Si parmi les successeurs, il existe un état final alors succès: la solution est obtenue en suivant le chaînage arrière de ce nœud vers la racine, sinon aller à 2 40

41 Exercice 2: taquin 3x3 Appliquer la recherche en profondeur d abord sur la donnée suivante: Configuration initiale configuration cible

42 42

43 Modifications pour rechercher dans des graphes Recherche en largeur ou en profondeur d abord: * Quand un nœud est engendré, tester s il se trouve dans OPEN ou CLOSED. Ne pas l insérer dans ce cas. Algorithme du coût minimal: *Quand un nœud est créé - s il se trouve dans OPEN, mettre à jour sa valeur g (si elle est plus petite) et son chaînage arrière - s il se trouve dans CLOSED, mettre à jour sa valeur g (si elle est plus petite) et son chaînage arrière et l insérer dans OPEN 43

44 Introduction aux heuristiques Les méthodes aveugles sont des méthodes exhaustives Il existe des limites pratiques sur le temps d exécution et l espace mémoire pour appliquer ces méthodes sur une grande catégorie de problèmes Il faut chercher d autres alternatives efficaces pour solutionner ces problèmes Toute technique visant à accélérer la recherche est basée sur une information appelée heuristique Les méthodes utilisant des heuristiques sont dites méthodes de recherche heuristiques 44

45 Implémentation des méthodes heuristiques Utiliser la recherche en profondeur d abord et placer les nœuds développés dans OPEN selon l ordre déterminé par l heuristique Une façon plus flexible est d utiliser un critère pour réordonner tous les nœuds qui sont dans OPEN Une certaine mesure doit être établie pour évaluer la promesse d un nœud. Cette mesure est appelée fonction d évaluation ou d adéquation ou objective 45

46 Fonction d évaluation L utilisation d une heuristique est basée sur une fonction d évaluation pour ordonner la recherche Soit f une fonction d évaluation, f(n) exprime la valeur de cette fonction pour le nœud n 46

47 Algorithme de recherche ordonnée 1- Placer s dans OPEN et calculer f(s) 2- Si OPEN est vide alors échec sinon continuer 3- Retirer de OPEN, le nœud qui a la plus petite valeur f et l insérer dans CLOSED. Soit n ce nœud. 4- Si n est un état final alors succès sinon continuer 5- Engendrer les successeurs de n. S il n en existe pas aller à 2 sinon calculer pour chaque successeur n i, f(n i ). 6- Insérer les successeurs qui ne sont ni dans OPEN ni dans CLOSED, dans OPEN et établir le chaînage arrière. 7- Mettre à jour la valeur de f pour les successeurs qui se trouvent dans OPEN ou CLOSED. Placer dans OPEN, les nœuds de CLOSED pour lesquels f a diminué. Aller à 2 47

48 Soit f(n) = g(n) + w(n) Exercice 3 Où g(n) est la longueur de la chaîne entre la racine et n et w(n), le nombre de chiffres mal placés dans le puzzle. Le nœud initial a une valeur f = = 4 Appliquer l algorithme de recherche ordonnée sur la donnée de l exercice 2. 48

49 L algorithme A* C est un algorithme de recherche ordonnée basé sur une fonction d évaluation f(n)=g(n)+h(n) où g(n) est le coût de la chaîne allant de s à n et h(n) appelée heuristique est une estimation du coût de la chaîne reliant n à un nœud final. h est spécifique au domaine d application, exemple w. 49

50 Admissibilité et optimalité Théorème1: Si h (n) <= h(n) pour tout n, et si tous les coûts associés aux arcs sont supérieurs à un nombre positif alors A* est admissible. Théorème2: Soient A et A* deux algorithmes admissibles tels que A* est plus informé que A et h (m)-h (n) <= k(m,n) pour A*, alors pour tout graphe, si un nœud n est développé par A*, il est aussi développé par A. 50

Algorithmes de recherche

Algorithmes de recherche Algorithmes de recherche 1 Résolution de problèmes par recherche On représente un problème par un espace d'états (arbre/graphe). Chaque état est une conguration possible du problème. Résoudre le problème

Plus en détail

Cours de Master Recherche

Cours de Master Recherche Cours de Master Recherche Spécialité CODE : Résolution de problèmes combinatoires Christine Solnon LIRIS, UMR 5205 CNRS / Université Lyon 1 2007 Rappel du plan du cours 16 heures de cours 1 - Introduction

Plus en détail

Structures de données non linéaires

Structures de données non linéaires Structures de données non linéaires I. Graphes Définition Un graphe (simple) orienté G est un couple (S, A), où : S est un ensemble dont les éléments sont appelés les sommets. A est un ensemble de couples

Plus en détail

Partie 3. Gilles Lebrun (gilles.lebrun@unicaen.fr)

Partie 3. Gilles Lebrun (gilles.lebrun@unicaen.fr) Partie 3 Gilles Lebrun (gilles.lebrun@unicaen.fr) Les arbres binaires Définition : C est une structure arborescente ou hiérarchique ou récursive Chaque élément (nœud) constituant la structure de l arbre

Plus en détail

C12. Les structures arborescentes. Août 2006

C12. Les structures arborescentes. Août 2006 Les structures arborescentes Août 2006 Objectifs du C12 Connaître le principe de la structure d arbre binaire Connaître les détails d implémentation de la structure d arbre binaire de recherche Les structures

Plus en détail

L2: cours I4c Langages et automates

L2: cours I4c Langages et automates L2: cours I4c Langages et automates Olivier Togni, LE2I (038039)3887 olivier.togni@u-bourgogne.fr Modifié le 31 mai 2007 Sommaire Utiles pour compilation, interprétation,... 1. Langages rationnels 2. Langages

Plus en détail

Partie I : Automates et langages

Partie I : Automates et langages 2 Les calculatrices sont interdites. N.B. : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut

Plus en détail

Arbres binaires de recherche (ABR) Binary Search Trees (BST)

Arbres binaires de recherche (ABR) Binary Search Trees (BST) LSVIII-BIM Algorithmie, 2015 Arbres binaires de recherche (ABR) Binary Search Trees (BST) I. Arbres binaires 1. Structure 2. Parcours II. Arbres binaires de recherche 1. Définition 2. Opérations sur les

Plus en détail

EXAMEN FINAL. 2 Février 2006-2 heures Aucun document autorisé

EXAMEN FINAL. 2 Février 2006-2 heures Aucun document autorisé MIE - E ANNÉE ALGORITHMIQUE GÉNÉRALE Vincent Mousseau EXAMEN FINAL Février 006 - heures Aucun document autorisé Exercice : On s intéresse à la gestion informatique des réservations sur l année d une salle

Plus en détail

Arbres binaires de recherche et arbres rouge noir

Arbres binaires de recherche et arbres rouge noir Institut Galilée lgo, rbres, Graphes I nnée 006-007 License rbres binaires de recherche et arbres rouge noir Rappels de cours et correction du TD rbres binaires de recherche : définitions Un arbre binaire

Plus en détail

Arbres Binaire. PSI DAKHLA Prof Youssef El marzak. 1 Prof Youssef Elmarzak

Arbres Binaire. PSI DAKHLA Prof Youssef El marzak. 1 Prof Youssef Elmarzak Arbres Binaire PSI DAKHLA Prof Youssef El marzak 1 Prof Youssef Elmarzak 1.introduction: Les arbre sont très utilisées en informatique, d une part parce que les informations sont souvent hiérarchisées,

Plus en détail

Exploration informée

Exploration informée Exploration informée Jerôme Champavère jerome.champavere @ lifl.fr http://www.grappa.univ-lille3.fr/~champavere/?page=enseignement Stratégies d'exploration informée Exploration «meilleur d'abord» Best-first

Plus en détail

Les structures de données. Rajae El Ouazzani

Les structures de données. Rajae El Ouazzani Les structures de données Rajae El Ouazzani Les arbres 2 1- Définition de l arborescence Une arborescence est une collection de nœuds reliés entre eux par des arcs. La collection peut être vide, cad l

Plus en détail

Option Informatique Arbres binaires équilibrés

Option Informatique Arbres binaires équilibrés Option Informatique Arbres binaires équilibrés Sujet novembre 2 Partie II : Algorithmique et programmation en CaML Cette partie doit être traitée par les étudiants qui ont utilisé le langage CaML dans

Plus en détail

Parcours d un arbre Arbres de recherche CHAPITRE 6. Arbres binaires. Karelle JULLIAN. MPSI, Option Info 2014/2015. Karelle JULLIAN

Parcours d un arbre Arbres de recherche CHAPITRE 6. Arbres binaires. Karelle JULLIAN. MPSI, Option Info 2014/2015. Karelle JULLIAN CHAPITRE 6 Arbres binaires Lycée Kléber MPSI, Option Info 2014/2015 1 Définitions 2 Parcours en largeur Parcours en profondeur Parcours préfixe, infixe, postfixe Reconstitution 3 Recherche Complexité Insertion

Plus en détail

Notes de cours. Cours introductif sur la théorie des domaines. Modèles des langages de programmation Master Parisien de Recherche en Informatique

Notes de cours. Cours introductif sur la théorie des domaines. Modèles des langages de programmation Master Parisien de Recherche en Informatique Notes de cours Cours introductif sur la théorie des domaines Paul-André Melliès Modèles des langages de programmation Master Parisien de Recherche en Informatique 1 Ensembles ordonnés Definition 1.1 (ensemble

Plus en détail

Arbres ordonnés, binaires, tassés, FAP, tri par FAP, tas, tri par tas

Arbres ordonnés, binaires, tassés, FAP, tri par FAP, tas, tri par tas Arbres ordonnés, binaires, tassés, FAP, tri par FAP, tas, tri par tas 1. Arbres ordonnés 1.1. Arbres ordonnés (Arbres O) On considère des arbres dont les nœuds sont étiquetés sur un ensemble muni d'un

Plus en détail

Représentation de la Connaissance. Complément Pratique 7 novembre 2006

Représentation de la Connaissance. Complément Pratique 7 novembre 2006 Représentation de la Connaissance Les jeux en Prolog Introduction Complément Pratique 7 novembre 2006 Nous nous intéressons aux jeux à deux joueurs pour lesquels la situation du jeu est connue des deux

Plus en détail

Théorie des Langages

Théorie des Langages Théorie des Langages Automates Claude Moulin Université de Technologie de Compiègne Printemps 2013 Sommaire 1 Automate fini 2 Automate et langages réguliers 3 Automate à pile Automate fini déterministe

Plus en détail

Cours Algorithmique, 2ème partie AS IUT

Cours Algorithmique, 2ème partie AS IUT Cours Algorithmique, 2ème partie AS IUT Cours 2 : Arbres Binaires Anne Vilnat http://www.limsi.fr/individu/anne/coursalgo Plan 1 Représentations arborescentes 2 Définition d un arbre binaire récursive

Plus en détail

Langages de spécification cours 4

Langages de spécification cours 4 Langages de spécification cours 4 Diagrammes de décision binaire(bdd) Catalin Dima Arbres de décision binaire Étant donnée une formule logique, on peut lui associer un arbre qui permet d évaluer la valeur

Plus en détail

Langage C/C++ TD 3-4 : Création dynamique d objets. Hubert Godfroy. 27 novembre 2014

Langage C/C++ TD 3-4 : Création dynamique d objets. Hubert Godfroy. 27 novembre 2014 Langage C/C++ TD 3-4 : Création dynamique d objets Hubert Godfroy 7 novembre 014 1 Tableaux Question 1 : Écrire une fonction prenant un paramètre n et créant un tableau de taille n (contenant des entiers).

Plus en détail

Aspects théoriques et algorithmiques du calcul réparti Placement - Compléments

Aspects théoriques et algorithmiques du calcul réparti Placement - Compléments A- 0/0 Aspects théoriques et algorithmiques du calcul réparti Placement - Compléments Patrick CIARLET Enseignant-Chercheur UMA patrick.ciarlet@ensta-paristech.fr Françoise LAMOUR franc.lamour@gmail.com

Plus en détail

Arbres binaires. Illustration avec des arbres binaires de décision Généricité bornée Synthèse sur les assertions et les exceptions

Arbres binaires. Illustration avec des arbres binaires de décision Généricité bornée Synthèse sur les assertions et les exceptions Arbres binaires Illustration avec des arbres binaires de décision Généricité bornée Synthèse sur les assertions et les exceptions FMIN220 Structures de données Université de Montpellier 2015 FMIN220 (UM)

Plus en détail

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé Baccalauréat ES Centres étrangers 1 juin 14 - Corrigé A. P. M. E. P. Exercice 1 5 points Commun à tous les candidats 1. On prend un candidat au hasard et on note : l évènement «le candidat a un dossier

Plus en détail

Plus courts chemins, programmation dynamique

Plus courts chemins, programmation dynamique 1 Plus courts chemins, programmation dynamique 1. Plus courts chemins à partir d un sommet 2. Plus courts chemins entre tous les sommets 3. Semi-anneau 4. Programmation dynamique 5. Applications à la bio-informatique

Plus en détail

Arbres binaires de recherche

Arbres binaires de recherche Chapitre 1 Arbres binaires de recherche 1 Les arbre sont très utilisés en informatique, d une part parce que les informations sont souvent hiérarchisées, et peuvent être représentées naturellement sous

Plus en détail

Mini-Projet : Tournoi de Dames

Mini-Projet : Tournoi de Dames Mini-Projet : Tournoi de Dames L objectif du projet est de programmer un jeu de dames de façon à ce que votre programme puisse jouer une partie de dames avec les programmes des autres étudiants. 1 Organisation

Plus en détail

Structures de données, IMA S6

Structures de données, IMA S6 Structures de données, IMA S6 Arbres Binaires d après un cours de N. Devésa, Polytech Lille. Laure Gonnord http://laure.gonnord.org/pro/teaching/ Laure.Gonnord@polytech-lille.fr Université Lille 1 - Polytech

Plus en détail

alg - Arbres binaires de recherche [br] Algorithmique

alg - Arbres binaires de recherche [br] Algorithmique alg - Arbres binaires de recherche [br] Algorithmique Karine Zampieri, Stéphane Rivière, Béatrice Amerein-Soltner Unisciel algoprog Version 25 avril 2015 Table des matières 1 Définition, Parcours, Représentation

Plus en détail

Chapitre 5 : Flot maximal dans un graphe

Chapitre 5 : Flot maximal dans un graphe Graphes et RO TELECOM Nancy A Chapitre 5 : Flot maximal dans un graphe J.-F. Scheid 1 Plan du chapitre I. Définitions 1 Graphe Graphe valué 3 Représentation d un graphe (matrice d incidence, matrice d

Plus en détail

LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN

LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN Les contenues de ce document sont la propriété exclusive de la société REVER. Ils ne sont transmis qu à titre d information et ne peuvent en aucun cas

Plus en détail

Théorie des ensembles

Théorie des ensembles Théorie des ensembles Cours de licence d informatique Saint-Etienne 2002/2003 Bruno Deschamps 2 Contents 1 Eléments de théorie des ensembles 3 1.1 Introduction au calcul propositionnel..................

Plus en détail

MVA004 Automates, codes, graphes et matrices Cours n 6

MVA004 Automates, codes, graphes et matrices Cours n 6 MVA004 Automates, codes, graphes et matrices Cours n 6 cours n 5 1 Mots-clés Automate fini déterministe AFD Automate fini non déterministe AFN Déterminisation mots-clés 2 MVA004 Chapitre 22 Construction

Plus en détail

Un automate à états fini

Un automate à états fini Automates à états et langages Notion d automate Langage reconnu par un automate Automates non déterministes Expressions régulières et automates Limites des automates Notion d automate Objectif : définir

Plus en détail

Arbres binaires de recherche

Arbres binaires de recherche Chapitre 6 Arbres binaires de recherche 6.1 Introduction On a étudié le problème de la recherche dans une collection d éléments ordonnés entre eux : on a montré que Pour une liste contiguë, la recherche

Plus en détail

1 Récupération des données

1 Récupération des données Lycée Buffon MP*/PSI 014-15 Épreuve d informatique du concours blanc, jeudi 5 mars 015 (3h00) Les documents, téléphones portables, ordinateurs et calculatrices sont interdits. Le sujet de cette épreuve

Plus en détail

Antoine Cornuéjols AgroParisTech

Antoine Cornuéjols AgroParisTech Antoine Cornuéjols AgroParisTech antoine.cornuejols@agroparistech.fr http://www.lri.fr/~antoine Cours IA 1. Introduction 2. Cas des jeux entièrement explorables 3. L algorithme du MinMax 4. Amélioration

Plus en détail

I Arbres binaires. Lycée Faidherbe 2014-2015. 1 Rappels 2 1.1 Définition... 2 1.2 Dénombrements... 2 1.3 Parcours... 3

I Arbres binaires. Lycée Faidherbe 2014-2015. 1 Rappels 2 1.1 Définition... 2 1.2 Dénombrements... 2 1.3 Parcours... 3 I Arbres binaires 2014-2015 Table des matières 1 Rappels 2 1.1 Définition................................................ 2 1.2 Dénombrements............................................ 2 1.3 Parcours.................................................

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci http://liris.cnrs.fr/hamamache.kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de

Plus en détail

Gestion de projet. Jean-Charles Régin. Licence Informatique 3 ème année - MIAGE

Gestion de projet. Jean-Charles Régin. Licence Informatique 3 ème année - MIAGE Gestion de projet Jean-Charles Régin Licence Informatique 3 ème année - MIAGE Gestion de projet : Ordonnancement Jean-Charles Régin Licence Informatique 3 ème année - MIAGE Remerciements Michel Minoux

Plus en détail

Jade. Projet Intelligence Artificielle «Devine à quoi je pense»

Jade. Projet Intelligence Artificielle «Devine à quoi je pense» Jade Projet Intelligence Artificielle «Devine à quoi je pense» Réalisé par Djénéba Djikiné, Alexandre Bernard et Julien Lafont EPSI CSII2-2011 TABLE DES MATIÈRES 1. Analyse du besoin a. Cahier des charges

Plus en détail

Recommandation dans les réseaux sociaux professionnels

Recommandation dans les réseaux sociaux professionnels Recommandation dans les réseaux sociaux professionnels Application sur un réseau bibliographique 6 mai 2010 Objectif et Motivation Techniques utilisées Algorithme exhaustive de recherche de toutes les

Plus en détail

Fondements de l informatique: Examen Durée: 3h

Fondements de l informatique: Examen Durée: 3h École polytechnique X2013 INF412 Fondements de l informatique Fondements de l informatique: Examen Durée: 3h Sujet proposé par Olivier Bournez Version 3 (corrigé) L énoncé comporte 4 parties (sections),

Plus en détail

DS-85 L assistant polyvalent pour votre salle de courrier

DS-85 L assistant polyvalent pour votre salle de courrier DS-85 L assistant polyvalent pour votre salle de courrier La plieuse-inséreuse facile à utiliser qui évolue avec votre entreprise DS-85 L assistant polyvalent pour votre salle de courrier Si vous avez

Plus en détail

Jeux-Langages-Logique Jeux extensifs, jeux stratégiques

Jeux-Langages-Logique Jeux extensifs, jeux stratégiques Université de Bordeaux Master Informatique, 2015/2016 Jeux extensifs, à information complète Jeux-Langages-Logique Jeux extensifs, jeux stratégiques Exercice 2.1 Th. de Von Neumann Soit un graphe orienté

Plus en détail

Info0804. Cours 6. Optimisation combinatoire : Applications et compléments

Info0804. Cours 6. Optimisation combinatoire : Applications et compléments Recherche Opérationnelle Optimisation combinatoire : Applications et compléments Pierre Delisle Université de Reims Champagne-Ardenne Département de Mathématiques et Informatique 17 février 2014 Plan de

Plus en détail

Cours de spécialité mathématiques en Terminale ES

Cours de spécialité mathématiques en Terminale ES Cours de spécialité mathématiques en Terminale ES O. Lader 2014/2015 Lycée Jean Vilar Spé math terminale ES 2014/2015 1 / 51 Systèmes linéaires Deux exemples de systèmes linéaires à deux équations et deux

Plus en détail

Introduction à l Intelligence Artificielle

Introduction à l Intelligence Artificielle 1 / 14 Introduction à l Intelligence Artificielle Présentation de l option 2 nd semestre 2014-15 Philippe Chatalic chatalic@lri.fr Université Paris Sud Laboratoire de Recherche en Informatique (UMR CNRS

Plus en détail

4.2 Les arbres binaires de recherche

4.2 Les arbres binaires de recherche 4.2 Les arbres binaires de recherche 4.2.1 Définition Les arbres binaires de recherche sont utilisés pour accélérer la recherche dans les arbres m-aires. Un arbre binaire de recherche est un arbre binaire

Plus en détail

Arbres binaires. Hélène Milhem. Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012

Arbres binaires. Hélène Milhem. Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 Arbres binaires Hélène Milhem Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 H. Milhem (IMT, INSA Toulouse) Arbres binaires IUP SID 2011-2012 1 / 35 PLAN Introduction Construction

Plus en détail

Gestion des Clés Publiques (PKI)

Gestion des Clés Publiques (PKI) Chapitre 3 Gestion des Clés Publiques (PKI) L infrastructure de gestion de clés publiques (PKI : Public Key Infrastructure) représente l ensemble des moyens matériels et logiciels assurant la gestion des

Plus en détail

REGAL: une bibliothèque pour la génération d automates Mardi déterministes

REGAL: une bibliothèque pour la génération d automates Mardi déterministes REGAL: une bibliothèque pour la génération d automates déterministes Julien David Mardi 30 octobre 2007 REGAL: une bibliothèque pour la génération d automates Mardi déterministes 30 octobre 2007 1 / 21

Plus en détail

mercredi 16 novembre 11 6. Récurrences

mercredi 16 novembre 11 6. Récurrences 6. Récurrences Motivations Les relations de récurrence munies de conditions initiales permettent de définir des suites de nombres. En informatique, elles proviennent essentiellement : des définitions inductives

Plus en détail

Université Paris Diderot Paris 7. TD n 2. Arbres Binaire de Recherche

Université Paris Diderot Paris 7. TD n 2. Arbres Binaire de Recherche Université Paris Diderot Paris L Informatique Algorithmique Année 00-0, er semestre TD n Arbres Binaire de Recherche Le type de donné arbre" sera utilisé pour indiquer l ensemble de toutes les Arbres Binaires

Plus en détail

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e

Plus en détail

Travaux dirigés n o 6

Travaux dirigés n o 6 Travaux dirigés n o 6 Lycée Kléber MPSI, Option Info 2014/2015 Exercice 1 (Indexation d un arbre binaire) Ecrire une fonction Caml indexation : ( f, n) arbre_binaire -> (string,string) arbre_binaire qui

Plus en détail

Mathématiques pour l Informatique Relations binaires Jérôme Gensel

Mathématiques pour l Informatique Relations binaires Jérôme Gensel Master ICA Spécialité IHS Année 2007/2008 Mathématiques pour l Informatique Relations binaires Jérôme Gensel I) Relations binaires 1. Généralités Définition 1 : Une relation binaire d un ensemble E vers

Plus en détail

Initiation aux algorithmes des arbres binaires

Initiation aux algorithmes des arbres binaires Initiation aux algorithmes des arbres binaires Plan I. Les arbres biniaires I. Définition II. Représentation graphique d un arbre III. Terminologie IV. Représentation en mémoire des arbres binaires V.

Plus en détail

Généralités sur les graphes

Généralités sur les graphes Généralités sur les graphes Christophe ROSSIGNOL Année scolaire 2008/2009 Table des matières 1 Notion de graphe 3 1.1 Un peu de vocabulaire.......................................... 3 1.2 Ordre d un graphe,

Plus en détail

Réseaux Multimédia 2002 Damien Magoni

Réseaux Multimédia 2002 Damien Magoni Réseaux Multimédia 2002 Damien Magoni Toutes les illustrations 2001 Pearson Education Limited Fred Halsall Contenu Représentation des informations multimédia Numérisation Structure d un encodeur Structure

Plus en détail

Factorisation des matrices creuses

Factorisation des matrices creuses Chapitre 5 Factorisation des matrices creuses 5.1 Matrices creuses La plupart des codes de simulation numérique en mécanique des fluides ou des structures et en électromagnétisme utilisent des discrétisations

Plus en détail

Détection de la terminaison distribuée

Détection de la terminaison distribuée Cours Algorithmique répartie Master 2 Université Paris-Diderot Devoir 1 (à rendre avant le 22 février 2010) Détection de la terminaison distribuée Généralités Π = {p 0,..., p n 1 } est l ensemble des processus.

Plus en détail

Implanter les algorithmes Oum-Seymour et Oum

Implanter les algorithmes Oum-Seymour et Oum Implanter les algorithmes Oum-Seymour et Oum J.-F Raymond, B.-M Bui-Xuan et P. Trébuchet jeanflorent.raymond@ens-lyon.fr LIP6, Université Pierre et Marie Curie 17/11/2011 J.-F Raymond, B.-M Bui-Xuan et

Plus en détail

Compression méthode de Huffman

Compression méthode de Huffman Compression méthode de Huffman Thierry Lecroq Université de Rouen FRANCE La méthode de Huffman consiste à remplacer les caractères les plus fréquents par des codes courts et les caractères les moins fréquents

Plus en détail

Plan. Cours 4 : Méthodes d accès aux données. Architecture système. Objectifs des SGBD (rappel)

Plan. Cours 4 : Méthodes d accès aux données. Architecture système. Objectifs des SGBD (rappel) UPMC - UFR 99 Licence d informatique 205/206 Module 3I009 Cours 4 : Méthodes d accès aux données Plan Fonctions et structure des SGBD Structures physiques Stockage des données Organisation de fichiers

Plus en détail

L ARBORESCENCE. Qu est-ce qu un dossier? L arborescence?

L ARBORESCENCE. Qu est-ce qu un dossier? L arborescence? L ARBORESCENCE Qu est-ce qu un dossier? Un dossier est une pochette vide dans laquelle on peut disposer des documents créés à l aide de l outil informatique. Comme les systèmes utilisés dans la vie courante

Plus en détail

Programmation, partiel: sémantique d un tableur

Programmation, partiel: sémantique d un tableur Programmation, partiel: sémantique d un tableur Recommandations. Votre copie (papier ou électronique) devra être lisible et bien structurée. La note tiendra compte autant du fond que de la présentation.

Plus en détail

L approche Bases de données

L approche Bases de données L approche Bases de données Cours: BD. Avancées Année: 2005/2006 Par: Dr B. Belattar (Univ. Batna Algérie) I- : Mise à niveau 1 Cours: BDD. Année: 2013/2014 Ens. S. MEDILEH (Univ. El-Oued) L approche Base

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université

Plus en détail

Grammaires formelles, Automates

Grammaires formelles, Automates 1/39 Grammaires formelles, Automates Pierre Zweigenbaum LIMSI, CNRS pz@limsi.fr http://www.limsi.fr/~pz/ 2/39 1 Syntaxe : grammaire, analyse 2 Grammaires formelles Langage et grammaire Grammaires régulières

Plus en détail

Théorie des Langages Formels Chapitre 5 : Automates minimaux

Théorie des Langages Formels Chapitre 5 : Automates minimaux Théorie des Langages Formels Chapitre 5 : Automates minimaux Florence Levé Florence.Leve@u-picardie.fr Année 2015-2016 1/29 Introduction Les algorithmes vus précédemment peuvent mener à des automates relativement

Plus en détail

ALGORITHMES POUR LA VISUALISATION SCIENTIFIQUE

ALGORITHMES POUR LA VISUALISATION SCIENTIFIQUE BAZEILLE Stéphane MOUGEL Baptiste IUP3 ALGORITHMES POUR LA VISUALISATION SCIENTIFIQUE EN Année 2003/2004 1 TABLE DES MATIERES Home... 3 Introduction.... 3 Marching Square... 4 Algorithme....4 Programmation...4

Plus en détail

Théorie des graphes. Introduction. Programme de Terminale ES Spécialité. Résolution de problèmes à l aide de graphes. Préparation CAPES UCBL

Théorie des graphes. Introduction. Programme de Terminale ES Spécialité. Résolution de problèmes à l aide de graphes. Préparation CAPES UCBL Introduction Ces quelques pages ont pour objectif de vous initier aux notions de théorie des graphes enseignées en Terminale ES. Le programme de Terminale (voir ci-après) est construit sur la résolution

Plus en détail

Algorithmique et Programmation Projets 2012/2013

Algorithmique et Programmation Projets 2012/2013 3 Dames 3. Objectif Il s agit d écrire un programme jouant aux Dames selon les règles. Le programme doit être le meilleur possible. Vous utiliserez pour cela l algorithme α β de recherche du meilleur coup

Plus en détail

Le Sphinx Millenium Modes opératoires d'analyse de données Traitements et analyses avec Le Sphinx Plus²

Le Sphinx Millenium Modes opératoires d'analyse de données Traitements et analyses avec Le Sphinx Plus² Le Sphinx Millenium Modes opératoires d'analyse de données Traitements et analyses avec Le Sphinx Plus² Le Sphinx Développement Parc Altaïs 74650 CHAVANOD Tél : 33 / 4.50.69.82.98. Fax : 33 / 4.50.69.82.78.

Plus en détail

Pourquoi l apprentissage?

Pourquoi l apprentissage? Pourquoi l apprentissage? Les SE sont basés sur la possibilité d extraire la connaissance d un expert sous forme de règles. Dépend fortement de la capacité à extraire et formaliser ces connaissances. Apprentissage

Plus en détail

Rapport du Jury du Concours 2010 Épreuve Pratique d Algorithmique et de Programmation (EPAP)

Rapport du Jury du Concours 2010 Épreuve Pratique d Algorithmique et de Programmation (EPAP) Rapport du Jury du Concours 2010 Épreuve Pratique d Algorithmique et de Programmation (EPAP) Loris Marchal, Guillaume Melquion, Frédéric Tronel 21 juin 2011 Remarques générales à propos de l épreuve Organisation

Plus en détail

Chapitre 7. Problèmes de flots. 7.1 Exemple. 7.2 Notions de base sur les graphes

Chapitre 7. Problèmes de flots. 7.1 Exemple. 7.2 Notions de base sur les graphes Chapitre 7 Problèmes de flots. 7.1 Exemple. Un réseau electrique est formé de lignes reliant des noeuds (transformateurs, centre de redistributions,...), chaque ligne a une capacité de transport maximale.

Plus en détail

V ERSION EXPERIMENTALE

V ERSION EXPERIMENTALE V ERSION EXPERIMENTALE Cette version de Sipina v 3.0 n est pas, et ne sera jamais, définitive, elle sert d outil de recherche, elle a plus une vocation d outil d expérimentation que de logiciel dédié au

Plus en détail

Définitions. Numéro à préciser. (Durée : )

Définitions. Numéro à préciser. (Durée : ) Numéro à préciser (Durée : ) On étudie dans ce problème l ordre lexicographique pour les mots sur un alphabet fini et plusieurs constructions des cycles de De Bruijn. Les trois parties sont largement indépendantes.

Plus en détail

Adaptation sémantique de documents SMIL

Adaptation sémantique de documents SMIL Adaptation sémantique de documents SMIL Sébastien Laborie Jérôme Euzenat Nabil Layaïda INRIA Rhône-Alpes - 655 Avenue de l Europe - 38334 St Ismier Cedex {Sebastien.Laborie;Jerome.Euzenat;Nabil.Layaida}@inrialpes.fr

Plus en détail

Vinh Thong Ta. Représentation d images par arbres binaires de. Rapport de stage de D.E.A. septembre 2004

Vinh Thong Ta. Représentation d images par arbres binaires de. Rapport de stage de D.E.A. septembre 2004 Vinh Thong Ta Rapport de stage de D.E.A. septembre 2004 Représentation d images par arbres binaires de régions Laboratoire d accueil : Laboratoire Universitaire des Sciences Appliquées de Cherbourg groupe

Plus en détail

Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1

Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1 Exemples de problèmes et d applications INF6953 Exemples de problèmes Sommaire Quelques domaines d application Quelques problèmes réels Allocation de fréquences dans les réseaux radio-mobiles Affectation

Plus en détail

Jean-Philippe Préaux http://www.i2m.univ-amu.fr/~preaux

Jean-Philippe Préaux http://www.i2m.univ-amu.fr/~preaux Colonies de fourmis Comment procèdent les colonies de fourmi pour déterminer un chemin presque géodésique de la fourmilière à un stock de nourriture? Les premières fourmis se déplacent au hasard. Les fourmis

Plus en détail

Structures de données linéaires

Structures de données linéaires Structures de données linéaires I. Liste, Pile et file. Une liste linéaire est la forme la plus simple et la plus courante d'organisation des données. On l'utilise pour stocker des données qui doivent

Plus en détail

Comment optimiser A adaptatif

Comment optimiser A adaptatif Comment optimiser A adaptatif Adaptive A : how to best exploit past problem-solving episodes Lou Fedon 1, 2 Antoine Cornuéjols 2 1 Équipe Inférence et Apprentissage, Laboratoire de Recherche en Informatique

Plus en détail

La notion de dualité

La notion de dualité La notion de dualité Dual d un PL sous forme standard Un programme linéaire est caractérisé par le tableau simplexe [ ] A b. c Par définition, le problème dual est obtenu en transposant ce tableau. [ A

Plus en détail

Les automates. Fabrice EUDES, Pascal EVRARD, Philippe MARQUET, François RECHER & Yann SECQ

Les automates. Fabrice EUDES, Pascal EVRARD, Philippe MARQUET, François RECHER & Yann SECQ Les automates Fabrice EUDES, Pascal EVRARD, Philippe MARQUET, François RECHER & Yann SECQ Avril 2015 Retour sur l île et le barman Deux problèmes similaires: Des îles, des bateaux et un trésor à trouver

Plus en détail

Optimisation de requêtes. I3009 Licence d informatique 2015/2016. Traitement des requêtes

Optimisation de requêtes. I3009 Licence d informatique 2015/2016. Traitement des requêtes Optimisation de requêtes I3009 Licence d informatique 2015/2016 Cours 5 - Optimisation de requêtes Stéphane.Gançarski Stephane.Gancarski@lip6.fr Traitement et exécution de requêtes Implémentation des opérateurs

Plus en détail

Tableur - L'interface d'excel

Tableur - L'interface d'excel Tableur - L'interface d'excel Qu'est-ce qu'un tableur? - Une définition: un tableur est un outil informatique qui permet de traiter des données, d'effectuer des calculs de façon automatique. Ces calculs,

Plus en détail

www.toyota-forklifts.be Solutions de rayonnage

www.toyota-forklifts.be Solutions de rayonnage www.toyota-forklifts.be Solutions de rayonnage Les solutions de rayonnage de Toyota Material Handling Toyota Material Handling a toujours favorisé une approche de la manutention axée sur la recherche de

Plus en détail

Les arbres Florent Hivert

Les arbres Florent Hivert 1 de 1 Algorithmique Les arbres Florent Hivert Mél : Florent.Hivert@lri.fr Page personnelle : http://www.lri.fr/ hivert 2 de 1 Algorithmes et structures de données La plupart des bons algorithmes fonctionnent

Plus en détail

Université Bordeaux 1 Master d informatique UE Bases de Données Sujet et correction de l examen du 27 mai 2004 8h00 9h30 (sans documents)

Université Bordeaux 1 Master d informatique UE Bases de Données Sujet et correction de l examen du 27 mai 2004 8h00 9h30 (sans documents) Numéro d anonymat: 1 Université Bordeaux 1 Master d informatique UE Bases de Données Sujet et correction de l examen du 27 mai 2004 8h00 9h30 (sans documents) Sauf mention contraire en caractères gras,

Plus en détail

Arbres binaires. Chapitre 1. 1. Introduction. option informatique. 1.1 Définition formelle d un arbre binaire

Arbres binaires. Chapitre 1. 1. Introduction. option informatique. 1.1 Définition formelle d un arbre binaire Chapitre option informatique Arbres binaires. Introduction Dans son acceptation la plus générale, un arbre est un graphe acyclique orienté enraciné : tous les sommets, à l exception de la racine, ont un

Plus en détail

Cinquième partie V. 5. Programmation des jeux de réflexion. Plan. Programmation des jeux vs. résolution de problèmes. En bref...

Cinquième partie V. 5. Programmation des jeux de réflexion. Plan. Programmation des jeux vs. résolution de problèmes. En bref... Plan Cinquième partie V Programmation des jeux de réflexion 1. ntroduction à l intelligence artificielle 2. Agents intelligents. Algorithmes classiques de recherche en A 4. Algorithmes et recherches heuristiques

Plus en détail

Systèmes Dynamiques. making workspace work

Systèmes Dynamiques. making workspace work Systèmes Dynamiques making workspace work Système dynamiques Systèmes de stockage avec le LISTA Lift Optimiser l espace, optimiser le temps, optimiser les coûts Une technique de stockage rationnelle fait

Plus en détail

1 Etude des propriétés d un réseau de Petri

1 Etude des propriétés d un réseau de Petri UNIVERSITE DE CAEN U.F.R. de SCIENCES 1 ière session 2005 Master EEA 1A, Pro AEII et recherche ESCI Examen: Réseaux de Petri AE406T2 durée: 1h30 Responsable : G. Scorletti Chaque candidat doit, au début

Plus en détail

Outils Statistiques du Data Mining

Outils Statistiques du Data Mining Outils Statistiques du Data Mining Pr Roch Giorgi roch.giorgi@univ-amu.fr SESSTIM, Faculté de Médecine, Aix-Marseille Université, Marseille, France http://sesstim-orspaca.org http://optim-sesstim.univ-amu.fr

Plus en détail

chapitre 4 Nombres de Catalan

chapitre 4 Nombres de Catalan chapitre 4 Nombres de Catalan I Dénitions Dénition 1 La suite de Catalan (C n ) n est la suite dénie par C 0 = 1 et, pour tout n N, C n+1 = C k C n k. Exemple 2 On trouve rapidement C 0 = 1, C 1 = 1, C

Plus en détail