Approche d'évaluation pour les problèmes d'ordonnancement multicritères : Méthode d'agrégation avec direction de recherche dynamique

Dimension: px
Commencer à balayer dès la page:

Download "Approche d'évaluation pour les problèmes d'ordonnancement multicritères : Méthode d'agrégation avec direction de recherche dynamique"

Transcription

1 Approche d'évaluation pour les problèmes d'ordonnancement multicritères : Méthode d'agrégation avec direction de recherche dynamiue D. BERKOUNE 2, K. MESGHOUNI, B. RABENASOLO 2 LAGIS UMR CNRS 846, Ecole Centrale de Lille, BP 48, 5965 Villeneuve d Asc Cedex, France 2 GEMTEX EA 246, Ecole Nationale Supérieure des Arts et Industries Textiles 9, rue de l Ermitage, BP 30329, Roubaix Cedex 0, France Résume : Dans ce papier, nous traitons l un des problèmes survenant dans les ateliers de production où on souhaite maximiser la uantité des produits réalisés tout en minimisant au mieux le maespan et les coûts de production, en utilisant les algorithmes génétiues. L'obectif principal est de générer une variété de solutions optimales diversifiées dans l'espace de recherche, et d'aider le décideur uand il ne peut pas donner une préférence particulière de uelues fonctions obectives.. Introduction L optimisation multi-obectif cherche à optimiser plusieurs composantes d un vecteur fonction coût. Contrairement à l optimisation uni-obectif, la solution d un problème multi-obectif (PMO) n est pas une solution uniue, mais un ensemble de solutions, connu comme l ensemble des solutions Pareto optimales (PO). Toute solution de cet ensemble est optimale dans le sens u'aucune amélioration ne peut être faite sur une composante du vecteur sans dégradation d'au moins une autre composante du vecteur (Talbi, 999). Le choix d une solution par rapport à une autre nécessite la connaissance du problème et de nombreux facteurs liés au problème. Ainsi, une solution choisie par le décideur peut ne pas être acceptable pour un autre décideur. Il est donc utile d avoir plusieurs alternatives dans le choix d une solution Pareto optimale (PO). Dans cet article, on s intéresse aux problèmes d ordonnancement dans les ateliers de production ou l obectif principal étant de produire le maximum de produits avec un temps et un coût minimum. On souhaite alors minimiser le maespan et le coût de production en utilisant les algorithmes génétiues, ces dernier ont été efficacement utilisés dans la résolution des problèmes multicritères (Talbi, 999), (Srinivas et al., 995). Pour la minimisation de ces critères il existe plusieurs méthodes de transformation des problèmes multi-obectifs en problèmes uni-obectifs (Collette et al., 2002). Le but principal est de générer une variété de solution Pareto optimales diversifiées dans l'espace de recherche. Ce papier est organisé comme suit : dans la section 2 nous présentons les PMO. Une définition des algorithmes génétiues et leurs opérateurs est présentée dans la section 3. Dans les sections 4 et 5 nous faisons une description du problème d'ordonnancement et de l'approche utilisée pour calculer les bornes inférieures. Notre approche de résolution des PMO est présentée dans la section 6. Dans la section 7, nous montrons l efficacité de l approche utilisée par des exemples. Enfin, dans la conclusion, nous présentons uelues perspectives de recherche dans le domaine. 2. Définition du problème Multicritères Un PMO peut-être définit de la manière suivante : F(x) = (f (x),f 2 (x),,f L (x)) avec x C () Où L 2 est le nombre de fonctions obectifs, x=(x,x 2,,x L ) est le vecteur représentant les variables de décision et F(x) est le vecteur des critères à optimiser, C représente l ensemble des solutions réalisables associé à des contraintes d égalité, d inégalité et des bornes explicites. Dans la résolution de PMO, plusieurs méthodes traditionnelles transforment le PMO en un problème uni-obectif. Parmi ces méthodes on trouve : La méthode d agrégation, la méthode de compromis, et la méthode de programmation par but (Talbi, 999), (Collette et al., 999). Ces approches ont été largement utilisées dans la littérature à l aide de différentes métaheuristiues tel ue : Algorithmes génétiues (Liu et al., 998). Recuit simulé (Serafini, 992). Recherche tabou (Glover et al., 997). Dans notre travail nous utiliserons les algorithmes génétiues pour le problème multi-obectif dont le but de minimiser deux critères ui sont : La durée et le coût de

2 production, pour cela on utilise les méthodes d'agrégation avec recherche dynamiue de direction ui permet d'aider le décideur uand il ne peut pas clairement donner une préférence particulière de uelues fonctions obectifs. 3. Conception des algorithmes génétiues La première description rigoureuse du processus des algorithmes génétiues (AGs) a été donnée par Holland en 960 (Holland, 975). Les AGs sont des algorithmes itératifs de recherche dont le but est d optimiser une fonction prédéfinie appelée le critère ou fonction coût (fitness), ils travaillent en parallèle sur un ensemble de solutions candidates, appelé «population» d individus ou chromosomes. Ces derniers sont constitués d un ensemble d éléments appelés «gènes» ui peuvent prendre plusieurs valeurs appelées «allèles» (Renders, 995). Un chromosome est une représentation ou un codage sous forme de chaîne d une solution du problème donné. Une première population est choisie soit aléatoirement, soit par des heuristiues ou par des méthodes spécifiues au problème, soit encore par mélange de solutions aléatoires et heuristiues, cette population doit être suffisamment diversifiée pour ue l'algorithme ne reste pas bloué dans un optimum local. C'est ce ui se produit lorsue trop d'individus sont semblables. Les AGs génèrent de nouveaux individus de telle sorte u ils soient plus performants ue leurs prédécesseurs. Le processus d amélioration des individus s effectue par utilisation d opérateurs génétiues ui sont : la sélection, le croisement et la mutation (Syswerda, 990, Goldberg, 989). Codage : Un individu (ou chromosome) est représenté par une matrice, chaue ligne représente la gamme de chaue ordre de fabrication. Chaue cellule de cette ligne (représentant une opération) contient deux termes. Le premier indiue le numéro de la machines ui est affectée à l exécution de cette opération, le second représente la date de début d exécution de l opération si son affectation sur cette machine est définitive cette date est calculée en tenant compte des contraintes de ressource et de précédence (Mesghouni, 999). D une façon générale un chromosome se présente comme suit : J : (m,t m ) m est la machine ui est affectée à l exécution de l opération, t m est la date de début d exécution sur la machine m. Opérateurs génétiues : Croisement : Le but du croisement est d'obtenir par mélange de solutions d'autres chromosomes susceptibles d'améliorer les résultats. Dans notre cas il y'a deux opérateurs de croisement (Mesghouni, 999); l'opérateur de croisement ligne manipule les obs et l'opérateur de croisement colonne manipule un ensemble d'opérations. Mutation : Le rôle essentiel de la mutation est d'introduire une certaine diversification dans la population ue l'opérateur de croisement ne peut pas apporter. Sélection : Cet opérateur consiste à choisir les individus à partir desuels on va créer la génération suivante. Dans notre cas on a utilisé le principe de la roulette, ui permet de retenir les individus les plus prometteurs en terme de fonction fitness. 4. Description du problème d'ordonnancement Un ensemble de N obs doit être ordonnancé sur un ensemble de machines M. Chaue ob représente un certain nombre n d'opérations. Chaue opération i du ob notée O i doit être exécutée sur une des machines avec une date de début au plus tôt r i (la date de début au plus tôt du ob est r = r ) et une contrainte de précédence (r i+, r i + p im ) à chaue opération O i est associée un ensemble de durées opératoires sur l'ensemble des machines (p im ; m M). Un ordonnancement consiste alors à attribuer une machine m ui sera affectée à l'exécution de O i (x im =, avec x im le coefficient d'affectation de l'opération O i sur la machine m); et une date de début pour chaue O i. L'obectif est de trouver la date de début d exécution pour chaue opération O i et la machine affectée en respectant toutes les contraintes considérées, ainsi ue d ordonnancer les obs de façon à minimiser les critères considérés. Les obectifs considérés sont : - minimiser le maespan C max : C max = max {C =,..., N} (2) Où C est la date de fin du ob - minimiser le coût de production C : N M N N C = F + Lm + S + P = m= = = Où L m est le coût de lancement de la machine m. o Le coût de fabrication du ob (F ) : F = MP + M n xim m= = CMmp im (3) (4) Où MP est le coût de la matière première du ob et CM m est le coût unitaire sur la machine m o Le des pénalités du ob (P ) : P = Cp T. Avec T = max {0, C -d } (5) Où Cp est le coût de pénalisation du ob.et T est la durée de pénalité. o Le coût de stocage du ob (S ) : S = Cs E ; Avec E = min {0, C -d } (6) Où Cs est le coût de stocage du ob, E est la durée de stocage et d est date de livraison du ob.

3 5. Les bornes inférieures Le problème de ob shop flexible (FJSP) traité est connu en tant u'un des problèmes d'optimisation de type NP difficile. Pour de tels problèmes, les méthodes exactes reuièrent un effort calculatoire ui croît exponentiellement avec la taille des instances du problème. Notre obectif est de proposer une solution assez proche de la solution optimale. Du fait ue nous n'avons pas l'information sur cette solution optimale, nous nous somme orientés vers le calcul des bornes inférieures ui permet de comparer les valeurs réelles obtenues aux bornes inférieures correspondantes afin de mesurer l'efficacité de notre approche. a. Bornes Inférieures du Maespan des obs Les bornes inférieures pour les obs se calculent par la méthode suivante : Proposition. La uantité suivante est une borne inférieure du maespan des obs : n C bi = max n r + γ i (7) i= Preuve. Pour n importe uelle affectation des opérations sur les machines, la durée totale de production (maespan) est la date de fin de toutes les opérations : C max = max {C =,, N}. Or, pour chaue opération, p im γ = min ( p ) par i m M définition, et en supposant u il n y pas d intervalle d attente entre deux opérations successives, nous avons la minoration (7) précédente car : C r n + p i= im im où m est la machine affectée à O i. Remarue. Si le cardinal de l'ensemble de obs N est supérieur au nombre de machine ou dans le cas de relaxation de certaine contraintes (préemption des tâches, contrainte disonctive sur les ressources ), il n y a pas de solution ui atteigne la borne inférieure (7). Dans ce cas la méthode de calcul d une borne inférieure possible est la suivante : Proposition 2. La uantité suivante est une borne inférieure du maespan des obs. C M n n = r m + γ (8) i M m= = i= bi2 ' Preuve. On suppose ue le nombre de obs N est supérieur au nombre de machines M. Chaue machine m a une date de disponibilité au plus tôt notée r m. L idée de base est de répartir uniformément toutes les tâches sur les machines. En utilisant le même raisonnement utilisé dans le calcul classiue des bornes inférieures (Carlier, 987), et en relachant la contrainte de non préemption des tâches, on obtient la minoration suivante : n n r' + r' 2 + r' r' M + γ M C max En conséuence : C max M r' M m= i = i = m n n + γ i = i= Conclusion récapitulative. Les bornes précédentes (7) et (8) nous permettent de prévoir des limites pour les valeurs du maespan. Ces limites sont définies par la relation suivante : C max M n n n = max r' m + γ i, max( r + γ ) (9) i M m= = i= n i= b. Bornes inférieures du coût de production des obs Proposition 3. La uantité suivante est une borne inférieure du coût de production des obs : = N n N M im m m = i = m = m= C ( min( p. CM ) + MP + ω L ) (0) ω m : Coefficient d'utilisation de la machine m, ω m ={0,} ω m L m : de lancement de la machine m; Preuve. On considère ue les obs finissent uste à temps (pas stocs et pas de pénalités). 6. Approche d'évaluation multicritères Nous intéressons à évaluer et à comparer les solutions selon plusieurs critères. D'une manière générale, ces critères présentent des relations non linéaires et complexes entre elles et n'ont pas forcément la même importance du point de vue des décideurs. Ainsi, beaucoup de considérations peuvent être prises pour tenir compte de toutes ces difficultés. L'évaluation proposée consiste à transformer le problème (PMO) en un problème (PMO λ ) ui revient à combiner les différentes fonctions coût f du problème en une seule fonction obectif F. Les solutions Pareto optimales peuvent être obtenues par la résolution du programme mathématiue suivant : F( x) = L = λ f ( x) () Où les poids λ [,0], et L = λ =. Différents poids fournissent différentes solutions. La même solution peutêtre générée en utilisant des poids différents. L ensemble de ces solutions peut être généré par la résolution de (PMO λ ) pour différentes valeurs du vecteur de poids λ. L'évaluation proposée est la suivante : - Pour chaue fonction obectif on calcule ces bornes inférieures, telle ue : f x ( ) f x C (2) Ces bornes sont utiles pour évaluer et uger les solutions obtenues avec précision. - Les valeurs des fonctions obectifs dans la plupart des cas peuvent appartenir à différents intervalles de magnitude variable. Ainsi, pour être efficace, la fonction obectif globale () doit être homogénéisée afin d'éviter m

4 ue les obectifs ne soient dominés les uns par les autres. Pour éviter un tel inconvénient ui peut négliger certaines fonctions obectifs et amplifier les autres, nous pouvons utiliser une application simple de la logiue floue basée sur les étapes suivantes : - Soit f la moyenne des solutions de la ième fonction obectif trouvée avec l'algorithme génétiue à la ième itération : f f ( x) = (3) Cardinal( P ) P : Population des solutions à la iéme itération - Pour chaue vecteur f(x), on appliue une fuzziffication de ces composantes f (x) selon leurs positions dans les intervalles [ f 0, f + ε ] où ε est une petite valeur positive conçue pour éviter un problème de division par zéro (ε = 0.0. f si f 0 = f autrement ε = 0). - Pour aider le décideur uand il ne peut pas clairement donner une préférence particulière de uelues fonctions obectifs, nous proposons de construire un ensemble de solutions Pareto optimales sans accorder aucun privilège à une direction particulière de recherche. Cette approche sera basée sur un algorithme dans leuel les pondérations λ seront calculées en utilisant une règle floue (Kacem, 2003). L'idée est de mesurer la ualité moyenne des solutions selon chaue critère à chaue itération et de calculer les différents poids suivant le degré de cette ualité. Le but est d'étudier les gains et les améliorations possibles des solutions en accordant la priorité à l'optimisation des fonctions obectifs dont la moyennes des valeurs est loin de la valeur optimale (ou de la borne inférieure), cette approche est appelée : Approche agrégative avec direction de recherche dynamiue. A Proche f 0 f + ε Figure. Fonction d'appartenance des différentes valeurs des critères L'évaluation de la ualité des solutions se fait en utilisant les fonctions d'appartenance illustrées dans la figure.. Ainsi on distingue deux sous ensembles de solutions. - sous-ensemble de solutions proches de la borne inférieure; - sous-ensemble de solutions lointaines de la borne inférieure. Loin f Les fonctions d'appartenance sont formulées comme suit (Kacem, 2003) : A f f ( f ) = Si f 0 [ f ] 0, f + ε f f + ε sinon A ( f ) = (4) + Le calcul des différentes pondérations λ est effectué en utilisant la règle floue suivante : + Si ( f est Proche de f ) alors ( λ ) + Si ( f est Loin de f ) alors ( λ ) L'application de cette règle donne la formule suivante : A ( ) + f λ = L, λ = L et L A ( f ) Tr- (5) Où Tr est le nombre total d'itérations. f 2 f 2 Figure 2. Direction de recherche Pour résoudre le problème des valeurs des fonctions obectifs ui peuvent appartenir à différents intervalles de magnitude variable, nous pouvons utiliser une application simple de logiue floue basée sur les étapes suivantes : - A chaue solution réalisable x, nous associons un vecteur f(x) = (f (x),f 2 (x),,f Cr (x)) T H - En particulier, soit H une heuristiue choisie et f la valeur maximale de la solution donnée par l'heuristiue considérée selon la iéme fonction obectif. La fuzzification est appliuée en utilisant la fonction d'appartenance comme la montre la figure suivante : µ f P Tr Bon f P + H f + ε Figure 3. Application floue dans la résolution du problème d'échelle P Mauvais P f f

5 Les valeurs normalisées des fonctions obectifs se calculent par la formule suivante : f ( x) f µ ( f ( x)) = (6) H f f + ε Avec µ (f (x)) est la valeur normalisée de la fonction obectif f (x). La formulation de la fonction d'évaluation globale est la suivante : f ( x) = L λ µ ( f ( x)) (7) = 7. Exemple Quelues exemples ont été examinés pour évaluer la ualité de notre méthode basée sur des données pratiues en changeant aléatoirement le nombre de obs N aussi bien ue le nombre de machines M, et les durées de chaue opération sur l'ensemble de machines (p i ). Figure 6. 6 obs et 6 machines Méthodes d'agrégation avec direction de recherche dynamiue Cette méthode est utilisée généralement uand le décideur ne peut pas donner une préférence particulière de uelues fonctions obectifs. Elle permet de générer des poids différent d'une itération à une autre de manière dynamiue en fonction de la moyenne des solutions selon chaue critère à chaue itération. Résultats. Figure 7. 6 obs et 4 machines Figure 8. 0 obs et 7 machines Figure 4. 8 obs et 5 machines Figure obs et 5 machines Figure 9. 5 obs et 9 machines

6 Figure 0. obs et 9 machines Figure. 4 obs et 7 machines Avec la méthode d'agrégation avec recherche de direction dynamiue on constate ue l'ensemble des solutions se rapproche de la solution optimale (ou du point d'intersection des bornes inférieures des critères considérés), d'une itérations à une autre, cela indiue ue les poids des critères sont calculés dynamiuement selon la distance entre les bornes inférieures et la moyenne des solutions de l'itération précedente. 8. Conclusion Dans cet article, nous avons mis l'accent sur uelues axes de recherche, et ui, a notre avis, possèdent un intérêt primordial dans la résolution de problèmes multicritères. Une approches d'aide à la décision : La recherche d'un ensemble de solutions Pareto optimales n'est u'une première étape pour résoudre un PMO. La deuxième étape consiste à faire un choix final parmi les solutions trouvées. Pour ce faire, nous pensons ue les algorithmes ui ne se basent pas a priori sur des préférences sont généralement plus intéressant, pour les raisons suivantes : - Les décideurs désirent en général plusieurs alternatives et non pas une meilleure solution uniue. - La difficulté de déterminer a priori des préférences sans la connaissance du problème. Les études actuelle se basent sur la reproduction des solutions supportées sans donner des poids particuliers pour les fonctions obectifs (algorithme NSGA (Srinivas et al., 995)) 9. Références J. Carlier, Scheduling obs with release dates and tails on identical machines to minimize Maespan, European Journal of Operational Research, 29 pp , 987 Y. Collette, P. Siary. Optimisation multiobectif. Edition Eyrolles, 2002 I. Kacem. Ordonnancement multicritères des ob shops flexibles : formulation, bornes inférieures et approche évolutionniste coopérative. Thèse université de Lille, 2003 X. Liu, D. Begg, R. J. Fishwic. Genetic approach to optimal topology/controller design of adaptive structures. International Journal for Numerical Methods in Engineering, 4 pp ,998 K. Mesghouni. Application des algorithmes évolutionnistes dans les problèmes d'optimisation en ordonnancement de la production. Thèse université de Lille, 999 P. Serafini. Simulated annealing for multiple obective optimization problems. In 0th Int. Conf. on Multiple Criteria Decision Maing, pp 87-96, 992 N. Srinivas, K. Deb. Multiobective optimisation using non-dominated sorting in genetic algorithms. Evolutionary Computation 2(8) pp , 995 E.G. Talbi. Métaheuristiues pour l'optimisation combinatoire multi-obectif. Tutorial, Journée Evolutionnaires Trimestrielles, Paris, 999 J.H. Holland. Adaptation in natural and artificial system, University of Michigan Press 975 D.E Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, 989. J.M. Renders. Algorithmes génétiues et réseaux de neurones, Edition Hermès995. G. Syswerda. Schedule Optimization Using Genetic Algorithm, in Handboo of Genetic Algorithm, Van Nostrand Reinhold, New Yor, 990 F. Glover, M. Laguna. Tabu search, Kluwer Academic Publishers, 997

Chapitre 1. L algorithme génétique

Chapitre 1. L algorithme génétique Chapitre 1 L algorithme génétique L algorithme génétique (AG) est un algorithme de recherche basé sur les mécanismes de la sélection naturelle et de la génétique. Il combine une stratégie de survie des

Plus en détail

Minimisation de la somme des retards dans un jobshop flexible

Minimisation de la somme des retards dans un jobshop flexible Minimisation de la somme des retards dans un jobshop flexible Nozha ZRIBI, Imed KACEM, Abdelkader EL KAMEL, Pierre BORNE LAGIS Ecole Centrale de Lille, BP 48, 5965 Villeneuve d Ascq Cedex, France ISTIT

Plus en détail

Une application des algorithmes génétiques à l ordonnancement d atelier

Une application des algorithmes génétiques à l ordonnancement d atelier Une application des algorithmes génétiques à l ordonnancement d atelier VACHER Jean-Philippe - GALINHO Thierry - MAMMERI Zoubir Laboratoire d Informatique du Havre Université du Havre 25, Rue Philippe

Plus en détail

ALGORITHME GENETIQUE ET MODELE DE SIMULATION POUR L'ORDONNANCEMENT D'UN ATELIER DISCONTINU DE CHIMIE

ALGORITHME GENETIQUE ET MODELE DE SIMULATION POUR L'ORDONNANCEMENT D'UN ATELIER DISCONTINU DE CHIMIE ALGORITHME GENETIQUE ET MODELE DE SIMULATION POUR L'ORDONNANCEMENT D'UN ATELIER DISCONTINU DE CHIMIE P. Baudet, C. Azzaro-Pantel, S. Domenech et L. Pibouleau Laboratoire de Génie Chimique - URA 192 du

Plus en détail

Ordonnancement en temps réel d un jobshop par métaheuristique hybride : étude comparative

Ordonnancement en temps réel d un jobshop par métaheuristique hybride : étude comparative Ordonnancement en temps réel d un jobshop par métaheuristique hybride : étude comparative Y. Houbad, M. Souier, A. Hassam, Z.Sari Laboratoire d automatique Tlemcen Faculté de technologie, Université Abou

Plus en détail

Hela Boukef. To cite this version: HAL Id: tel-00577101 https://tel.archives-ouvertes.fr/tel-00577101

Hela Boukef. To cite this version: HAL Id: tel-00577101 https://tel.archives-ouvertes.fr/tel-00577101 Sur l ordonnancement d ateliers job-shop flexibles et flow-shop en industries pharmaceutiques : optimisation par algorithmes génétiques et essaims particulaires Hela Boukef To cite this version: Hela Boukef.

Plus en détail

Cours des Méthodes de Résolution Exactes Heuristiques et Métaheuristiques

Cours des Méthodes de Résolution Exactes Heuristiques et Métaheuristiques Université Mohammed V, Faculté des Sciences de Rabat Laboratoire de Recherche Mathématiques, Informatique et Applications Cours des Méthodes de Résolution Exactes Heuristiques et Métaheuristiques MASTER

Plus en détail

LES MÉTA-HEURISTIQUES : quelques conseils pour en faire bon usage

LES MÉTA-HEURISTIQUES : quelques conseils pour en faire bon usage LES MÉTA-HEURISTIQUES : quelques conseils pour en faire bon usage Alain HERTZ Ecole Polytechnique - GERAD Département de mathématiques et de génie industriel CP 679, succ. Centre-ville, Montréal (QC) H3C

Plus en détail

Laboratoire d Automatique et Productique Université de Batna, Algérie

Laboratoire d Automatique et Productique Université de Batna, Algérie Anale. Seria Informatică. Vol. IX fasc. 2 Annals. Computer Science Series. 9 th Tome st Fasc. 2 La sélection de paramètres d un système industriel par les colonies de fourmis Ouahab Kadri, L. Hayet Mouss,

Plus en détail

PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES

PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES Leçon 11 PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES Dans cette leçon, nous retrouvons le problème d ordonnancement déjà vu mais en ajoutant la prise en compte de contraintes portant sur les ressources.

Plus en détail

A GRASPxELS approach for the Job Shop with generic time-lags and new statistical determination of the parameters

A GRASPxELS approach for the Job Shop with generic time-lags and new statistical determination of the parameters A GRASPxELS approach for the Job Shop with generic time-lags and new statistical determination of the parameters Présenté par : Equipe de travail : Laboratoire : Maxime CHASSAING Philippe LACOMME, Nikolay

Plus en détail

Évaluation d une méthode d ordonnancement multicritère utilisant AHP

Évaluation d une méthode d ordonnancement multicritère utilisant AHP Évaluation d une méthode d ordonnancement multicritère utilisant AHP FOUZIA OUNNAR 1, SELMA KHADER 2, YVES DUBROMELLE 1, JEAN-PIERRE PRUNARET 1, PATRICK PUJO 1 1 LSIS UMR CNRS 7296 Aix-Marseille Université

Plus en détail

Sommaire. Introduction.2. 1. Définition..2. 2. Historique.2. 3. Domaine d application.2. 4.Les Travaux réalisés sur les domaines d application.

Sommaire. Introduction.2. 1. Définition..2. 2. Historique.2. 3. Domaine d application.2. 4.Les Travaux réalisés sur les domaines d application. Sommaire Introduction.2 1. Définition..2 2. Historique.2 3. Domaine d application.2 4.Les Travaux réalisés sur les domaines d application.3 5.Algorithme 4 6.Exemple d application 5 7. Avantage et inconvénient..6

Plus en détail

Reconstruction d images binaires par l estimation moindres carrés et l optimisation valeur propre

Reconstruction d images binaires par l estimation moindres carrés et l optimisation valeur propre Reconstruction d images binaires par l estimation moindres carrés et l optimisation valeur propre Stéphane Chrétien & Franck Corset Université de Franche-Comté, UMR6623, Département Mathématiques 16 route

Plus en détail

MÉTHODE ÉTABLISSEMENT DES TABLEAUX. 4,55 e. Les Guides pratiques de La FFt

MÉTHODE ÉTABLISSEMENT DES TABLEAUX. 4,55 e. Les Guides pratiques de La FFt D Les Guides pratiues de La FFt MÉTHODE ÉTABLISSEMENT DES TABLEAUX 2013 FFT/Dir. de la Compétition e/dir. Communication et du Marketing Imprimé sur papier recyclé 4,55 e ISBN 2-907 267-65-5 Méthode d établissement

Plus en détail

Annexe 6. Notions d ordonnancement.

Annexe 6. Notions d ordonnancement. Annexe 6. Notions d ordonnancement. APP3 Optimisation Combinatoire: problèmes sur-contraints et ordonnancement. Mines-Nantes, option GIPAD, 2011-2012. Sophie.Demassey@mines-nantes.fr Résumé Ce document

Plus en détail

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Année 2008/2009 1 Décomposition QR On rappelle que la multiplication avec une matrice unitaire Q C n n (c est-à-dire Q 1 = Q = Q T ) ne change

Plus en détail

DOCUMENT DE TRAVAIL 1998-021. Centre de recherche sur l aide à l évaluation et à la décision dans les organisations (CRAEDO)

DOCUMENT DE TRAVAIL 1998-021. Centre de recherche sur l aide à l évaluation et à la décision dans les organisations (CRAEDO) Publié par : Published by : Publicación de la : Édition électronique : Electronic publishing : Edición electrónica : Disponible sur Internet : Available on Internet Disponible por Internet : Faculté des

Plus en détail

La notion de dualité

La notion de dualité La notion de dualité Dual d un PL sous forme standard Un programme linéaire est caractérisé par le tableau simplexe [ ] A b. c Par définition, le problème dual est obtenu en transposant ce tableau. [ A

Plus en détail

Couplage efficace entre Optimisation et Simulation stochastique Application à la maintenance optimale d une constellation de satellites

Couplage efficace entre Optimisation et Simulation stochastique Application à la maintenance optimale d une constellation de satellites Couplage efficace entre Optimisation et Simulation stochastique Application à la maintenance optimale d une constellation de satellites Benoît Beghin Pierre Baqué André Cabarbaye Centre National d Etudes

Plus en détail

Info0804. Cours 6. Optimisation combinatoire : Applications et compléments

Info0804. Cours 6. Optimisation combinatoire : Applications et compléments Recherche Opérationnelle Optimisation combinatoire : Applications et compléments Pierre Delisle Université de Reims Champagne-Ardenne Département de Mathématiques et Informatique 17 février 2014 Plan de

Plus en détail

Problèmes d ordonnancement dans les systèmes de production. Journée Automatique et Optimisation Université de Paris 12 20 Mars 2003

Problèmes d ordonnancement dans les systèmes de production. Journée Automatique et Optimisation Université de Paris 12 20 Mars 2003 Problèmes d ordonnancement dans les systèmes de production Michel Gourgand Université Blaise Pascal Clermont Ferrand LIMOS CNRS UMR 6158 1 Le LIMOS Laboratoire d Informatique, de Modélisation et d Optimisation

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

Optimisation Combinatoire (Méthodes approchées) II. Recherche Locale simple (Les bases)

Optimisation Combinatoire (Méthodes approchées) II. Recherche Locale simple (Les bases) Optimisation Combinatoire (Méthodes approchées) II. Recherche Locale simple (Les bases) Heuristique Constructive Itérativement, ajoute de nouvelles composantes à une solution partielle candidate Espace

Plus en détail

Fig.1. Structure d un AGQ

Fig.1. Structure d un AGQ Evolution d Automate Cellulaire par Algorithme Génétique Quantique Zakaria Laboudi 1 - Salim Chikhi 2 Equipe SCAL, Laboratoire MISC Université Mentouri de Constantine. E - Mail : 1 laboudizak@yahoo.fr;

Plus en détail

Algorithmique quantique : de l exponentiel au polynômial

Algorithmique quantique : de l exponentiel au polynômial Algorithmiue uantiue : de l onentiel au polynômial Novembre 008 Résumé L informatiue uantiue, même si elle n en est encore u à ses premiers pas, porte en elle des promesses ui lui ont valu un engouement

Plus en détail

Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires

Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires Julien Jorge julien.jorge@univ-nantes.fr Laboratoire d Informatique de Nantes Atlantique,

Plus en détail

Principales caractéristiques de Mixmod

Principales caractéristiques de Mixmod Modèle de mélanges Principales caractéristiques de Mixmod Gérard Govaert et Gilles Celeux 24 octobre 2006 1 Plan Le modèledemélange Utilisations du modèle de mélange Les algorithmes de Mixmod Modèle de

Plus en détail

Optimisation et programmation mathématique. Professeur Michel de Mathelin. Cours intégré : 20 h

Optimisation et programmation mathématique. Professeur Michel de Mathelin. Cours intégré : 20 h Télécom Physique Strasbourg Master IRIV Optimisation et programmation mathématique Professeur Michel de Mathelin Cours intégré : 20 h Programme du cours d optimisation Introduction Chapitre I: Rappels

Plus en détail

Système Immunitaire Artificiel Parallèle appliqué aux Flow Shop Hybride (FSH)

Système Immunitaire Artificiel Parallèle appliqué aux Flow Shop Hybride (FSH) République Algérienne Démocratique et Populaire Ministère de l Enseignement Supérieur et de la Recherche Scientifique Université des Sciences et de la Technologie d Oran -Mohamed Boudiaf USTO-MB Faculté

Plus en détail

Différentes opérateurs évolutionnaires de permutation: sélections, croisements et mutations

Différentes opérateurs évolutionnaires de permutation: sélections, croisements et mutations LABORATOIRE D INFORMATIQUE DE L UNIVERSITE DE FRANCHE-COMTE EA 4269 Différentes opérateurs évolutionnaires de permutation: sélections, croisements et mutations Mais HAJ-RACHID, Christelle BLOCH, Wahiba

Plus en détail

Etude d un cas industriel : Optimisation de la modélisation de paramètre de production

Etude d un cas industriel : Optimisation de la modélisation de paramètre de production Revue des Sciences et de la Technologie RST- Volume 4 N 1 /janvier 2013 Etude d un cas industriel : Optimisation de la modélisation de paramètre de production A.F. Bernate Lara 1, F. Entzmann 2, F. Yalaoui

Plus en détail

Ordonnancement robuste et décision dans l'incertain

Ordonnancement robuste et décision dans l'incertain Ordonnancement robuste et décision dans l'incertain 4 ème Conférence Annuelle d Ingénierie Système «Efficacité des entreprises et satisfaction des clients» Centre de Congrès Pierre Baudis,TOULOUSE, 2-4

Plus en détail

Optimisation Combinatoire et Colonies de Fourmis Nicolas Monmarche April 21, 1999 Sommaire Inspiration biologiques Ant Colony Optimization Applications TSP QAP Flow Shop Problemes dynamiques 1 Historique

Plus en détail

Ordonnancement temps réel

Ordonnancement temps réel Ordonnancement temps réel Laurent.Pautet@enst.fr Version 1.5 Problématique de l ordonnancement temps réel En fonctionnement normal, respecter les contraintes temporelles spécifiées par toutes les tâches

Plus en détail

Méthaheuristiques pour l optimisation combinatoire et l affectation sous contraintes

Méthaheuristiques pour l optimisation combinatoire et l affectation sous contraintes Méthaheuristiques pour l optimisation combinatoire et l affectation sous contraintes Jin-Kao Hao *, Philippe Galinier **, Michel Habib *** * LERIA, U.F.R. Sciences, Université d Angers, 2 bd Lavoisier,

Plus en détail

Bordereau de dépôt des pièces jointes à une demande de permis de construire

Bordereau de dépôt des pièces jointes à une demande de permis de construire /3 ) s obligatoires pour tous les dossiers : Bordereau de dépôt des pièces jointes à une demande de permis de construire Cocher les cases correspondant aux pièces jointes à votre demande et reporter le

Plus en détail

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation

Plus en détail

Modélisation et optimisation participative des processus métier assistées par un jeu de rôles

Modélisation et optimisation participative des processus métier assistées par un jeu de rôles Modélisation et optimisation participative des processus métier assistées par un jeu de rôles Les organisations doivent aujourd hui s'adapter de plus en plus vite aux évolutions stratégiques, organisationnelles

Plus en détail

Contribution à la compréhension de l avis de l expert dans un choix multiobjectifs. Cas industriel : fabrication de fromages

Contribution à la compréhension de l avis de l expert dans un choix multiobjectifs. Cas industriel : fabrication de fromages Contribution à la compréhension de l avis de l expert dans un choix multiobjectifs. Cas industriel : fabrication de fromages Irma RAMIREZ*, Jean RENAUD, Patrick TRUCHOT *Doctorante en ème année de thèse

Plus en détail

Un couplage métaheuristique / simulation appliqué au problème du job shop avec transport

Un couplage métaheuristique / simulation appliqué au problème du job shop avec transport Un couplage métaheuristique / simulation appliqué au problème du job shop avec transport LAURENT DEROUSSI 1, ICHEL GOURGAND 2 LIOS CNRS UR 6158 1 IUT de ontluçon, Avenue Aristide Briand B.P. 2235, 03101

Plus en détail

Sujets de stage. Sciences de la Fabrication et Logistique. Génie Industriel. Optimisation. Recherche opérationnelle. Simulation

Sujets de stage. Sciences de la Fabrication et Logistique. Génie Industriel. Optimisation. Recherche opérationnelle. Simulation 2011 2012 Sujets de stage Génie Industriel Optimisation Recherche opérationnelle Simulation Sciences de la Fabrication et Logistique Table des matières Problème de planification de production avec des

Plus en détail

Nouvelles propositions pour la résolution exacte du problème de sac à dos bi-objectif unidimensionnel en variables binaires

Nouvelles propositions pour la résolution exacte du problème de sac à dos bi-objectif unidimensionnel en variables binaires Nouvelles propositions pour la résolution exacte du problème de sac à dos bi-objectif unidimensionnel en variables binaires Julien Jorge, Xavier Gandibleux Laboratoire d Informatique de Nantes Atlantique

Plus en détail

Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1

Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1 Exemples de problèmes et d applications INF6953 Exemples de problèmes Sommaire Quelques domaines d application Quelques problèmes réels Allocation de fréquences dans les réseaux radio-mobiles Affectation

Plus en détail

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et

Plus en détail

Génération de stratégies de Trading par Programmation Génétique

Génération de stratégies de Trading par Programmation Génétique Génération de stratégies de Trading par Programmation Génétique Résumé L'objectif de ce projet est de réaliser un générateur, ou optimiseur, de stratégies de trading, en se basant sur une technique de

Plus en détail

Algorithmes de recherche

Algorithmes de recherche Algorithmes de recherche 1 Résolution de problèmes par recherche On représente un problème par un espace d'états (arbre/graphe). Chaque état est une conguration possible du problème. Résoudre le problème

Plus en détail

Une approche pour la valorisation des pratiques d intelligence économique dans les supply chains de PME

Une approche pour la valorisation des pratiques d intelligence économique dans les supply chains de PME Une approche pour la valorisation des pratiues d intelligence économiue dans les supply chains de PME PIERRE FENIES 1, NORBERT LEBRUMENT 2 Centre de Recherche Clermontois en Gestion et Management, EA 3848

Plus en détail

Méthode d extraction des signaux faibles

Méthode d extraction des signaux faibles Méthode d extraction des signaux faibles Cristelle ROUX GFI Bénélux, Luxembourg cristelle.roux@gfi.be 1. Introduction Au début d une analyse stratégique, la première question posée est très souvent la

Plus en détail

Optimisation des tournées de ramassage scolaire de la commune de Seneffe

Optimisation des tournées de ramassage scolaire de la commune de Seneffe Optimisation des tournées de ramassage scolaire de la commune de Seneffe Laurie Hollaert Séminaire GRT 7 novembre Laurie Hollaert Optimisation des tournées de ramassage scolaire de la commune de Seneffe

Plus en détail

Mlle Yasmin A. RÍOS SOLÍS

Mlle Yasmin A. RÍOS SOLÍS Thèse de DOCTORAT de l UNIVERSITÉ PARIS VI - PIERRE ET MARIE CURIE Spécialité : INFORMATIQUE présentée par : Mlle Yasmin A. RÍOS SOLÍS pour obtenir le grade de DOCTEUR de l UNIVERSITÉ PARIS VI Sujet de

Plus en détail

TECH. INFOTECH # 34 Solvabilité 2 : Le calcul du capital économique dans le cadre d un modèle interne. Introduction

TECH. INFOTECH # 34 Solvabilité 2 : Le calcul du capital économique dans le cadre d un modèle interne. Introduction INFO # 34 dans le cadre d un modèle interne Comment les méthodes d apprentissage statistique peuvent-elles optimiser les calculs? David MARIUZZA Actuaire Qualifié IA Responsable Modélisation et Solvabilité

Plus en détail

La classification automatique de données quantitatives

La classification automatique de données quantitatives La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations

Plus en détail

AVERTISSEMENT. D'autre part, toute contrefaçon, plagiat, reproduction encourt une poursuite pénale. LIENS

AVERTISSEMENT. D'autre part, toute contrefaçon, plagiat, reproduction encourt une poursuite pénale. LIENS AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il est soumis à la propriété intellectuelle

Plus en détail

Cours 02 : Problème général de la programmation linéaire

Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =

Plus en détail

Séparation et Evaluation pour le problème d ordonnancement avec blocage.

Séparation et Evaluation pour le problème d ordonnancement avec blocage. Séparation et Evaluation pour le problème d ordonnancement avec blocage. Abdelhakim Ait Zai 1, Abdelkader Bentahar 1, Hamza Bennoui 1, Mourad Boudhar 2 et Yazid Mati 3 1 Faculté d Electronique et d Informatique,

Plus en détail

Un propagateur basé sur les positions pour le problème d Open-Shop.

Un propagateur basé sur les positions pour le problème d Open-Shop. Actes JFPC 2007 Un propagateur basé sur les positions pour le problème d Open-Shop. Jean-Noël Monette Yves Deville Pierre Dupont Département d Ingénierie Informatique Université catholique de Louvain {jmonette,yde,pdupont}@info.ucl.ac.be

Plus en détail

Principe de symétrisation pour la construction d un test adaptatif

Principe de symétrisation pour la construction d un test adaptatif Principe de symétrisation pour la construction d un test adaptatif Cécile Durot 1 & Yves Rozenholc 2 1 UFR SEGMI, Université Paris Ouest Nanterre La Défense, France, cecile.durot@gmail.com 2 Université

Plus en détail

Optimisation multi-critère pour l allocation de ressources sur Clouds distribués avec prise en compte de l énergie

Optimisation multi-critère pour l allocation de ressources sur Clouds distribués avec prise en compte de l énergie Optimisation multi-critère pour l allocation de ressources sur Clouds distribués avec prise en compte de l énergie 1 Présenté par: Yacine KESSACI Encadrement : N. MELAB E-G. TALBI 31/05/2011 Plan 2 Motivation

Plus en détail

Mesurer la pauvreté dans un pays en développement

Mesurer la pauvreté dans un pays en développement Mesurer la pauvreté dans un pays en développement Nicolas Ponty 1 Décrire la pauvreté dans un pays en développement constitue pour le statisticienéconomiste une tâche de première importance compte tenu

Plus en détail

Rapport d'analyse des besoins

Rapport d'analyse des besoins Projet ANR 2011 - BR4CP (Business Recommendation for Configurable products) Rapport d'analyse des besoins Janvier 2013 Rapport IRIT/RR--2013-17 FR Redacteur : 0. Lhomme Introduction...4 La configuration

Plus en détail

Ceci permettra de modifier la façon dont les cadres supérieurs dirigeront leurs entreprises

Ceci permettra de modifier la façon dont les cadres supérieurs dirigeront leurs entreprises Ceci permettra de modifier la façon dont les cadres supérieurs dirigeront leurs entreprises Préparé pour le Bureau des aliments par Jonothan Calof, Université d Ottawa Préface Le présent manuel fait suite

Plus en détail

Optimisation de requêtes. I3009 Licence d informatique 2015/2016. Traitement des requêtes

Optimisation de requêtes. I3009 Licence d informatique 2015/2016. Traitement des requêtes Optimisation de requêtes I3009 Licence d informatique 2015/2016 Cours 5 - Optimisation de requêtes Stéphane.Gançarski Stephane.Gancarski@lip6.fr Traitement et exécution de requêtes Implémentation des opérateurs

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

Travail d Étude et de Recherche. Aide à l optimisation de rendez-vous de type business speed-dating

Travail d Étude et de Recherche. Aide à l optimisation de rendez-vous de type business speed-dating Travail d Étude et de Recherche Aide à l optimisation de rendez-vous de type business speed-dating Alexandre Medi Andreea Radulescu Johan Voland Université de Nantes 10 mai 2011 1 Remerciements En préambule

Plus en détail

Une méthode de classification supervisée sans paramètre pour l apprentissage sur les grandes bases de données

Une méthode de classification supervisée sans paramètre pour l apprentissage sur les grandes bases de données Une méthode de classification supervisée sans paramètre pour l apprentissage sur les grandes bases de données Marc Boullé Orange Labs 2 avenue Pierre Marzin 22300 Lannion marc.boulle@orange-ftgroup.com,

Plus en détail

PREMIER RETOUR D EXPERIENCE SUR LE FLOW-SHOP BIOBJECTIF ET HYBRIDE A DEUX ETAGES AVEC UNE CONTRAINTE DE BLOCAGE PARTICULIERE

PREMIER RETOUR D EXPERIENCE SUR LE FLOW-SHOP BIOBJECTIF ET HYBRIDE A DEUX ETAGES AVEC UNE CONTRAINTE DE BLOCAGE PARTICULIERE 6 e Conférence Francophone de MOdélisation et SIMulation - MOSIM 06 - du 3 au 5 avril 2006 - Rabat - Maroc Modélisation, Optimisation et Simulation des Systèmes : Défis et Opportunités PREMIER RETOUR D

Plus en détail

CHAPITRE 5. Stratégies Mixtes

CHAPITRE 5. Stratégies Mixtes CHAPITRE 5 Stratégies Mixtes Un des problèmes inhérents au concept d équilibre de Nash en stratégies pures est que pour certains jeux, de tels équilibres n existent pas. P.ex.le jeu de Pierre, Papier,

Plus en détail

2B La résolution de modèles linéaires par Excel 2010

2B La résolution de modèles linéaires par Excel 2010 2B La résolution de modèles linéaires par Excel 2010 Nous reprenons ici, de façon plus détaillée, la section où est indiqué comment utiliser le solveur d'excel 2010 pour résoudre un modèle linéaire (voir

Plus en détail

ALGORITHMES ÉVOLUTIONNAIRES ET OPTIMISATION

ALGORITHMES ÉVOLUTIONNAIRES ET OPTIMISATION LABORATOIRE INFORMATIQUE, SIGNAUX ET SYSTÈMES DE SOPHIA ANTIPOLIS UMR 6070 ALGORITHMES ÉVOLUTIONNAIRES ET OPTIMISATION MULTI-OBJECTIFS EN DATA MINING Dominique Francisci Projet MECOSI Rapport de recherche

Plus en détail

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique La programmation linéaire : une introduction Qu est-ce qu un programme linéaire? Qu est-ce qu un programme linéaire? Exemples : allocation de ressources problème de recouvrement Hypothèses de la programmation

Plus en détail

Master IAD Module PS. Reconnaissance de la parole (suite) Alignement temporel et Programmation dynamique. Gaël RICHARD Février 2008

Master IAD Module PS. Reconnaissance de la parole (suite) Alignement temporel et Programmation dynamique. Gaël RICHARD Février 2008 Master IAD Module PS Reconnaissance de la parole (suite) Alignement temporel et Programmation dynamique Gaël RICHARD Février 2008 1 Reconnaissance de la parole Introduction Approches pour la reconnaissance

Plus en détail

Christelle REYNES EA 2415 Epidémiologie, Biostatistique et Santé Publique Université Montpellier 1. 8 Juin 2012

Christelle REYNES EA 2415 Epidémiologie, Biostatistique et Santé Publique Université Montpellier 1. 8 Juin 2012 Extraction et analyse des mesures haut-débit pour l identification de biomarqueurs : problèmes méthodologiques liés à la dimension et solutions envisagées EA 2415 Epidémiologie, Biostatistique et Santé

Plus en détail

Discrétisation et génération de hiérarchies de concepts

Discrétisation et génération de hiérarchies de concepts Prétraitement des données 1 Pourquoi prétraiter les données? Nettoyage des données Intégration et transformation Réduction des données Discrétisation et génération de hiérarchies de g concepts Pourquoi

Plus en détail

Journal officiel de l'union européenne

Journal officiel de l'union européenne 20.5.2014 L 148/29 RÈGLEMENT DÉLÉGUÉ (UE) N o 528/2014 DE LA COMMISSION du 12 mars 2014 complétant le règlement (UE) n o 575/2013 du Parlement européen et du Conseil en ce qui concerne les normes techniques

Plus en détail

Définition et diffusion de signatures sémantiques dans les systèmes pair-à-pair

Définition et diffusion de signatures sémantiques dans les systèmes pair-à-pair Définition et diffusion de signatures sémantiques dans les systèmes pair-à-pair Raja Chiky, Bruno Defude, Georges Hébrail GET-ENST Paris Laboratoire LTCI - UMR 5141 CNRS Département Informatique et Réseaux

Plus en détail

Algorithmes évolutionnaires sur. et GPU. Introduction : GPU et puissance calculatoire Principe du GPU : le pipeline

Algorithmes évolutionnaires sur. et GPU. Introduction : GPU et puissance calculatoire Principe du GPU : le pipeline Algorithmes évolutionnaires et GPU Introduction : GPU et puissance calculatoire Principe du GPU : le pipeline graphique Introduction au parallélisme de données Exemple de simulation Les langages de haut-niveau

Plus en détail

ETUDES COMPARATIVES DES POLITIQUES DE GESTION DE STOCK LORS DE LA CONCEPTION DES CHAINES LOGISTIQUES

ETUDES COMPARATIVES DES POLITIQUES DE GESTION DE STOCK LORS DE LA CONCEPTION DES CHAINES LOGISTIQUES ETUDES COMPARATIVES DES POLITIQUES DE GESTION DE STOCK LORS DE LA CONCEPTION DES CHAINES LOGISTIQUES Fouad Maliki, Zaki Sari To cite this version: Fouad Maliki, Zaki Sari. ETUDES COMPARATIVES DES POLITIQUES

Plus en détail

Programmation linéaire

Programmation linéaire Programmation linéaire DIDIER MAQUIN Ecole Nationale Supérieure d Electricité et de Mécanique Institut National Polytechnique de Lorraine Mathématiques discrètes cours de 2ème année Programmation linéaire

Plus en détail

COMMENT MAITRISER LA GESTION DES APPROVISIONNEMENTS ET DES STOCKS DE MEDICAMENTS

COMMENT MAITRISER LA GESTION DES APPROVISIONNEMENTS ET DES STOCKS DE MEDICAMENTS 1 sur 9 COMMENT MAITRISER LA GESTION DES APPROVISIONNEMENTS ET DES STOCKS DE MEDICAMENTS (L'article intégral est paru dans Gestions Hospitalières n 357 de juin-juillet 1996) Pour plus d'informations concernant

Plus en détail

OPTIMISATION DE LA MAINTENANCE DES EQUIPEMENTS DE MANUTENTION DU TERMINAL A CONTENEURS DE BEJAIA (BMT)

OPTIMISATION DE LA MAINTENANCE DES EQUIPEMENTS DE MANUTENTION DU TERMINAL A CONTENEURS DE BEJAIA (BMT) OPTIMISATION DE LA MAINTENANCE DES EQUIPEMENTS DE MANUTENTION DU TERMINAL A CONTENEURS DE BEJAIA (BMT) LAGGOUNE Radouane 1 et HADDAD Cherifa 2 1,2: Dépt. de G. Mécanique, université de Bejaia, Targa-Ouzemour

Plus en détail

Ordonnancement sous contraintes de Qualité de Service dans les Clouds

Ordonnancement sous contraintes de Qualité de Service dans les Clouds Ordonnancement sous contraintes de Qualité de Service dans les Clouds GUÉROUT Tom DA COSTA Georges (SEPIA) MONTEIL Thierry (SARA) 14/9/215 1 Profil Profil Parcours : Laboratoires LAAS et IRIT à Toulouse

Plus en détail

Résolution des problèmes difficiles par optimisation distribuée

Résolution des problèmes difficiles par optimisation distribuée REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE Ministère de l Enseignement Supérieur et de la Recherche Scientifique UNIVERSITE MOHAMED KHIDER BISKRA Faculté des sciences et des sciences de l ingénieur

Plus en détail

Comment ne pas construire un score-titanic

Comment ne pas construire un score-titanic Comment ne pas construire un score-titanic Mon mailing Olivier Decourt ABS Technologies / Educasoft Formations 1- Les principes 2- Un premier exemple : les vins de France 3- Mise en œuvre sous SAS 4- Un

Plus en détail

Optimisation d une fonction de transmission d ordres

Optimisation d une fonction de transmission d ordres Optimisation d une fonction de transmission d ordres pour driver à très haute isolation galvanique. Application aux modules IGBT pour onduleurs multi-niveaux MMC (Multilevel Modular Converters). Sokchea

Plus en détail

Proposition d un modèle pour Ordonnancement d un Système Automatisé de Production Applications des algorithmes génétiques hybrides

Proposition d un modèle pour Ordonnancement d un Système Automatisé de Production Applications des algorithmes génétiques hybrides Proposition d un modèle pour Ordonnancement d un Système Automatisé de Production Applications des algorithmes génétiques hybrides Djamila Bouhalouan 1, Nassima Aissani 1, Bouziane Beldjilali 2 1 Département

Plus en détail

ILOG CPLEX Le cœur du système résout des problèmes de programmation mathématique.

ILOG CPLEX Le cœur du système résout des problèmes de programmation mathématique. Introduction à CPLEX 1. Présentation CPLEX est, à la base, un solveur de programmes linéaires. Il est commercialisé par la société ILOG depuis la version 6.0. La dernière version, à ce jour, est la version

Plus en détail

ALGORITHMES GENETIQUES

ALGORITHMES GENETIQUES ALGORITHMES GENETIQUES Présenté par Souquet Amédée Radet Francois-Gérard TE de fin d année Tutorat de Mr Philippe Audebaud Soutenu le 21/06/2004 devant la commission composée de : S. Julia P. Audebaud

Plus en détail

PLAN DE COURS. GPA750 Ordonnancement des systèmes de production aéronautique

PLAN DE COURS. GPA750 Ordonnancement des systèmes de production aéronautique Département de génie de la production automatisée Programme de baccalauréat Professeur Pontien Mbaraga, Ph.D. Session/année Automne 2004 Groupe(s) 01 PLAN DE COURS GPA750 Ordonnancement des systèmes de

Plus en détail

Aider à la décision. - La matrice d Eisenhower - Le diagramme de Pareto - Les arbres d objectifs - Le diagramme d affinités - La méthode Philips 6.

Aider à la décision. - La matrice d Eisenhower - Le diagramme de Pareto - Les arbres d objectifs - Le diagramme d affinités - La méthode Philips 6. Guide méthodologique du travail en commun Aider à la décision > Hiérarchiser les priorités > Choisir les bonnes solutions > Hiérarchiser les priorités - La matrice d Eisenhower - Le diagramme de Pareto

Plus en détail

Présentation des algorithmes génétiques et de leurs applications en économie

Présentation des algorithmes génétiques et de leurs applications en économie Présentation des algorithmes génétiques et de leurs applications en économie Thomas Vallée et Murat Yıldızoğlu LEN-C3E Université de Nantes, LEA-CIL Chemin de la Censive du Tertre F-44312 NANTES Thomas.Vallee@sc-eco.univ-nantes.fr

Plus en détail

Résolution du RCPSP avec production et consommation de ressources : modèles PLNE basés sur les événements

Résolution du RCPSP avec production et consommation de ressources : modèles PLNE basés sur les événements «Évaluation et optimisation des systèmes innovants de production de biens et de services» Résolution du RCPSP avec production et consommation de ressources : modèles PLNE basés sur les événements Oumar

Plus en détail

Recherche locale pour un problème d optimisation de tournées de véhicules avec gestion des stocks

Recherche locale pour un problème d optimisation de tournées de véhicules avec gestion des stocks 8 e Conférence Internationale de MOdélisation et SIMulation - MOSIM 10-10 au 12 mai 2010 - Hammamet - Tunisie «Évaluation et optimisation des systèmes innovants de production de biens et de services» Recherche

Plus en détail

Mathématiques appliquées à l informatique

Mathématiques appliquées à l informatique Mathématiques appliquées à l informatique Jean-Etienne Poirrier 15 décembre 2005 Table des matières 1 Matrices 3 1.1 Définition......................................... 3 1.2 Les différents types de matrices.............................

Plus en détail

UNE APPROCHE D OPTIMISATION-BASEE SUR LA SIMULATION POUR LA CONCEPTION D UN RESEAU DE DISTRIBUTION STOCHASTIQUE MULTI FOURNISSEURS

UNE APPROCHE D OPTIMISATION-BASEE SUR LA SIMULATION POUR LA CONCEPTION D UN RESEAU DE DISTRIBUTION STOCHASTIQUE MULTI FOURNISSEURS 8 e Conférence Internationale de MOdélisation et SIMulation - MOSIM 10-10 au 12 mai 2010 - Hammamet - Tunisie Évaluation et optimisation des systèmes innovants de production de biens et de services UNE

Plus en détail

Arithmétique binaire. Chapitre. 5.1 Notions. 5.1.1 Bit. 5.1.2 Mot

Arithmétique binaire. Chapitre. 5.1 Notions. 5.1.1 Bit. 5.1.2 Mot Chapitre 5 Arithmétique binaire L es codes sont manipulés au quotidien sans qu on s en rende compte, et leur compréhension est quasi instinctive. Le seul fait de lire fait appel au codage alphabétique,

Plus en détail

LE PROBLEME DU PLUS COURT CHEMIN

LE PROBLEME DU PLUS COURT CHEMIN LE PROBLEME DU PLUS COURT CHEMIN Dans cette leçon nous définissons le modèle de plus court chemin, présentons des exemples d'application et proposons un algorithme de résolution dans le cas où les longueurs

Plus en détail

Pourquoi l apprentissage?

Pourquoi l apprentissage? Pourquoi l apprentissage? Les SE sont basés sur la possibilité d extraire la connaissance d un expert sous forme de règles. Dépend fortement de la capacité à extraire et formaliser ces connaissances. Apprentissage

Plus en détail

INF6304 Interfaces Intelligentes

INF6304 Interfaces Intelligentes INF6304 Interfaces Intelligentes filtres collaboratifs 1/42 INF6304 Interfaces Intelligentes Systèmes de recommandations, Approches filtres collaboratifs Michel C. Desmarais Génie informatique et génie

Plus en détail

À propos des matrices échelonnées

À propos des matrices échelonnées À propos des matrices échelonnées Antoine Ducros appendice au cours de Géométrie affine et euclidienne dispensé à l Université Paris 6 Année universitaire 2011-2012 Introduction Soit k un corps, soit E

Plus en détail