Le raisonnement mathématique
|
|
|
- Hélène Pinard
- il y a 9 ans
- Total affichages :
Transcription
1 avec exercices tirés d extraits de la Première Partie du Chapitre I Sur la nature du raisonnement mathématique de La Science et l hypothèse de Henri Poincaré :
2 2 Les exercices n 1 et n 2 portent sur les premiers paragraphes de la Première partie de La Science et l hypothèse de Jules-Henri Poincaré (1901) Écrire sous la dictée : Exercice n 1 Première partie Le nombre et la grandeur Chapitre premier Sur la nature du raisonnement mathématique. La possibilité même de la science mathématique (1) une contradiction insoluble. Si cette science (2) déductive qu'en apparence, (3) lui (4) cette parfaite rigueur que (5) ne songe à mettre en doute? Si, au contraire, toutes les propositions qu'elle énonce (6) se tirer les unes des autres par les règles de la logique formelle, comment la mathématique ne se (7) -elle pas à une immense tautologie? Le syllogisme ne peut (8) nous apprendre d'essentiellement (9) et, si tout (10) sortir du principe d'identité, tout (11) aussi pouvoir s'y ramener. (12) -t-on donc que les énoncés de (13) ces théorèmes qui (14) tant de volumes ne (15) que des manières détournées de dire que A est A?
3 3 Exercice n 2 Compléter la suite du texte de la dictée précédente en insérant dans chaque espace un mot pris dans la liste qui suit : aucun axiomes clef - conclusions davantage général il faut pas plus - syllogistique Sans doute, on peut remonter aux (16) qui sont à la source de tous les raisonnements. Si on juge qu'on ne peut les réduire au principe de contradiction, si on ne veut pas non plus y voir des faits expérimentaux qui ne pourraient participer à la nécessité mathématique, on a encore la ressource de les classer parmi les jugements synthétiques a priori. Ce n'est pas résoudre la difficulté, c'est seulement la baptiser ; et lors même que la nature des jugements synthétiques n'aurait plus pour nous de mystère, la contradiction ne se serait pas évanouie, elle n'aurait fait que reculer ; le raisonnement (17) reste incapable de rien ajouter aux données qu'on lui fournit ; ces données se réduisent à quelques axiomes et on ne devrait pas retrouver autre chose dans les (18). (19) théorème ne devrait être nouveau si dans sa démonstration n'intervenait un axiome nouveau ; le raisonnement ne pourrait nous rendre que les vérités immédiatement évidentes empruntées à l'intuition directe ; il ne serait (20) qu'un intermédiaire parasite et dès lors n'aurait-on (21) lieu de se demander si tout l'appareil syllogistique ne sert pas uniquement à dissimuler notre emprunt? La contradiction nous frappera (22) si nous ouvrons un livre quelconque de mathématiques ; à chaque page l'auteur annoncera l'intention de généraliser une proposition déjà connue. Est-ce donc que la méthode mathématique procède du particulier au (23) et comment alors peut-on l'appeler déductive? Si enfin la science du nombre était purement analytique, ou pouvait sortir analytiquement d'un petit nombre de jugements synthétiques, il semble qu'un esprit assez puissant pourrait d'un seul coup d'œil en apercevoir toutes les vérités ; que dis-je! on pourrait même espérer qu'un jour on inventera pour les exprimer un langage assez simple pour qu'elles apparaissent ainsi immédiatement à une intelligence ordinaire. Si l'on se refuse à admettre ces conséquences, (24) bien concéder que le raisonnement mathématique a par lui-même une sorte de vertu créatrice et par conséquent qu'il se distingue du syllogisme. La différence doit même être profonde. Nous ne trouverons pas par exemple la (25) du mystère dans l'usage fréquent de cette règle d'après laquelle une même opération uniforme appliquée à deux nombres égaux donnera des résultats ide ntiques. Tous ces modes de raisonnement, qu'ils soient ou non réductibles au syllogisme proprement dit, conservent le caractère analytique et sont par cela même impuissants.
4 4 Exercice n 3 Axiome Hypothèse Syllogisme - Tautologie Théorème Compléter ces définitions avec les verbes proposés (une seule occurrence pour chaque verbe, donné à l infinitif, mais conjugable) : Axiome : (du grec axioma : j'estime, je crois vrai) Vérité que l on sans démonstration et sur laquelle se fonde les théories mathématiques. L'axiome est une " évidence ", contrairement au postulat qui ne l'est pas forcément. Hypothèse : Proposition que l'on accepte comme vraie et à partir de laquelle on pour un problème, ou un théorème. Admettre (1) Découler (1) Démontrer (1) Fonder (1) Formuler (1) Raisonner (1) Résoudre (1) Syllogisme : Raisonnement qui une conclusion sur deux propositions ou prémisses (appelées aussi majeure et mineure) posées comme vraies. Tautologie : Phrase de telle façon qu elle ne puisse être que vraie. Théorème : Proposition démontrée à l'intérieur d'un système mathématique. Un théorème des axiomes et postulats qu'on a posé auparavant.
5 5 Corrigé de la dictée Exercice n 1 Sur la nature du raisonnement mathématique. La possibilité même de la science mathématique semble une contradiction insoluble. Si cette science n'est déductive qu'en apparence, d'où lui vient cette parfaite rigueur que personne ne songe à mettre en doute? Si, au contraire, toutes les propositions qu'elle énonce peuvent se tirer les unes des autres par les règles de la logique formelle, comment la mathématique ne se réduit-elle pas à une immense tautologie? Le syllogisme ne peut rien nous apprendre d'essentiellement nouveau et, si tout devait sortir du principe d'identité, tout devrait aussi pouvoir s'y ramener. Admettra-t-on donc que les énoncés de tous ces théorèmes qui remplissent tant de volumes ne soient que des manières détournées de dire que A est A? corrigé Exercice n 2 Sans doute, on peut remonter aux (16) axiomes qui sont à la source de tous les raisonnements. Si on juge qu'on ne peut les réduire au principe de contradiction, si on ne veut pas non plus y voir des faits expérimentaux qui ne pourraient participer à la nécessité mathématique, on a encore la ressource de les classer parmi les jugements synthétiques a priori. Ce n'est pas résoudre la difficulté, c'est seulement la baptiser ; et lors même que la nature des jugements synthétiques n'aurait plus pour nous de mystère, la contradiction ne se serait pas évanouie, elle n'aurait fait que reculer ; le raisonnement (17) syllogistique reste incapable de rien ajouter aux données qu'on lui fournit ; ces données se réduisent à quelques axiomes et on ne devrait pas retrouver autre chose dans les (18) conclusions. (19) Aucun théorème ne devrait être nouveau si dans sa démonstration n'intervenait un axiome nouveau ; le raisonnement ne pourrait nous rendre que les vérités immédiatement évidentes empruntées à l'intuition directe ; il ne serait (20) plus qu'un intermédiaire parasite et dès lors n'aurait-on (21) pas lieu de se demander si tout l'appareil syllogistique ne sert pas uniquement à dissimuler notre emprunt? La contradiction nous frappera (22) davantage si nous ouvrons un livre quelconque de mathématiques ; à chaque page l'auteur annoncera l'intention de généraliser une proposition déjà connue. Est-ce donc que la méthode mathématique procède du particulier au (23) général et comment alors peut-on l'appeler déductive? Si enfin la science du nombre était purement analytique, ou pouvait sortir analytiquement d'un petit nombre de jugements synthétiques, il semble qu'un esprit assez puissant pourrait d'un seul coup d'œil en apercevoir toutes les vérités ; que dis-je! on pourrait même espérer qu'un jour on inventera pour les exprimer un langage assez simple pour qu'elles apparaissent ainsi immédiatement à une intelligence ordinaire. Si l'on se refuse à admettre ces conséquences, (24) il faut bien concéder que le raisonnement mathématique a par lui-même une sorte de vertu créatrice et par conséquent qu'il se distingue du syllogisme.
6 6 La différence doit même être profonde. Nous ne trouverons pas par exemple la (25) clef du mystère dans l'usage fréquent de cette règle d'après laquelle une même opération uniforme appliquée à deux nombres égaux donnera des résultats identiques. Tous ces modes de raisonnement, qu'ils soient ou non réductibles au syllogisme proprement dit, conservent le caractère analytique et sont par cela même impuissants. Corrigé Exercice n 3 Axiome : (du grec axioma : j'estime, je crois vrai) Vérité que l on admet sans démonstration et sur laquelle se fonde les théories mathématiques. L'axiome est une " évidence ", contrairement au postulat qui ne l'est pas forcément. Hypothèse : Proposition que l'on accepte comme vraie et à partir de laquelle on raisonne pour résoudre un problème, ou démontrer un théorème. Syllogisme : Raisonnement qui fonde une conclusion sur deux propositions ou prémisses (appelées aussi majeure et mineure) posées comme vraies. Tautologie : Phrase formulée de telle façon qu elle ne puisse être que vraie. Admettre (1) Découler (1) Démontrer (1) Fonder (1) Formuler (1) Raisonner (1) Résoudre (1) Théorème : Proposition démontrée à l'intérieur d'un système mathématique. Un théorème découle des axiomes et postulats qu'on a posé auparavant. (à suivre)
6. Les différents types de démonstrations
LES DIFFÉRENTS TYPES DE DÉMONSTRATIONS 33 6. Les différents types de démonstrations 6.1. Un peu de logique En mathématiques, une démonstration est un raisonnement qui permet, à partir de certains axiomes,
Chapitre 1 Régime transitoire dans les systèmes physiques
Chapitre 1 Régime transitoire dans les systèmes physiques Savoir-faire théoriques (T) : Écrire l équation différentielle associée à un système physique ; Faire apparaître la constante de temps ; Tracer
Examen optimisation Centrale Marseille (2008) et SupGalilee (2008)
Examen optimisation Centrale Marseille (28) et SupGalilee (28) Olivier Latte, Jean-Michel Innocent, Isabelle Terrasse, Emmanuel Audusse, Francois Cuvelier duree 4 h Tout resultat enonce dans le texte peut
Réalisabilité et extraction de programmes
Mercredi 9 mars 2005 Extraction de programme: qu'est-ce que c'est? Extraire à partir d'une preuve un entier x N tel que A(x). π x N A(x) (un témoin) (En fait, on n'extrait pas un entier, mais un programme
Continuité d une fonction de plusieurs variables
Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs
Chapitre 2 Le problème de l unicité des solutions
Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)
Cours 02 : Problème général de la programmation linéaire
Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =
Suites numériques 3. 1 Convergence et limite d une suite
Suites numériques 3 1 Convergence et limite d une suite Nous savons que les termes de certaines suites s approchent de plus en plus d une certaine valeur quand n augmente : par exemple, les nombres u n
FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines
FctsAffines.nb 1 Mathématiques, 1-ère année Edition 2007-2008 Fonctions affines Supports de cours de mathématiques de degré secondaire II, lien hpertete vers la page mère http://www.deleze.name/marcel/sec2/inde.html
Limites finies en un point
8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,
Exercices de dénombrement
Exercices de dénombrement Exercice En turbo Pascal, un entier relatif (type integer) est codé sur 6 bits. Cela signifie que l'on réserve 6 cases mémoires contenant des "0" ou des "" pour écrire un entier.
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante
Logique. Plan du chapitre
Logique Ce chapitre est assez abstrait en première lecture, mais est (avec le chapitre suivant «Ensembles») probablement le plus important de l année car il est à la base de tous les raisonnements usuels
CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES.
CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE EQUATIONS DIFFERENTIELLES Le but de ce chapitre est la résolution des deux types de systèmes différentiels linéaires
SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique
SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique DOMAINE P3.C3.D1. Pratiquer une démarche scientifique et technologique, résoudre des
Tâche complexe produite par l académie de Clermont-Ferrand. Mai 2012 LE TIR A L ARC. (d après une idée du collège des Portes du Midi de Maurs)
(d après une idée du collège des Portes du Midi de Maurs) Table des matières Fiche professeur... 2 Fiche élève... 5 1 Fiche professeur Niveaux et objectifs pédagogiques 5 e : introduction ou utilisation
Document d aide au suivi scolaire
Document d aide au suivi scolaire Ecoles Famille Le lien Enfant D une école à l autre «Enfants du voyage et de familles non sédentaires» Nom :... Prénom(s) :... Date de naissance :... Ce document garde
Synthèse «Le Plus Grand Produit»
Introduction et Objectifs Synthèse «Le Plus Grand Produit» Le document suivant est extrait d un ensemble de ressources plus vastes construites par un groupe de recherche INRP-IREM-IUFM-LEPS. La problématique
Chapitre 2. Eléments pour comprendre un énoncé
Chapitre 2 Eléments pour comprendre un énoncé Ce chapitre est consacré à la compréhension d un énoncé. Pour démontrer un énoncé donné, il faut se reporter au chapitre suivant. Les tables de vérité données
1 Définition et premières propriétés des congruences
Université Paris 13, Institut Galilée Département de Mathématiques Licence 2ème année Informatique 2013-2014 Cours de Mathématiques pour l Informatique Des nombres aux structures Sylviane R. Schwer Leçon
LA BATTERIE DU PORTABLE
LA BATTERIE DU PORTABLE Table des matières Fiche professeur... 2 Fiche élève... 4 Narration de séance et productions d élèves... 5 1 Fiche professeur LA BATTERIE DU PORTABLE Niveaux et objectifs pédagogiques
CHAPITRE VIII : Les circuits avec résistances ohmiques
CHAPITRE VIII : Les circuits avec résistances ohmiques VIII. 1 Ce chapitre porte sur les courants et les différences de potentiel dans les circuits. VIII.1 : Les résistances en série et en parallèle On
Comparaison de fonctions Développements limités. Chapitre 10
PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?
NOM : Prénom : Date de naissance : Ecole : CM2 Palier 2
NOM : Prénom : Date de naissance : Ecole : CM2 Palier 2 Résultats aux évaluations nationales CM2 Annexe 1 Résultats de l élève Compétence validée Lire / Ecrire / Vocabulaire / Grammaire / Orthographe /
III- Raisonnement par récurrence
III- Raisonnement par récurrence Les raisonnements en mathématiques se font en général par une suite de déductions, du style : si alors, ou mieux encore si c est possible, par une suite d équivalences,
Il y a trois types principaux d analyse des résultats : l analyse descriptive, l analyse explicative et l analyse compréhensive.
L ANALYSE ET L INTERPRÉTATION DES RÉSULTATS Une fois les résultats d une investigation recueillis, on doit les mettre en perspective en les reliant au problème étudié et à l hypothèse formulée au départ:
Le chiffre est le signe, le nombre est la valeur.
Extrait de cours de maths de 6e Chapitre 1 : Les nombres et les opérations I) Chiffre et nombre 1.1 La numération décimale En mathématique, un chiffre est un signe utilisé pour l'écriture des nombres.
Raisonnement par récurrence Suites numériques
Chapitre 1 Raisonnement par récurrence Suites numériques Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence. Limite finie ou infinie d une suite.
Attestation de maîtrise des connaissances et compétences au cours moyen deuxième année
Attestation de maîtrise des connaissances et compétences au cours moyen deuxième année PALIER 2 CM2 La maîtrise de la langue française DIRE S'exprimer à l'oral comme à l'écrit dans un vocabulaire approprié
Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction
Antécédents d un nombre par une fonction 1) Par lecture graphique Méthode / Explications : Pour déterminer le ou les antécédents d un nombre a donné, on trace la droite (d) d équation. On lit les abscisses
Vue d'ensemble de la formation
Vue d'ensemble de la formation Thème 1 : Les notions de marketing Le marketing d études, stratégique et opérationnel Thème 2 : La communication vente L Accueil, la découverte des besoins, l argumentation
IUT de Laval Année Universitaire 2008/2009. Fiche 1. - Logique -
IUT de Laval Année Universitaire 2008/2009 Département Informatique, 1ère année Mathématiques Discrètes Fiche 1 - Logique - 1 Logique Propositionnelle 1.1 Introduction Exercice 1 : Le professeur Leblond
Introduction a l'algorithmique des objets partages. Robert Cori. Antoine Petit. Lifac, ENS Cachan, 94235 Cachan Cedex. Resume
Introduction a l'algorithmique des objets partages Bernadette Charron{Bost Robert Cori Lix, Ecole Polytechnique, 91128 Palaiseau Cedex, France, [email protected] [email protected] Antoine
Programmes des classes préparatoires aux Grandes Ecoles
Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme
Manuel d utilisation 26 juin 2011. 1 Tâche à effectuer : écrire un algorithme 2
éducalgo Manuel d utilisation 26 juin 2011 Table des matières 1 Tâche à effectuer : écrire un algorithme 2 2 Comment écrire un algorithme? 3 2.1 Avec quoi écrit-on? Avec les boutons d écriture........
CODE CIVIL FRANÇAIS (ANTERIEUR A 1960)
CODE CIVIL FRANÇAIS (ANTERIEUR A 1960) ARTICLES 1874 À 1914 DU PRÊT Téléchargé sur Le premier portail consacré au droit des affaires à Madagascar TITRE DIXIEME Du prêt Art. 1874 - Il y a deux sortes de
Fonctions homographiques
Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie
Cours Fonctions de deux variables
Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté
Développements limités. Notion de développement limité
MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un
LA PROCEDURE D'EVALUATION A.NA.PSY.p.e. EST LE RESULTAT D'UNE RECHERCHE
LA PROCEDURE D'EVALUATION A.NA.PSY.p.e. EST LE RESULTAT D'UNE RECHERCHE CETTE RECHERCHE A ETE FINANCEE PAR Le Ministère des Affaires Sociales et de l'emploi, Direction Générale de la Santé,Sous- Direction
La polarisation des transistors
La polarisation des transistors Droite de charge en continu, en courant continu, statique ou en régime statique (voir : le transistor) On peut tracer la droite de charge sur les caractéristiques de collecteur
BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES. EXEMPLE DE SUJET n 2
Exemple de sujet n 2 Page 1/7 BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES EXEMPLE DE SUJET n 2 Ce document comprend : Pour l examinateur : - une fiche descriptive du sujet page 2/7 - une fiche
Table des matières. Avant-propos. Chapitre 2 L actualisation... 21. Chapitre 1 L intérêt... 1. Chapitre 3 Les annuités... 33 III. Entraînement...
III Table des matières Avant-propos Remerciements................................. Les auteurs..................................... Chapitre 1 L intérêt............................. 1 1. Mise en situation...........................
Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.
1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le
COMMENT CITER OU PARAPHRASER UN EXTRAIT DE DOCUMENT SELON INFOSPHÈRE
COMMENT CITER OU PARAPHRASER UN EXTRAIT DE DOCUMENT SELON INFOSPHÈRE Pourquoi et quand citer ses sources? Ajouter une valeur à son travail de recherche tout en respectant le droit d'auteur En se référant
Objectifs du cours d aujourd hui. Informatique II : Cours d introduction à l informatique et à la programmation objet. Complexité d un problème (2)
Objectifs du cours d aujourd hui Informatique II : Cours d introduction à l informatique et à la programmation objet Complexité des problèmes Introduire la notion de complexité d un problème Présenter
AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =
LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste
Carl-Louis-Ferdinand von Lindemann (1852-1939)
Par Boris Gourévitch "L'univers de Pi" http://go.to/pi314 [email protected] Alors ça, c'est fort... Tranches de vie Autour de Carl-Louis-Ferdinand von Lindemann (1852-1939) est transcendant!!! Carl Louis
Couples de variables aléatoires discrètes
Couples de variables aléatoires discrètes ECE Lycée Carnot mai Dans ce dernier chapitre de probabilités de l'année, nous allons introduire l'étude de couples de variables aléatoires, c'est-à-dire l'étude
CONCOURS «Vous pourriez gagner 2000$ en argent avec Intact Assurance!»
CONCOURS «Vous pourriez gagner 2000$ en argent avec Intact Assurance!» RÈGLEMENT DE PARTICIPATION Le concours «Vous pourriez gagner 2000$ en argent avec Intact Assurance!» (ci-après le «Concours») est
LE CONSEIL DES COMMUNAUTÉS EUROPÉENNES,
DIRECTIVE DU CONSEIL du 22 février 1990 modifiant la directive 87/102/CEE relative au rapprochement des dispositions législatives, réglementaires et administratives des États membres en matière de crédit
Logistique, Transports
Baccalauréat Professionnel Logistique, Transports 1. France, juin 2006 1 2. Transport, France, juin 2005 2 3. Transport, France, juin 2004 4 4. Transport eploitation, France, juin 2003 6 5. Transport,
Suivant les langages de programmation, modules plus avancés : modules imbriqués modules paramétrés par des modules (foncteurs)
Modularité Extensions Suivant les langages de programmation, modules plus avancés : modules imbriqués modules paramétrés par des modules (foncteurs) généricité modules de première classe : peuvent être
Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.
14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,
Image d un intervalle par une fonction continue
DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction
2. RAPPEL DES TECHNIQUES DE CALCUL DANS R
2. RAPPEL DES TECHNIQUES DE CALCUL DANS R Dans la mesure où les résultats de ce chapitre devraient normalement être bien connus, il n'est rappelé que les formules les plus intéressantes; les justications
Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes
IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de
Seconde Généralités sur les fonctions Exercices. Notion de fonction.
Seconde Généralités sur les fonctions Exercices Notion de fonction. Exercice. Une fonction définie par une formule. On considère la fonction f définie sur R par = x + x. a) Calculer les images de, 0 et
LA RECHERCHE DOCUMENTAIRE
LA RECHERCHE DOCUMENTAIRE Introduction I. Les étapes de la recherche d'information II. Méthodologie spécifique 2.1 Bibliothèque 2.2 Internet Conclusion INTRODUCTION Lorsque on débute une réflexion sur
CNAM UE MVA 210 Ph. Durand Algèbre et analyse tensorielle Cours 4: Calcul dierentiel 2
CNAM UE MVA 210 Ph. Duran Algèbre et analyse tensorielle Cours 4: Calcul ierentiel 2 Jeui 26 octobre 2006 1 Formes iérentielles e egrés 1 Dès l'introuction es bases u calcul iérentiel, nous avons mis en
DYNAMIQUE DE FORMATION DES ÉTOILES
A 99 PHYS. II ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES, ÉCOLES NATIONALES SUPÉRIEURES DE L'AÉRONAUTIQUE ET DE L'ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE SAINT-ÉTIENNE,
Les indices à surplus constant
Les indices à surplus constant Une tentative de généralisation des indices à utilité constante On cherche ici en s inspirant des indices à utilité constante à définir un indice de prix de référence adapté
3. Conditionnement P (B)
Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte
Calcul élémentaire des probabilités
Myriam Maumy-Bertrand 1 et Thomas Delzant 1 1 IRMA, Université Louis Pasteur Strasbourg, France Licence 1ère Année 16-02-2006 Sommaire La loi de Poisson. Définition. Exemple. 1 La loi de Poisson. 2 3 4
Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?
Exercices Alternatifs Quelqu un aurait-il vu passer un polynôme? c 2004 Frédéric Le Roux, François Béguin (copyleft LDL : Licence pour Documents Libres). Sources et figures: polynome-lagrange/. Version
Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?
Exercices Alternatifs Quelqu un aurait-il vu passer un polynôme? c 2004 Frédéric Le Roux, François Béguin (copyleft LDL : Licence pour Documents Libres). Sources et figures: polynome-lagrange/. Version
PREMIERE RUBRIQUE : VOTRE ETAT CIVIL, PRECIS ET COMPLET
PREMIERE RUBRIQUE : VOTRE ETAT CIVIL, PRECIS ET COMPLET Cette première partie comporte les renseignements personnels de base dont l employeur a besoin pour vous joindre. 9 informations peuvent y figurer
Théorème du point fixe - Théorème de l inversion locale
Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion
BNP PARIBAS FORTIS @ ISABEL CONDITIONS GÉNÉRALES
Article premier : Dispositions générales BNP PARIBAS FORTIS @ ISABEL CONDITIONS GÉNÉRALES 1.1. Objet des Conditions Générales Les présentes Conditions Générales ont pour objet de définir les droits et
CH.6 Propriétés des langages non contextuels
CH.6 Propriétés des langages non contetuels 6.1 Le lemme de pompage 6.2 Les propriétés de fermeture 6.3 Les problèmes de décidabilité 6.4 Les langages non contetuels déterministes utomates ch6 1 6.1 Le
Organiser des séquences pédagogiques différenciées. Exemples produits en stage Besançon, Juillet 2002.
Cycle 3 3 ème année PRODUCTION D'ECRIT Compétence : Ecrire un compte rendu Faire le compte rendu d'une visite (par exemple pour l'intégrer au journal de l'école ) - Production individuelle Précédée d'un
PARTIE NUMERIQUE (18 points)
4 ème DEVOIR COMMUN N 1 DE MATHÉMATIQUES 14/12/09 L'échange de matériel entre élèves et l'usage de la calculatrice sont interdits. Il sera tenu compte du soin et de la présentation ( 4 points ). Le barème
Primaire. analyse a priori. Lucie Passaplan et Sébastien Toninato 1
Primaire l ESCALIER Une activité sur les multiples et diviseurs en fin de primaire Lucie Passaplan et Sébastien Toninato 1 Dans le but d observer les stratégies usitées dans la résolution d un problème
F1C1/ Analyse. El Hadji Malick DIA
F1C1/ Analyse Présenté par : El Hadji Malick DIA [email protected] Description sommaire du cours Porte sur l analyse réelle propose des outils de travail sur des éléments de topologie élémentaire
Utilisation des tableaux sémantiques dans les logiques de description
Utilisation des tableaux sémantiques dans les logiques de description IFT6281 Web Sémantique Jacques Bergeron Département d informatique et de recherche opérationnelle Université de Montréal [email protected]
La persistance des nombres
regards logique & calcul La persistance des nombres Quand on multiplie les chiffres d un nombre entier, on trouve un autre nombre entier, et l on peut recommencer. Combien de fois? Onze fois au plus...
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère
O, i, ) ln x. (ln x)2
EXERCICE 5 points Commun à tous les candidats Le plan complee est muni d un repère orthonormal O, i, j Étude d une fonction f On considère la fonction f définie sur l intervalle ]0; + [ par : f = ln On
OFFICE DES NATIONS UNIES CONTRE LA DROGUE ET LE CRIME Vienne
OFFICE DES NATIONS UNIES CONTRE LA DROGUE ET LE CRIME Vienne Mécanisme d examen de l application de la Convention des Nations Unies contre la corruption Documents de base NATIONS UNIES Vienne, 2010 Résolutions
Régler les paramètres de mesure en choisissant un intervalle de mesure 10µs et 200 mesures.
TP Conversion analogique numérique Les machines numériques qui nous entourent ne peuvent, du fait de leur structure, que gérer des objets s composés de 0 et de. Une des étapes fondamentale de l'interaction
3-La théorie de Vygotsky Lev S. VYGOTSKY (1896-1934)
3-La théorie de Vygotsky Lev S. VYGOTSKY (1896-1934) Psychologue russe contemporain de Piaget, a également élaboré une théorie interactionniste de l'apprentissage, sage, mais qui insiste sur tout sur la
Epithète. Person a. i!(mouton de vapeur) i! Epithète. et Person a
Epithète et Person a Marionnettes habitées et déshabitées. Epithète et Person a i!(mouton de vapeur) i! -Jeux de masque sur, dans, avec, contre le masque! -Corps qui «fait face»! -Personnages échappés
6 ème FONCTIONS. Pratiquer une démarche scientifique et technologique. Capacités
6 ème FONCTIONS Les exercices de ce chapitre permettent de travailler des compétences scientifiques du socle commun. Pratiquer une démarche scientifique et technologique Capacités Rechercher, extraire
LE PROBLEME DU PLUS COURT CHEMIN
LE PROBLEME DU PLUS COURT CHEMIN Dans cette leçon nous définissons le modèle de plus court chemin, présentons des exemples d'application et proposons un algorithme de résolution dans le cas où les longueurs
Plan. 5 Actualisation. 7 Investissement. 2 Calcul du taux d intérêt 3 Taux équivalent 4 Placement à versements fixes.
Plan Intérêts 1 Intérêts 2 3 4 5 6 7 Retour au menu général Intérêts On place un capital C 0 à intérêts simples de t% par an : chaque année une somme fixe s ajoute au capital ; cette somme est calculée
CONTRAT DE LICENCE D UTILISATION DU LOGICIEL MORPH M SOUS LA FORME MORPH M PYTHON
CONTRAT DE LICENCE D UTILISATION DU LOGICIEL MORPH M SOUS LA FORME MORPH M PYTHON Version du 3 mai 2007 PREAMBULE ARMINES via le Centre de Morphologie Mathématiques commun à ARMINES et l Ecole des Mines
Demande d admission au Centre pédagogique Lucien-Guilbault Secteur primaire
Date d envoi : Demande d admission au Centre pédagogique Lucien-Guilbault Secteur primaire QUESTIONNAIRE AU TITULAIRE Ce document doit être complété par le titulaire de classe et/ou par l orthopédagogue
Évaluation et implémentation des langages
Évaluation et implémentation des langages Les langages de programmation et le processus de programmation Critères de conception et d évaluation des langages de programmation Les fondations de l implémentation
Sur certaines séries entières particulières
ACTA ARITHMETICA XCII. 2) Sur certaines séries entières particulières par Hubert Delange Orsay). Introduction. Dans un exposé à la Conférence Internationale de Théorie des Nombres organisée à Zakopane
Probabilités. Une urne contient 3 billes vertes et 5 billes rouges toutes indiscernables au toucher.
Lycée Jean Bart PCSI Année 2013-2014 17 février 2014 Probabilités Probabilités basiques Exercice 1. Vous savez bien qu un octet est une suite de huit chiffres pris dans l ensemble {0; 1}. Par exemple 01001110
Le développement cognitif selon Jean Piaget. Les stades du développement cognitif selon Piaget
Le développement cognitif selon Jean Piaget Piaget (BIO) et ses collaborateurs sont sans conteste les auteurs qui ont le plus contribué à notre compréhension du développement des capacités mentales durant
Angles orientés et trigonométrie
Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.
TSTI 2D CH X : Exemples de lois à densité 1
TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun
PROJET D ARTICLES SUR LES CLAUSES DE LA NATION LA PLUS FAVORISÉE 1978
PROJET D ARTICLES SUR LES CLAUSES DE LA NATION LA PLUS FAVORISÉE 1978 Texte adopté par la Commission à sa trentième session, en 1978, et soumis à l Assemblée générale dans le cadre de son rapport sur les
Les nombres entiers. Durée suggérée: 3 semaines
Les nombres entiers Durée suggérée: 3 semaines Aperçu du module Orientation et contexte Pourquoi est-ce important? Dans le présent module, les élèves multiplieront et diviseront des nombres entiers concrètement,
PLAN NOTATIONS UTILISÉES
PLAN COURS 3 AGRÉGATION ORDINALE Master IAD DMDC PATRICE PERNY LIP6 Université Paris 6 1 2 2/29 NOTATIONS UTILISÉES I) O A : ordres complets sur A P A : Préordres sur A (complets ou partiels) PC A : Préordres
Probabilités conditionnelles Exercices corrigés
Terminale S Probabilités conditionnelles Exercices corrigés Exercice : (solution Une compagnie d assurance automobile fait un bilan des frais d intervention, parmi ses dossiers d accidents de la circulation.
Programmation parallèle et distribuée (Master 1 Info 2015-2016)
Programmation parallèle et distribuée (Master 1 Info 2015-2016) Hadoop MapReduce et HDFS Note bibliographique : ce cours est largement inspiré par le cours de Benjamin Renaut (Tokidev SAS) Introduction
Séquence 4 : Objet/objet technique, besoin, Fonct. d usage, F. d estime. Séance sur l objet/objet technique, besoin, Fonct.
Séquence 4 : Objet/objet technique, besoin, Fonct. d usage, F. d estime Séance sur l objet/objet technique, besoin, Fonct. d usage Situation Je distribue une poche avec 3 objets techniques et 3 objets
Taux d évolution moyen.
Chapitre 1 Indice Taux d'évolution moyen Terminale STMG Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Indice simple en base 100. Passer de l indice au taux d évolution, et réciproquement.
