EXEMPLE D UTILISATION DE LA PROCEDURE CATMOD ALIMENTATION DES ALLIGATORS
|
|
|
- Marie-Dominique Pascale Henry
- il y a 9 ans
- Total affichages :
Transcription
1 EXEMPLE D UTILISATION DE LA PROCEDURE CATMOD ALIMENTATION DES ALLIGATORS Le tableau provient d une étude concernant les facteurs influençant le choix de la nourriture principale d alligators. L échantillon est formé de 9 alligators capturés dans quatre lacs de Floride. La variable à modéliser est la nourriture principale, en volume, trouvée dans l estomac des alligators. Cette variable (Choix) a cinq catégories : poissons, invertébrés, autres, oiseaux, reptiles. Les variables explicatives, outre le lac, sont le sexe des alligators ( Genre) : male ou femelle, et leur taille codée en deux catégories : taille (,3 mètres) taille ( >,3 mètres ). On trouve dans les cinq colonnes de droite le nombre d alligators qui se sont nourris principalement de poissons, d invertébrés, d oiseaux, de reptiles ou d autres nourritures. Lac Genre Taille Poissons Invertébrés Autres Oiseaux ( Birds) Hancock Male Femelle Oklawaha Male Trafford George Femelle Male Femelle Male Femelle Reptiles 6 6 TABLEAU Cas Alimentation Alligators Procédure CATMOD SAS
2 ) L objectif de l étude est de construire un modèle explicatif de la variable choix à l aide des variables lac, genre, taille. Dans ce but on utilise la procédure CATMOD. Indiquer les cinq options disponibles pour les fonctions de réponse. Lesquelles sont utilisables pour ce type de données? ) Comment doit on présenter les données pour le programme CATMOD? On indiquera en particulier le nombre de lignes. 3) Indiquer ce que l on entend par fonction de réponse logit généralisé. En utilisant les notations du cours, on écrira précisément les différents termes. On démontrera comment on en déduit les probabilités associées aux différentes modalités de la variable à expliquer Y. 4) Les résultats obtenus avec l option par défaut de CATMOD pour le modèle avec uniquement les effets principaux : lac, genre, taille sont fournis dans le tableau. Que pensez vous de ce modèle? Tester l apport de chaque variable. 5) Les résultats concernant le modèle simplifié ( effets lac et taille ) sont présentés dans le tableau 3. Quelle est l utilité dans la procédure CATMOD de l instruction : «population lac genre taille;». Pourquoi n était-elle pas nécessaire dans le modèle avec les trois effets principaux lac genre taille? (tableau ) 6) Commenter les résultats du tableau 3. 7) A partir du modèle simplifié, calculer pour les males de taille du lac Hancock, les probabilités estimées des choix de nourriture poissons, invertébrés. Indiquer aussi les probabilités estimées des choix de nourriture poissons, invertébrés pour les femelles de taille du lac Hancock. ( compléter le tableau 4 ). 8) Le tableau 5 présente les sorties d une modélisation à l aide de la fonction identité. Un message d erreur apparaît. Comment peut-on l expliquer? Comment peut-on éviter ce type de problème dans SAS? 9) Le tableau 6 présente les résultats du modèle utilisant la fonction identité, prenant en compte les effets principaux lac genre taille. Que pensez-vous de ce modèle? Que peut-on proposer? Cas Alimentation Alligators Procédure CATMOD SAS
3 ANNEXE : ALIMENTATION DES ALLIGATORS TABLEAU : Procédure CATMOD ; Modèle avec les effets principaux lac, genre, taille. proc catmod data=alligat order=data; weight freq; model choix= lac genre taille; run; Data Summary Response choix Response Levels 5 Weight Variable freq Populations 6 Data Set ALLIGAT Total Frequency 9 Frequency Missing Observations 56 Population Profiles Sample lac genre taille Sample Size H M 3 H M 7 3 H F 6 4 H F 9 5 O M 5 6 O M 6 7 O F 5 8 O F 9 T M T M 8 T F T F 3 G M 7 4 G M 5 G F 4 6 G F Response Profiles Response choix P I 3 A 4 B 5 R Cas Alimentation Alligators Procédure CATMOD SAS 3
4 Maximum Likelihood Analysis of Variance Source DF Chi-Square Pr > ChiSq Intercept <. lac genre taille Likelihood Ratio Analysis of Maximum Likelihood Estimates Standard Chi- Effect Parameter Estimate Error Square Pr > ChiSq Intercept < lac genre taille Cas Alimentation Alligators Procédure CATMOD SAS 4
5 TABLEAU 3 : MODELE SIMPLIFIE, EFFETS LAC ET TAILLE proc catmod data=alligat order=data; weight freq; population lac genre taille; model choix= lac taille / freq prob predict ; run; Maximum Likelihood Analysis of Variance Source DF Chi-Square Pr > ChiSq Intercept <. lac taille Likelihood Ratio Analysis of Maximum Likelihood Estimates Standard Chi- Effect Parameter Estimate Error Square Pr > ChiSq Intercept < lac taille Cas Alimentation Alligators Procédure CATMOD SAS 5
6 TABLEAU 4 : EXTRAIT DU TABLEAU DES PREVISIONS MODELE SIMPLIFIE. Maximum Likelihood Predicted Values for Probabilities Observed Predicted----- Standard Standard lac genre taille choix Probability Error Probability Error Residual H M P ???.7??? I ???.443??? A B R H M P I A B R H F P ???.7??? I.54.67??? A B R H F P I A B R Cas Alimentation Alligators Procédure CATMOD SAS 6
7 TABLEAU 5 : MODELE FONCTION IDENTITE proc catmod data=alligat order=data; weight freq; response marginals; model choix= lac genre taille; run; The CATMOD Procedure Data Summary Response choix Response Levels 5 Weight Variable freq Populations 6 Data Set ALLIGAT Total Frequency 9 Frequency Missing Observations 56 Population Profiles Sample lac genre taille Sample Size H M 3 H M 7 3 H F 6 4 H F 9 5 O M 5 6 O M 6 7 O F 5 8 O F 9 T M T M 8 T F T F 3 G M 7 4 G M 5 G F 4 6 G F Response choix P I 3 A 4 B 5 R ERROR: The response functions are linearly dependent since the number of functions per population, 4, is greater than or equal to the number of response levels,, in population. Cas Alimentation Alligators Procédure CATMOD SAS 7
8 TABLEAU 6 : MODELE FONCTION IDENTITE effectifs modifiés. proc catmod data=alligat order=data; weight freq; response marginals; population lac genre taille; model choix= lac genre taille/ addcell =. ; run; Analysis of Variance Source DF Chi-Square Pr > ChiSq Intercept <. lac 4.89 <. genre taille <. Residual Analysis of Weighted Least Squares Estimates Standard Chi- Effect Parameter Estimate Error Square Pr > ChiSq Intercept < < < lac < < < genre taille < Cas Alimentation Alligators Procédure CATMOD SAS 8
Exemple PLS avec SAS
Exemple PLS avec SAS This example, from Umetrics (1995), demonstrates different ways to examine a PLS model. The data come from the field of drug discovery. New drugs are developed from chemicals that
distribution quelconque Signe 1 échantillon non Wilcoxon gaussienne distribution symétrique Student gaussienne position
Arbre de NESI distribution quelconque Signe 1 échantillon distribution symétrique non gaussienne Wilcoxon gaussienne Student position appariés 1 échantillon sur la différence avec référence=0 2 échantillons
Étude de cas Assurance (d après une étude de Philippe Périé, CISIA)
Étude de cas Assurance (d après une étude de Philippe Périé, CISIA) I.1.Les données L échantillon est constitué de 1106 assurés Belges observés en 1992 et répartis en 2 groupes. - les assurés qui n ont
Modèles pour données répétées
Résumé Les données répétées, ou données longitudinales, constituent un domaine à la fois important et assez particulier de la statistique. On entend par données répétées des données telles que, pour chaque
Imputation du salaire d ego dans TeO
Imputation du salaire d ego dans TeO Objet de la note : linéariser la réponse en tranche du salaire, et imputer le salaire en cas de non réponse Champ et principe de la méthode Les individus qui se sont
Lire ; Compter ; Tester... avec R
Lire ; Compter ; Tester... avec R Préparation des données / Analyse univariée / Analyse bivariée Christophe Genolini 2 Table des matières 1 Rappels théoriques 5 1.1 Vocabulaire....................................
Un exemple de régression logistique sous
Fiche TD avec le logiciel : tdr341 Un exemple de régression logistique sous A.B. Dufour & A. Viallefont Etude de l apparition ou non d une maladie cardiaque des coronaires 1 Présentation des données Les
Données longitudinales et modèles de survie
ANALYSE DU Données longitudinales et modèles de survie 5. Modèles de régression en temps discret André Berchtold Département des sciences économiques, Université de Genève Cours de Master ANALYSE DU Plan
Demande d autorisation de faire une tournée pour des cirques itinérants détenant des animaux sauvages
Demande d autorisation de faire une tournée pour des cirques itinérants détenant des animaux sauvages Première tournée / premier spectacle Nouvelle tournée / nouveau spectacle Entrée en Suisse de l étranger
Exemples d application
AgroParisTech Exemples d application du modèle linéaire E Lebarbier, S Robin Table des matières 1 Introduction 4 11 Avertissement 4 12 Notations 4 2 Régression linéaire simple 7 21 Présentation 7 211 Objectif
Une introduction. Lionel RIOU FRANÇA. Septembre 2008
Une introduction INSERM U669 Septembre 2008 Sommaire 1 Effets Fixes Effets Aléatoires 2 Analyse Classique Effets aléatoires Efficacité homogène Efficacité hétérogène 3 Estimation du modèle Inférence 4
1 Modélisation d être mauvais payeur
1 Modélisation d être mauvais payeur 1.1 Description Cet exercice est très largement inspiré d un document que M. Grégoire de Lassence de la société SAS m a transmis. Il est intitulé Guide de démarrage
MODELE A CORRECTION D ERREUR ET APPLICATIONS
MODELE A CORRECTION D ERREUR ET APPLICATIONS Hélène HAMISULTANE Bibliographie : Bourbonnais R. (2000), Econométrie, DUNOD. Lardic S. et Mignon V. (2002), Econométrie des Séries Temporelles Macroéconomiques
Exercices M1 SES 2014-2015 Ana Fermin (http:// fermin.perso.math.cnrs.fr/ ) 14 Avril 2015
Exercices M1 SES 214-215 Ana Fermin (http:// fermin.perso.math.cnrs.fr/ ) 14 Avril 215 Les exemples numériques présentés dans ce document d exercices ont été traités sur le logiciel R, téléchargeable par
Algebra & Trigonometry High School Level Glossary English / French
Algebra & Trigonometry High School Level Glossary / Algebra 2 and Trigonometry Problem Solving algebraically alternate approach collaborate constraint critique equivalent evaluate explain formulate generalization
Analyse de variance à deux facteurs (plan inter-sujets à deux facteurs) TP9
Analyse de variance à deux facteurs (plan inter-sujets à deux facteurs) TP9 L analyse de variance à un facteur permet de vérifier, moyennant certaines hypothèses, si un facteur (un critère de classification,
FOAD COURS D ECONOMETRIE 1 CHAPITRE 2 : Hétéroscédasicité des erreurs. 23 mars 2012.
FOAD COURS D ECONOMETRIE CHAPITRE 2 : Hétéroscédasicité des erreurs. 23 mars 202. Christine Maurel Maître de conférences en Sciences Economiques Université de Toulouse - Capitole Toulouse School of Economics-ARQADE
Introduction aux Statistiques et à l utilisation du logiciel R
Introduction aux Statistiques et à l utilisation du logiciel R Christophe Lalanne Christophe Pallier 1 Introduction 2 Comparaisons de deux moyennes 2.1 Objet de l étude On a mesuré le temps de sommeil
Keywords: Probability of catastrophic events, Bivariate extreme value theory, Heavy tailed distributions, ALS methods.
E Laurence Lescourret & Christian Y. Robert Centre de Recherche en Economie et Statistique LaboratoiredeFinanceetd Assurance 5 Boulevard Gabriel Peri, 92245 Malakoff Résumé: De par leur nature, les événements
Gestion de Portefeuille. Mesures de Performance Ajustées du Risque
Gestion de Portefeuille Mesures de Performance Ajustées du Risque Le Ratio de Sharpe La mesure de performance (ajustée du risque) la plus utilisée Rappel: Propriétés du ratio de Sharpe Mesure de la stratégie:
SEMINAIRE SAS VISUAL ANALYTICS LAUSANNE, MARCH 18 : JÉRÔME BERTHIER VALERIE AMEEL
SEMINAIRE SAS VISUAL ANALYTICS LAUSANNE, MARCH 18 : JÉRÔME BERTHIER VALERIE AMEEL AGENDA 14:15-14:30 Bienvenue & Introduction Jérôme Berthier et Manuel Fucinos 14:30-14:45 Le concept de la Data Viz et
Exercices sur SQL server 2000
Exercices sur SQL server 2000 La diagramme de classe : Exercices sur SQL server 2000 Le modèle relationnel correspondant : 1 Créer les tables Clic-droit on Tables et choisir «New Table» Créer la table
Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés
Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Professeur Patrice Francour [email protected] Une grande partie des illustrations viennent
SAS de base : gestion des données et procédures élémentaires
1 SAS de base : gestion des données et procédures élémentaires SAS de base : gestion des données et procédures élémentaires Résumé Description des commandes (module SAS de base) les plus utiles de l étape
TP: Représentation des signaux binaires. 1 Simulation d un message binaire - Codage en ligne
Objectifs : Ce TP est relatif aux différentes méthodes de codage d une information binaire, et à la transmission en bande de base de cette information. Les grandes lignes de ce TP sont l étude des méthodes
Approche par groupe de gènes pour les données longitudinales d expression génique avec une application dans un essai vaccinal contre le VIH
Approche par groupe de gènes pour les données longitudinales d expression génique avec une application dans un essai vaccinal contre le VIH Boris Hejblum 1,2,3 & Rodolphe Thiébaut 1,2,3 1 Inserm, U897
Le chi carré. Le sommaire. Approche quantitative
Approche quantitative Le chi carré Les objectifs pédagogiques Définir le test du chi carré Déterminer la nature des données propres au chi carré Savoir calculer le chi carré Savoir déterminer les fréquences
T de Student Khi-deux Corrélation
Les tests d inférence statistiques permettent d estimer le risque d inférer un résultat d un échantillon à une population et de décider si on «prend le risque» (si 0.05 ou 5 %) Une différence de moyennes
Didacticiel - Études de cas. Description de quelques fonctions du logiciel PSPP, comparaison des résultats avec ceux de Tanagra, R et OpenStat.
1 Objectif Description de quelques fonctions du logiciel PSPP, comparaison des résultats avec ceux de Tanagra, R et OpenStat. Tout le monde l aura compris, je passe énormément de temps à analyser les logiciels
Post-processing of multimodel hydrological forecasts for the Baskatong catchment
+ Post-processing of multimodel hydrological forecasts for the Baskatong catchment Fabian Tito Arandia Martinez Marie-Amélie Boucher Jocelyn Gaudet Maria-Helena Ramos + Context n Master degree subject:
Chapitre 3. Les distributions à deux variables
Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles
Modèle de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes
de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes Zohra Guessoum 1 & Farida Hamrani 2 1 Lab. MSTD, Faculté de mathématique, USTHB, BP n 32, El Alia, Alger, Algérie,[email protected]
TABLE DES MATIERES. C Exercices complémentaires 42
TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence
Génération de code binaire pour application multimedia : une approche au vol
Génération de binaire pour application multimedia : une approche au vol http://hpbcg.org/ Henri-Pierre Charles Université de Versailles Saint-Quentin en Yvelines 3 Octobre 2009 Présentation Présentation
Évaluation de la régression bornée
Thierry Foucart UMR 6086, Université de Poitiers, S P 2 M I, bd 3 téléport 2 BP 179, 86960 Futuroscope, Cedex FRANCE Résumé. le modèle linéaire est très fréquemment utilisé en statistique et particulièrement
Surveillance de Scripts LUA et de réception d EVENT. avec LoriotPro Extended & Broadcast Edition
Surveillance de Scripts LUA et de réception d EVENT avec LoriotPro Extended & Broadcast Edition L objectif de ce document est de présenter une solution de surveillance de processus LUA au sein de la solution
INITIATION AU LOGICIEL SAS
INITIATION AU LOGICIEL SAS (version 9.1.3 sous Windows) Hélène HAMISULTANE Bibliographie : Initiation au logiciel SAS(9) pour Windows, Coqué N. (juin 2006). www.agroparistech.fr/img/pdf/polysas.pdf SAS
Business Process Management
Alain Darmon Responsable Avant-Vente BPM, IBM 1 er mars 2011 Business Process Management Améliorez l agilité de l entreprise avec la gestion des processus métier Les processus sont partout! Ouverture de
INSTITUT MARITIME DE PREVENTION. For improvement in health and security at work. Created in 1992 Under the aegis of State and the ENIM
INSTITUT MARITIME DE PREVENTION For improvement in health and security at work Created in 1992 Under the aegis of State and the ENIM Maritime fishing Shellfish-farming Sea transport 2005 Le pilier social
Institut français des sciences et technologies des transports, de l aménagement
Institut français des sciences et technologies des transports, de l aménagement et des réseaux Session 3 Big Data and IT in Transport: Applications, Implications, Limitations Jacques Ehrlich/IFSTTAR h/ifsttar
Lamia Oukid, Ounas Asfari, Fadila Bentayeb, Nadjia Benblidia, Omar Boussaid. 14 Juin 2013
Cube de textes et opérateur d'agrégation basé sur un modèle vectoriel adapté Text Cube Model and aggregation operator based on an adapted vector space model Lamia Oukid, Ounas Asfari, Fadila Bentayeb,
Utilisation du Logiciel de statistique SPSS 8.0
Utilisation du Logiciel de statistique SPSS 8.0 1 Introduction Etude épidémiologique transversale en population générale dans 4 pays d Afrique pour comprendre les différences de prévalence du VIH. 2000
I. Programmation I. 1 Ecrire un programme en Scilab traduisant l organigramme montré ci-après (on pourra utiliser les annexes):
Master Chimie Fondamentale et Appliquée : spécialité «Ingénierie Chimique» Examen «Programmation, Simulation des procédés» avril 2008a Nom : Prénom : groupe TD : I. Programmation I. 1 Ecrire un programme
SAS ENTERPRISE MINER POUR L'ACTUAIRE
SAS ENTERPRISE MINER POUR L'ACTUAIRE Conférence de l Association des Actuaires I.A.R.D. 07 JUIN 2013 Sylvain Tremblay Spécialiste en formation statistique SAS Canada AGENDA Survol d Enterprise Miner de
Faut-il pondérer? ...Ou l'éternelle question de l'économètre confronté à un problème de sondage. Laurent Davezies et Xavier D'Haultf uille.
Faut-il pondérer?...ou l'éternelle question de l'économètre confronté à un problème de sondage Laurent Davezies et Xavier D'Haultf uille Juin 2009 Résumé Ce papier précise dans quels cas les estimations
De la mesure à l analyse des risques
De la mesure à l analyse des risques Séminaire ISFA - B&W Deloitte Jean-Paul LAURENT Professeur à l'isfa, Université Claude Bernard Lyon 1 [email protected] http://laurent.jeanpaul.free.fr/ 0 De
Demande d autorisation de faire du commerce d animaux
Demande d autorisation de faire du commerce d animaux 1 Autorité et auteur de la demande 1.1 Adresse du service cantonal de la protection des animaux (adresse d envoi): 1.2 Nom et adresse de la personne
SparkInData. Place de Marché des applications Spatiales 09-04-2015
SparkInData Place de Marché des applications Spatiales 09-04-2015 SparkInData / Concept Place de marché Plateforme fédérative Haute valeur ajoutée Acteurs reconnus Consortium homogène Architecture Big
Analyse statistique de données qualitatives et quantitatives en sciences sociales : TP RÉGRESSION LOGISTIQUE (MODÈLES CHAPITRE 1)
Analyse statistique de données qualitatives et quantitatives en sciences sociales : TP RÉGRESSION LOGISTIQUE (MODÈLES CHAPITRE 1) Modèles de régression logistique à réaliser Une explicative catégorielle
Surveillance et maintenance prédictive : évaluation de la latence de fautes. Zineb SIMEU-ABAZI Univ. Joseph Fourier, LAG)
Surveillance et maintenance prédictive : évaluation de la latence de fautes Zineb SIMEU-ABAZI Univ. Joseph Fourier, LAG) SURVEILLANCE Analyser une situation et fournir des indicateurs! Détection de symptômes!
Exercice : la frontière des portefeuilles optimaux sans actif certain
Exercice : la frontière des portefeuilles optimaux sans actif certain Philippe Bernard Ingénierie Economique & Financière Université Paris-Dauphine Février 0 On considère un univers de titres constitué
Examen de Logiciels Statistiques
G. Hunault Angers, mai 2011 Licence MEF Examen de Logiciels Statistiques On s intéresse ici au dossier EAEF01 qui contient un extrait des données du recensement américain. On trouvera ces données et leur
BIG Data et R: opportunités et perspectives
BIG Data et R: opportunités et perspectives Guati Rizlane 1 & Hicham Hajji 2 1 Ecole Nationale de Commerce et de Gestion de Casablanca, Maroc, [email protected] 2 Ecole des Sciences Géomatiques, IAV Rabat,
Courses available for exchange students 4 th year
Academic year 2014-20 Courses available for exchange students 4 th year Executive Engineering Programme (EEP) Semester 7 (French level required : B2 min) Semester 8 (Limited number of places per major)
Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R
Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R Yves Aragon, David Haziza & Anne Ruiz-Gazen GREMAQ, UMR CNRS 5604, Université des Sciences
Introduction à la statistique non paramétrique
Introduction à la statistique non paramétrique Catherine MATIAS CNRS, Laboratoire Statistique & Génome, Évry http://stat.genopole.cnrs.fr/ cmatias Atelier SFDS 27/28 septembre 2012 Partie 2 : Tests non
Étude des flux d individus et des modalités de recrutement chez Formica rufa
Étude des flux d individus et des modalités de recrutement chez Formica rufa Bruno Labelle Théophile Olivier Karl Lesiourd Charles Thevenin 07 Avril 2012 1 Sommaire Remerciements I) Introduction p3 Intérêt
Ects. Utilitaire d Économétrie Version 2. Russell Davidson
Ects Utilitaire d Économétrie Version 2 Russell Davidson Mars 1993 Ects, Version 2 c Russell Davidson, Mars 1993. Tous droits de reproduction, de traduction, d adaptation, et d exécution réservés pour
Solvabilité II et rentabilité ajustée au risque des produits en assurance-vie
Solvabilité II et rentabilité ajustée au risque des produits en assurance-vie Vladislav GRIGOROV, CRO SwissLife France Journées d études de l IA, Deauville, 21 septembre 2012 Introduction Solvency II représente
Densité de population et ingestion de nourriture chez un insecte vecteur de la maladie de Chagas
Fiche TD avec le logiciel : tdr335 Densité de population et ingestion de nourriture chez un insecte vecteur de la maladie de Chagas F. Menu, A.B. Dufour, E. Desouhant et I. Amat La fiche permet de se familiariser
Introduction à SPSS. Guy Mélard, U.L.B. Mars 2006 ([email protected]) Guy Mélard, ULB 1. Introduction à SPSS. Objectif de la leçon.
à SPSS Objectif de la leçon à SPSS Elle a pour but de fournir une introduction à ce logiciel statistique de manière à faciliter son utilisation en complément de SAS, avec l illustration sur des exemples
Théorie des sondages : cours 5
Théorie des sondages : cours 5 Camelia Goga IMB, Université de Bourgogne e-mail : [email protected] Master Besançon-2010 Chapitre 5 : Techniques de redressement 1. poststratification 2. l estimateur
SOCIAL INTELLIGENCE BUSINESS RESULTS
SOCIAL INTELLIGENCE BUSINESS RESULTS Faire de l écoute et de l analyse des réseaux sociaux un outil stratégique pour une marque Intervention 28/11/2014 Les marques et Internet Perspective sur 20 ans 1995
Analyse de la variance Comparaison de plusieurs moyennes
Analyse de la variance Comparaison de plusieurs moyennes Biostatistique Pr. Nicolas MEYER Laboratoire de Biostatistique et Informatique Médicale Fac. de Médecine de Strasbourg Mars 2011 Plan 1 Introduction
Efficience des marchés et finance comportementale
Efficience des marchés et finance comportementale Martin Vlcek, Quantitative Investment Manager (BCV) 06.12.2013 Contenu 1. Introduction 2. Théorie de l efficience du marché 3. Finance comportementale
Commande Prédictive des. Convertisseurs Statiques
Commande Prédictive des Convertisseurs Statiques 1 Classification des méthodes de commande pour les convertisseurs statiques Commande des convertisseurs Hystérésis MLI Cde Linéaire Fuzzy Logic Sliding
Wealth Effect on Labor Market Transitions
Wealth Effect on Labor Market Transitions Yann Algan EUREQua - Université de Paris I [email protected] Arnaud Chéron GAINS - Université du Maine & Cepremap [email protected] Jean-Olivier Hairault
Comment consolider des données
Comment consolider des données Version 0.02 du 18.11.2004 Réalisé avec : OOo 1.1.3 Plate-forme / Os : Toutes Distribué par le projet fr.openoffice.org Sommaire 1 Introduction...3 2 Création des données...4
L Elasticité Concept et Applications Chapitre 4
L Elasticité Concept et Applications Chapitre 4 L Elasticité...... est une mesure de la réaction des acheteurs et vendeurs aux changements dans les conditions du marché...... nous permet d analyser les
Analyse des correspondances avec colonne de référence
ADE-4 Analyse des correspondances avec colonne de référence Résumé Quand une table de contingence contient une colonne de poids très élevé, cette colonne peut servir de point de référence. La distribution
Validation probabiliste d un Système de Prévision d Ensemble
Validation probabiliste d un Système de Prévision d Ensemble Guillem Candille, janvier 2006 Système de Prévision d Ensemble (EPS) (ECMWF Newsletter 90, 2001) Plan 1 Critères de validation probabiliste
Project 1 Experimenting with Simple Network Management Tools. ping, traceout, and Wireshark (formerly Ethereal)
Project 1 Experimenting with Simple Network Management Tools ping, traceout, and Wireshark (formerly Ethereal) (A) (25%) Use the ping utility to determine reach-ability of several computers. To run a ping
1 Imputation par la moyenne
Introduction au data mining L3 MIS - STA 1616-2010 V. Monbet Données manquantes L'objectif de ce TD est de manipuler et de comparer plusieurs méthodes d'imputation de données manquantes. La première partie
L'intelligence d'affaires: la statistique dans nos vies de consommateurs
L'intelligence d'affaires: la statistique dans nos vies de consommateurs Jean-François Plante, HEC Montréal Marc Fredette, HEC Montréal Congrès de l ACFAS, Université Laval, 6 mai 2013 Intelligence d affaires
NON-LINEARITE ET RESEAUX NEURONAUX
NON-LINEARITE ET RESEAUX NEURONAUX Vêlayoudom MARIMOUTOU Laboratoire d Analyse et de Recherche Economiques Université de Bordeaux IV Avenue. Leon Duguit, 33608 PESSAC, France tel. 05 56 84 85 77 e-mail
Archived Content. Contenu archivé
ARCHIVED - Archiving Content ARCHIVÉE - Contenu archivé Archived Content Contenu archivé Information identified as archived is provided for reference, research or recordkeeping purposes. It is not subject
Application des courbes ROC à l analyse des facteurs pronostiques binaires
Application des courbes ROC à l analyse des facteurs pronostiques binaires Combescure C (1), Perneger TV (1), Weber DC (2), Daurès J P (3), Foucher Y (4) (1) Service d épidémiologie clinique et Centre
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre
CONFIGURATION DU SERVEUR DE MAILS EXIM. par. G.Haberer, A.Peuch, P.Saade
CONFIGURATION DU SERVEUR DE MAILS EXIM par G.Haberer, A.Peuch, P.Saade Table des matieres 1. Introduction........................................................................ 2 1.1. Objectifs....................................................................
INTRODUCTION AU DATA MINING
INTRODUCTION AU DATA MINING 6 séances de 3 heures mai-juin 2006 EPF - 4 ème année - Option Ingénierie d Affaires et de Projets Bertrand LIAUDET TP DE DATA MINING Le TP et le projet consisteront à mettre
PAR_20141217_09543_EUR DATE: 17/12/2014. Suite à l'avis PAR_20141119_08654_EUR
CORPORATE EVENT NOTICE: Emission avec maintien du droit préférentiel de souscription, d obligations convertibles en actions ordinaires nouvelles assorties de bons de souscription d action («OCABSA») -
Détection de têtes dans un nuage de points 3D à l aide d un modèle de mélange sphérique
Détection de têtes dans un nuage de points 3D à l aide d un modèle de mélange sphérique Denis Brazey & Bruno Portier 2 Société Prynɛl, RD974 290 Corpeau, France [email protected] 2 Normandie Université,
BIRT (Business Intelligence and Reporting Tools)
BIRT (Business Intelligence and Reporting Tools) Introduction Cette publication a pour objectif de présenter l outil de reporting BIRT, dans le cadre de l unité de valeur «Data Warehouse et Outils Décisionnels»
Exploiter les statistiques d utilisation de SQL Server 2008 R2 Reporting Services
Exploiter les statistiques d utilisation de SQL Server 2008 R2 Reporting Services Nous verrons dans cet article comment exploiter simplement les données de Log de SQL Server 2008 R2 Reporting Services
Comprendre l impact de l utilisation des réseaux sociaux en entreprise SYNTHESE DES RESULTATS : EUROPE ET FRANCE
Comprendre l impact de l utilisation des réseaux sociaux en entreprise SYNTHESE DES RESULTATS : EUROPE ET FRANCE 1 Objectifs de l étude Comprendre l impact des réseaux sociaux externes ( Facebook, LinkedIn,
Le signal GPS. Les horloges atomiques à bord des satellites GPS produisent une fréquence fondamentale f o = 10.23 Mhz
Le signal GPS Les horloges atomiques à bord des satellites GPS produisent une fréquence fondamentale f o = 10.23 Mhz Deux signaux en sont dérivés: L1 (fo x 154) = 1.57542 GHz, longueur d onde = 19.0 cm
BUSINESS FORECASTING SYSTEM
Septembre 2012 Pour vos appels d offre LOGICIELS DE PRÉVISION 3 e ÉDITION BUSINESS FORECASTING SYSTEM XE - Unlimited SC Trac SC SupplyChainMagazine.fr 19, rue Saint-Georges - 94700 Maisons-Alfort 1. NOM
Aerodrome chart ALT AD : 309 (11 hpa)
erodrome chart LT D : 309 (11 hpa) Public air traffic see MON-FRIbeforeHOLthe last working day before 1400. see utthesemon-fribeforest, SUN and HOL the last working day before. Wildlife strike hazardrandom
CORRIGES Plan de la séance
CORRIGES Plan de la séance 1. Corriges Compréhension écrite 2. Corriges Compréhension orale 3. Corriges Syntaxe 4. Corriges Vocabulaire 5. Corriges Conjugaison 6. Corriges Lecture d'élargissement 7. Corriges
Table des matières PRESENTATION DU LANGAGE DS2 ET DE SES APPLICATIONS. Introduction
PRESENTATION DU LANGAGE DS2 ET DE SES APPLICATIONS Depuis SAS 9.2 TS2M3, SAS propose un nouveau langage de programmation permettant de créer et gérer des tables SAS : le DS2 («Data Step 2»). Ces nouveautés
Grégoire de Lassence. Copyright 2006, SAS Institute Inc. All rights reserved.
Grégoire de Lassence 1 Grégoire de Lassence Responsable Pédagogie et Recherche Département Académique Tel : +33 1 60 62 12 19 [email protected] http://www.sas.com/france/academic SAS dans
Modélisation du risque opérationnel Approche Bâle avancée
Modélisation du risque opérationnel Approche Bâle avancée Université Laval Conférence LABIFUL Département de Finance et Assurance 1 Mars, 2013. Ridha Mahfoudhi, Ph.D. Senior Manager Quantitative Analytics,
Statistiques. Rappels de cours et travaux dirigés. Master 1 Biologie et technologie du végétal. Année 2010-2011
Master 1 Biologie et technologie du végétal Année 010-011 Statistiques Rappels de cours et travaux dirigés (Seul ce document sera autorisé en examen) auteur : Jean-Marc Labatte [email protected]
Langage propre à Oracle basé sur ADA. Offre une extension procédurale à SQL
Cours PL/SQL Langage propre à Oracle basé sur ADA Offre une extension procédurale à SQL PL/SQL permet d utiliser un sous-ensemble du langage SQL des variables, des boucles, des alternatives, des gestions
Modèle GARCH Application à la prévision de la volatilité
Modèle GARCH Application à la prévision de la volatilité Olivier Roustant Ecole des Mines de St-Etienne 3A - Finance Quantitative Décembre 2007 1 Objectifs Améliorer la modélisation de Black et Scholes
CLASSIFICATION REPORT OF REACTION TO FIRE PERFORMANCE IN ACCORDANCE WITH EN 13501-1: 2007
1 Introduction This classification report defines the classification assigned to «Paintable wall covering EKOTEX : Exclusief Ecologisch Sprint Excellent Schone Lucht Hygiëne» (as described by the sponsor)
MegaStore Manager ... Simulation de gestion d un hypermarché. Manuel du Participant
MegaStore Manager Simulation de gestion d un hypermarché.......... Manuel du Participant 1. Introduction 1.1. La simulation de gestion Vous allez participer à une simulation de gestion. Cette activité
La Recherche du Point Optimum de Fonctionnement d un Générateur Photovoltaïque en Utilisant les Réseaux NEURO-FLOUS
Rev. Energ. Ren. : Chemss 2000 39-44 La Recherche du Point Optimum de Fonctionnement d un Générateur Photovoltaïque en Utilisant les Réseaux NEURO-FLOUS D.K. Mohamed, A. Midoun et F. Safia Département
ESIEA PARIS 2011-2012
ESIEA PARIS 2011-2012 Examen MAT 5201 DATA MINING Mardi 08 Novembre 2011 Première Partie : 15 minutes (7 points) Enseignant responsable : Frédéric Bertrand Remarque importante : les questions de ce questionnaire
