Introduction à l imagerie par résonance magnétique (1) : magnétisme, résonance, excitation et relaxation

Dimension: px
Commencer à balayer dès la page:

Download "Introduction à l imagerie par résonance magnétique (1) : magnétisme, résonance, excitation et relaxation"

Transcription

1 Introduction à l imagerie par résonance magnétique (1) : magnétisme, résonance, excitation et relaxation. Kastler 1, 2 et C. Clair 1, 2, D. Vetter 3,. Favreau 4,. llal 2,. Pousse 2, M. Parmentier 2 MGNÉTISME ET MTIÈRE VIVNTE L imagerie par résonance magnétique protonique repose avant tout sur les propriétés magnétiques de la matière. Pour comprendre l origine des propriétés magnétiques de la matière, observons une toupie. u repos, la toupie est couchée sur le côté. Si on lui applique un mouvement de rotation autour de son axe, la toupie se maintient verticale, sous l effet d une force parallèle à son axe de rotation. Cette force est le résultat du moment cinétique (S) engendré par la rotation de la toupie. Si la toupie possède une charge électrique, à la force développée s ajoute une force d aimantation engendrée par le moment magnétique µ. Les deux forces sont représentées par des données vectorielles (voir figure 2). Cette relation liant le magnétisme et le déplacement d une charge électrique avait déjà été découverte au siècle dernier par Œrsted et Faraday (figure 1). Dans la matière vivante, le magnétisme provient des atomes. L atome est composé d un noyau et d électrons qui gravitent selon des trajectoires définies. Le noyau est composé de nucléons répartis en protons et en neutrons. Les protons sont chargés positivement. Un nombre égal de protons et d électrons assure la neutralité électrique de l atome. Pour un noyau, quand le nombre de protons est identique au nombre de neutrons, le moment magnétique résultant est nul. Les principaux constituants atomiques de la matière vivante sont le carbone, l hydrogène, l oxygène, l azote et le soufre. Parmi ces atomes, l hydrogène est le constituant principal des tissus mous constitué de 70 à 90 % d eau. En fait, le noyau de l atome d hydrogène est constitué uniquement par un proton portant une charge positive. Comme il tourne sur lui-même, il possède un moment cinétique appelé spin S. Étant chargé positivement, il possède de plus un moment magnétique µ (en fait lié au spin) que l on peut représenter comme un dipôle magnétique (assimilé à un petit aimant avec un pôle positif et négatif) et animé d un mouvement de rotation (figure 2). 1. Radiologie, CHU de esançon (. Kastler) 2. Laboratoire d image et d ingénierie pour la santé (LIIS), université de Franche-Comté, esançon (. Kastler). 3. Radiologie, CHU de Strasbourg (D. Vetter). 4. Université technique de Compiègne. Figure 1. Réciprocité entre magnétisme et déplacement d une charge électrique : expérience d Œrsted et de Faraday.. Le physicien Œrsted a mis en évidence, en 1820, qu un courant électrique produit un champ magnétique : si l on place une boussole à proximité d un fil où circule un courant électrique, celle-ci s oriente à 90 par rapport au fil conducteur (dans l axe du champ magnétique induit par le courant).. À l inverse, un aimant peut servir à produire un courant électrique. Le physicien français Michel Faraday l a prouvé quelques années après, en 1831 : en introduisant un barreau aimanté dans une bobine conductrice. C est le principe de fonctionnement d une dynamo. La Lettre du Neurologue - n 4 - vol. IV - septembre

2 S N CHMP PRINCIPL STTIQUE o Dans la matière vivante, en l absence de champ magnétique externe, l orientation de l aimantation de chaque proton est aléatoire. Dans cet état, l aimantation de la matière est nulle. Si l on soumet la matière à un champ magnétique, les protons vont se répartir en deux populations sensiblement égales, parallèles ou antiparallèles à o. Les protons de sens parallèle correspondent aux protons de plus bas niveau d énergie (), les protons de sens antiparallèle correspondent aux protons de plus haut niveau d énergie (E2). En fait, le champ magnétique résultant aura pour origine le très faible excès de protons de sens parallèle situé sur le niveau de basse énergie car les spins de sens opposé vont s annuler deux à deux. Pour un champ magnétique de 0,5 Telsa, cet excès représente environ 4 protons pour 2 millions (figure 3). Cela paraît faible, mais il faut se souvenir qu un centimètre cube d eau contient environ milliards de protons : ainsi nos quatre protons en excès représentent tout de même la somme de 135 millions de milliards de protons! Le champ magnétique résultant, lié à cet excès de protons de sens parallèle, constitue le vecteur d aimantation macroscopique o, il est parallèle au champ principal o et adopte un mouvement de rotation autour de son axe (comme le fait individuellement chacun des protons) : c est le mouvement de précession. La fréquence de ce mouvement, ou fréquence de précession, ωo est proportionnelle à l intensité du champ magnétique appliqué. P S Figure 2. Moment cinétique et magnétique du proton - Les protons (noyaux d'hydrogène) sont animés d un mouvement de rotation et portent une charge positive. Une particule qui tourne induit autour d'elle un moment cinétique ou spin aligné sur son axe de rotation représenté par un vecteur S. Une charge qui tourne induit de plus autour d elle un champ magnétique appelé moment magnétique (lié au spin et également aligné sur son axe de rotation) et représenté par un vecteur d aimantation microscopique noté µ. Ils peuvent donc être assimilés à de petits aimants (dipôles magnétiques) avec un pôle nord et un pôle sud. µ un court instant une onde de radiofréquence (appelée également impulsion transversale), on peut modifier l orientation du vecteur d aimantation à condition que la fréquence ωr de l onde appliquée soit égale à la fréquence de précession du proton, ωo : c est la résonance. Pour comprendre le phénomène de résonance, on peut prendre l exemple d une balançoire. Pour provoquer et pour maintenir le mouvement de balancier, il faut pousser la balançoire à la même fréquence que celle du mouvement pendulaire (fréquence propre). De la même façon, en IRM, l impulsion de radiofréquence ωr doit être en résonance avec la fréquence de précession (propre) du proton (ωr = ωo). Lorsque cette condition de résonance est satisfaite, il y a une bascule du vecteur o vers le plan xoy et donc disparition de la composante longitudinale de l aimantation et apparition d une composante transversale (figure 4). µ = 0 M = 0 Z µ = 0 M = 0 Figure 3. En l absence d un champ magnétique externe, les protons µ d'un échantillon tissulaire sont orientés de façon aléatoire en tous sens : la somme des vecteurs d'aimantation élémentaire microscopique ( µ) est nulle et il n'y a pas de vecteur d'aimantation macroscopique (M = 0). Soumis à un champ magnétique extérieur (régnant dans le tunnel), les protons s'orientent selon la direction de ce dernier (Oz) avec apparition d'un vecteur d'aimantation macroscopique ( µ = o). E2 1 Μ 1 Μ Z RÉSONNCE ET ONDE RF Le vecteur d aimantation macroscopique o est très faible par rapport à o, on ne peut pas le mesurer directement, il faut donc le basculer à 90 : c est là qu intervient l onde de radiofréquence 1 (ou deuxième champ magnétique dit tournant). En effet, si on applique au vecteur o en précession, pendant 0,5 T Figure 3. Le champ magnétique résultant, représenté par le vecteur d aimantation o, a pour origine le faible excès de protons (environ 4 pour 2 millions) de sens parallèle sur le niveau d énergie le plus faible () car les spins de sens opposé vont s annuler deux à deux. 220 La Lettre du Neurologue - n 4 - vol. IV - septembre 2000

3 z Β0 0 θ x' m 1 y' Équilibre Figure 4. La conséquence d'une impulsion RF (de 90 ) est une simple bascule ou rotation de M autour de 1 () avec diminution de la composante longitudinale (ou M L, L pour longitudinal) de l'aimantation (o en début d'impulsion) et augmentation de la composante transversale M xy (ou M T, T pour transversal) de l'aimantation (M xym en fin d'impulsion). Pour mieux comprendre cet effet, il est utile d analyser collectivement les mécanismes induits par l onde de radiofréquence au niveau de la population excédentaire de protons (vecteur M) afin d individualiser deux phénomènes, l un concernant l aimantation longitudinale et l autre l aimantation transversale. - L onde de radiofréquence, en fournissant de l énergie au système, favorise le passage (transition) des spins parallèles de basse énergie à l état de spins antiparallèles de haute énergie. Il résulte de ce phénomène une diminution de l aimantation longitudinale. - Par ailleurs, les protons de la matière vivante soumis au seul champ principal o adoptent un mouvement de précession de manière aléatoire, c est-à-dire que la composante transversale résultante est nulle. L onde de radiofréquence a pour conséquence de mettre en phase les protons matière. Ce faisant, elle induit l apparition d une composante transversale à l aimantation. u total, l'impulsion RF, par deux mécanismes bien distincts mais simultanés, transition sur le niveau de haute énergie ( E2) et mise en phase des protons, va jouer sur la composante longitudinale et la composante transversale de M (figure 5 ). Cet état est instable, et dès la fin de l excitation, il va y avoir retour à l'état d'équilibre (stable) au cours duquel les phénomènes inverses vont avoir lieu. D une part, progressivement transitions inverses du niveau E2 vers le niveau (E2 ; antiparallèles parallèles), l aimantation longitudinale repousse et, d autre part, par déphasage des spins, l aimantation transversale disparaît rapidement. La figure 6 résume ce que nous venons d apprendre jusqu à présent sur : 1- l état d équilibre engendré par o avec apparition d une composante de longitudinale de l aimantation o ; 2- l excitation due à l application de l onde RF (disparition de la composante longitudinale o et apparition d une composante transversale ; 0 E2 Impulsion de 90 m Figure 5. pproche schématique des phénomènes de transition et de rephasage des spins, pour une impulsion de 90.. vant l'impulsion RF, il y a 4 protons parallèles en surnombre qui vont être à l'origine de l'apparition d'un vecteur d'aimantation macroscopique M aligné sur o, sans composante transversale car les protons sont déphasés : M est aligné sur Oz, M = o (M xy = o).. L'impulsion RF provoque des transitions : -> E2 (parallèles -> antiparallèles) et un rephasage des protons ( diminue et croît). Deux des protons en surnombre sont passés du niveau au niveau E2 par égalisation des populations sur les deux niveaux d'énergie. Il n'y a plus de composante longitudinale de M ( = o) et est maximal (m) : impulsion de le retour à l état d équilibre par les phénomènes de relaxation T1 et T2. Il apparaît ainsi clairement deux types d'aimantation tissulaire : l'aimantation longitudinale (ou ML parallèle à o qui concerne le T1) et l'aimantation transversale (ou MT perpendiculaire à o qui concerne le T2) (figure 7), dont l'apparition et la disparition font intervenir des mécanismes très différents respectivement : transitions des protons entre les niveaux d' : parallèles E2 : antiparallèles (et inversement), et mise en phase (et déphasage) des spins. L RELXTION Lorsque cesse l impulsion de radiofréquence, les phénomènes inverses concernant l aimantation longitudinale et l aimantation transversale vont se produire, les spins retournent à leur état d équilibre, c est la relaxation. La Lettre du Neurologue - n 4 - vol. IV - septembre

4 0 o 1. État d'équilibre RF 90 m 2. Excitation transfert E2 mise en phase des spins Transfert d'énergie de E2 sur Repousse en T1 T1 3. Retour à l'état d'équilibre T2 Relaxation T1 : transfert E2 T2 : déphasage rapide des spins MZ = 0 MZ Figure 6. Interactions entre l'onde de radiofréquence et les protons placés dans le champ o. 1) Soumis au champ magnétique o, un état d'équilibre apparaît avec une composante longitudinale o de l aimantation tissulaire ; 2) Un apport d'énergie (excitation) par une impulsion RF de 90 entraîne, par égalisation des protons sur les deux niveaux d'énergie et mise en phase des spins, avec respectivement une disparition de la composante longitudinale et apparition d une composante transversale ; () 100 % 95 % 87 % 63 % 3) Cet état est instable, et dès la fin de l'excitation il va y avoir retour à l'état d'équilibre (stable) au cours duquel les phénomènes inverses vont avoir lieu. D'une part progressivement transitions inverses E2 vers (antiparallèles parallèles), l'aimantation longitudinale repousse et d autre part, par déphasage des spins, l aimantation transversale disparaît rapidement. Figure 8. T1 2T1 3T1 temps. L'excitation par l'impulsion RF DE 90 (apport d'énergie : transfert de sur E2) a pour conséquence de faire disparaître la composante longitudinale 0. Dès l'arrêt de l'impulsion RF, il va y avoir retour à l'état d'équilibre (stable) au cours duquel les phénomènes inverses vont avoir lieu, il y a progressivement transitions inverses du niveau E2 sur : l'aimantation longitudinale repousse.. Courbe exponentielle de repousse l'aimantation longitudinale en fonction du T1. Le T1 est caractéristique d'un tissu donné, il correspond à 63 % de repousse. En 2 T1 la repousse est de 87 %, en 3 T1 la repousse est presque totale : 95 % (en 4 T1 repousse = 98 %). Longitudinale (T1) Transversale (T2) Figure 7. Illustration des deux types d'aimantation tissulaire : l'aimantation longitudinale parallèle à o (concerne le T1) et l'aimantation transversale perpendiculaire à o (concerne le T2), dont l'apparition et la disparition font intervenir des mécanismes bien distincts, respectivement : transitions des protons entre les niveaux d' : parallèles E2 : antiparallèles (et inversement), et mise en phase (et déphasage) des spins. D une part, les spins qui s étaient inversés retournent à leur état de spins parallèles sur le niveau de basse énergie. Cela conduit à une repousse de l aimantation longitudinale : c est la relaxation transversale. Le temps nécessaire à la récupération des deux tiers de l aimantation longitudinale est le T1 (figure 8). D autre part, les spins qui avaient été mis en phase pendant l impulsion de radiofréquence vont se déphaser. La composante transversale va alors disparaître rapidement : c est la relaxation 222 La Lettre du Neurologue - n 4 - vol. IV - septembre 2000

5 (m) 100 % 37 % Déphasage des spins Décroissance en T2* 13 % 5 % = 0 T2 2T2 3T2 temps Figure 9.. L'excitation par l'impulsion RF DE 90 a pour conséquence par rephasage des spins, de faire apparaître une composante transversale (). Dès l'arrêt de l'impulsion RF, il va y avoir un rapide déphasage des protons : l'aimantation transversale décroît ( 0).. Courbe exponentielle de disparition de l'aimantation transversale en fonction du T2 : le T2 caractéristique d'un tissu donné correspond à 63 % de décroissance (il persiste 37 % de l'aimantation transversale ). En 2 T2 la disparition est de 87 %, en 3 T2 la disparition est presque totale : 95 %, = 5 % (4T2 disparition = 98 %, = 2 %). transversale. Le temps nécessaire à la disparition des deux tiers de l aimantation transversale est appelé T2 (figure 9). Issus de phénomènes distincts, l un concernant l aimantation longitudinale, l autre concernant l aimantation transversale, T1 et T2 sont indépendants. T1 est toujours supérieur à T2 (environ dix fois). L analyse (mesure) de la relaxation T1 et T2 conduira à la formation d image exprimant respectivement les propriétés T1 et T2 des protons. Pour mesurer la valeur de T1 et T2, il faut accéder à la mesure des vecteurs d aimantation longitudinale et transversale. Cela se fait à l aide d antennes qui vont transformer l aimantation tissulaire (en rotation) en signal électrique (comme le fait une dynamo). Seul le déphasage de l aimantation transversale est mesurable directement, la repousse de l aimantation longitudinale, parallèle au champ principal, n est accessible qu indirectement (en la rebasculant à 90 et en la mesurant immédiatement!). POUR EN SVOIR PLUS. Kastler et al. Comprendre l IRM. Edition Masson, Collection Imagerie médicale, 1994, 1997 et bruno.kastler@ufc-chu.univ-fcomte.fr Films vidéo IRM : Du proton à l image ; Histoire de proton ; Le signal ; L accès au signal ; Le contraste.. Kastler,. Favreau. Université Technique de Compiègne, e.mail : bertrand.favreau@utc.fr La Lettre du Neurologue - n 4 - vol. IV - septembre

Interaction milieux dilués rayonnement Travaux dirigés n 2. Résonance magnétique : approche classique

Interaction milieux dilués rayonnement Travaux dirigés n 2. Résonance magnétique : approche classique PGA & SDUEE Année 008 09 Interaction milieux dilués rayonnement Travaux dirigés n. Résonance magnétique : approche classique Première interprétation classique d une expérience de résonance magnétique On

Plus en détail

Transformations nucléaires

Transformations nucléaires Transformations nucléaires Stabilité et instabilité des noyaux : Le noyau d un atome associé à un élément est représenté par le symbole A : nombre de masse = nombre de nucléons (protons + neutrons) Z :

Plus en détail

Résonance Magnétique Nucléaire : RMN

Résonance Magnétique Nucléaire : RMN 21 Résonance Magnétique Nucléaire : RMN Salle de TP de Génie Analytique Ce document résume les principaux aspects de la RMN nécessaires à la réalisation des TP de Génie Analytique de 2ème année d IUT de

Plus en détail

Lycée Galilée Gennevilliers. chap. 6. JALLU Laurent. I. Introduction... 2 La source d énergie nucléaire... 2

Lycée Galilée Gennevilliers. chap. 6. JALLU Laurent. I. Introduction... 2 La source d énergie nucléaire... 2 Lycée Galilée Gennevilliers L'énergie nucléaire : fusion et fission chap. 6 JALLU Laurent I. Introduction... 2 La source d énergie nucléaire... 2 II. Équivalence masse-énergie... 3 Bilan de masse de la

Plus en détail

8/10/10. Les réactions nucléaires

8/10/10. Les réactions nucléaires Les réactions nucléaires En 1900, à Montréal, Rutherford observa un effet curieux, lors de mesures de l'intensité du rayonnement d'une source de thorium [...]. L'intensité n'était pas la même selon que

Plus en détail

Chap 2 : Noyaux, masse, énergie.

Chap 2 : Noyaux, masse, énergie. Physique. Partie 2 : Transformations nucléaires. Dans le chapitre précédent, nous avons étudié les réactions nucléaires spontanées (radioactivité). Dans ce nouveau chapitre, après avoir abordé le problème

Plus en détail

Équivalence masse-énergie

Équivalence masse-énergie CHPITRE 5 NOYUX, MSSE ET ÉNERGIE Équivalence masse-énergie. Équivalence masse-énergie Einstein a montré que la masse constitue une forme d énergie appelée énergie de masse. La relation entre la masse (en

Plus en détail

5 >L énergie nucléaire: fusion et fission

5 >L énergie nucléaire: fusion et fission LA COLLECTION > 1 > L atome 2 > La radioactivité 3 > L homme et les rayonnements 4 > L énergie 6 > Le fonctionnement d un réacteur nucléaire 7 > Le cycle du combustible nucléaire 8 > La microélectronique

Plus en détail

Chapitre 11: Réactions nucléaires, radioactivité et fission

Chapitre 11: Réactions nucléaires, radioactivité et fission 1re B et C 11 Réactions nucléaires, radioactivité et fission 129 Chapitre 11: Réactions nucléaires, radioactivité et fission 1. Définitions a) Nucléides (= noyaux atomiques) Les nucléides renferment les

Plus en détail

SYSTEME DE PARTICULES. DYNAMIQUE DU SOLIDE (suite) Table des matières

SYSTEME DE PARTICULES. DYNAMIQUE DU SOLIDE (suite) Table des matières Physique Générale SYSTEME DE PARTICULES DYNAMIQUE DU SOLIDE (suite) TRAN Minh Tâm Table des matières Applications de la loi de Newton pour la rotation 93 Le gyroscope........................ 93 L orbite

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Orthoptiste / stage i-prépa intensif -

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Orthoptiste / stage i-prépa intensif - POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Section Orthoptiste / stage i-prépa intensif - 1 Suite énoncé des exos du Chapitre 14 : Noyaux-masse-énergie I. Fission nucléaire induite (provoquée)

Plus en détail

Chapitre 6. Réactions nucléaires. 6.1 Généralités. 6.1.1 Définitions. 6.1.2 Lois de conservation

Chapitre 6. Réactions nucléaires. 6.1 Généralités. 6.1.1 Définitions. 6.1.2 Lois de conservation Chapitre 6 Réactions nucléaires 6.1 Généralités 6.1.1 Définitions Un atome est constitué d électrons et d un noyau, lui-même constitué de nucléons (protons et neutrons). Le nombre de masse, noté, est le

Plus en détail

BTS BAT 1 Notions élémentaires de chimie 1

BTS BAT 1 Notions élémentaires de chimie 1 BTS BAT 1 Notions élémentaires de chimie 1 I. L ATOME NOTIONS EÉLEÉMENTAIRES DE CIMIE Les atomes sont des «petits grains de matière» qui constituent la matière. L atome est un système complexe que l on

Plus en détail

La physique nucléaire et ses applications

La physique nucléaire et ses applications La physique nucléaire et ses applications I. Rappels et compléments sur les noyaux. Sa constitution La représentation symbolique d'un noyau est, dans laquelle : o X est le symbole du noyau et par extension

Plus en détail

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE 1. RAPPEL: L ATOME CONSTITUANT DE LA MATIERE Toute la matière de l univers, toute substance, vivante ou inerte, est constituée à partir de particules

Plus en détail

Chapitre 5 : Noyaux, masse et énergie

Chapitre 5 : Noyaux, masse et énergie Chapitre 5 : Noyaux, masse et énergie Connaissances et savoir-faire exigibles : () () (3) () (5) (6) (7) (8) Définir et calculer un défaut de masse et une énergie de liaison. Définir et calculer l énergie

Plus en détail

Chapitre 10 : Radioactivité et réactions nucléaires (chapitre 11 du livre)

Chapitre 10 : Radioactivité et réactions nucléaires (chapitre 11 du livre) Chapitre 10 : Radioactivité et réactions nucléaires (chapitre 11 du livre) 1. A la découverte de la radioactivité. Un noyau père radioactif est un noyau INSTABLE. Il se transforme en un noyau fils STABLE

Plus en détail

Contrôle Non Destructif C.N.D.

Contrôle Non Destructif C.N.D. Contrôle Non Destructif C.N.D. 16 Principales techniques Particules magnétiques Pénétrants 7% Autres 7% 6% Ultrasons 30% Objets divers Pétrochimique 15% 10% Aérospatial 25% Courants de Foucault 10% Autres

Plus en détail

Chapitre n 6 MASSE ET ÉNERGIE DES NOYAUX

Chapitre n 6 MASSE ET ÉNERGIE DES NOYAUX Chapitre n 6 MASSE ET ÉNERGIE DES NOYAUX T ale S Introduction : Une réaction nucléaire est Une réaction nucléaire provoquée est L'unité de masse atomique est une unité permettant de manipuler aisément

Plus en détail

A retenir : A Z m n. m noyau MASSE ET ÉNERGIE RÉACTIONS NUCLÉAIRES I) EQUIVALENCE MASSE-ÉNERGIE

A retenir : A Z m n. m noyau MASSE ET ÉNERGIE RÉACTIONS NUCLÉAIRES I) EQUIVALENCE MASSE-ÉNERGIE CP7 MASSE ET ÉNERGIE RÉACTIONS NUCLÉAIRES I) EQUIVALENCE MASSE-ÉNERGIE 1 ) Relation d'équivalence entre la masse et l'énergie -énergie de liaison 2 ) Une unité d énergie mieux adaptée 3 ) application 4

Plus en détail

5. Les conducteurs électriques

5. Les conducteurs électriques 5. Les conducteurs électriques 5.1. Introduction Un conducteur électrique est un milieu dans lequel des charges électriques sont libres de se déplacer. Ces charges sont des électrons ou des ions. Les métaux,

Plus en détail

Caractérisation de défauts par Magnétoscopie, Ressuage, Courants de Foucault

Caractérisation de défauts par Magnétoscopie, Ressuage, Courants de Foucault Page 1 25 octobre 2012 Journée «Contrôle non destructif et caractérisation de défauts» Caractérisation de défauts par Magnétoscopie, Ressuage, Courants de Foucault Henri Walaszek sqr@cetim.fr Tel 0344673324

Plus en détail

Compétence 3-1 S EXPRIMER A L ECRIT Fiche professeur

Compétence 3-1 S EXPRIMER A L ECRIT Fiche professeur Compétence 3-1 S EXPRIMER A L ECRIT Fiche professeur Nature de l activité : Réaliser 3 types de productions écrites (réécriture de notes, production d une synthèse de documents, production d une argumentation)

Plus en détail

Compléments - Chapitre 5 Spectroscopie

Compléments - Chapitre 5 Spectroscopie ompléments - hapitre 5 Spectroscopie Spectroscopie par résonance magnétique nucléaire (RMN 13 ) Tandis que la spectroscopie RMN 1 H fournit des données sur la disposition des atomes d'hydrogène dans une

Plus en détail

Energie Nucléaire. Principes, Applications & Enjeux. 6 ème - 2014/2015

Energie Nucléaire. Principes, Applications & Enjeux. 6 ème - 2014/2015 Energie Nucléaire Principes, Applications & Enjeux 6 ème - 2014/2015 Quelques constats Le belge consomme 3 fois plus d énergie que le terrien moyen; (0,56% de la consommation mondiale pour 0,17% de la

Plus en détail

Partie Observer : Ondes et matière CHAP 04-ACT/DOC Analyse spectrale : Spectroscopies IR et RMN

Partie Observer : Ondes et matière CHAP 04-ACT/DOC Analyse spectrale : Spectroscopies IR et RMN Partie Observer : Ondes et matière CHAP 04-ACT/DOC Analyse spectrale : Spectroscopies IR et RMN Objectifs : Exploiter un spectre infrarouge pour déterminer des groupes caractéristiques Relier un spectre

Plus en détail

P17- REACTIONS NUCLEAIRES

P17- REACTIONS NUCLEAIRES PC A DOMICILE - 779165576 P17- REACTIONS NUCLEAIRES TRAVAUX DIRIGES TERMINALE S 1 Questions de cours 1) Définir le phénomène de la radioactivité. 2) Quelles sont les différentes catégories de particules

Plus en détail

Magnétisme - Electromagnétisme

Magnétisme - Electromagnétisme Magnétisme - Electromagnétisme D re Colette Boëx, PhD, Ingénieur biomédical Neurologie, HUG et Faculté de médecine Figures principalement issues de : - "Physics for scientists and engineers, with modern

Plus en détail

3 Charges électriques

3 Charges électriques 3 Charges électriques 3.1 Electrisation par frottement Expérience : Frottons un bâton d ébonite avec un morceau de peau de chat. Approchonsle de petits bouts de papier. On observe que les bouts de papier

Plus en détail

Cours d électricité. Introduction. Mathieu Bardoux. 1 re année. IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie

Cours d électricité. Introduction. Mathieu Bardoux. 1 re année. IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie Cours d électricité Introduction Mathieu Bardoux mathieu.bardoux@univ-littoral.fr IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie 1 re année Le terme électricité provient du grec ἤλεκτρον

Plus en détail

Interactions des rayonnements avec la matière

Interactions des rayonnements avec la matière UE3-1 : Biophysique Chapitre 2 : Interactions des rayonnements avec la matière Professeur Jean-Philippe VUILLEZ Année universitaire 2011/2012 Université Joseph Fourier de Grenoble - Tous droits réservés.

Plus en détail

Stage : "Développer les compétences de la 5ème à la Terminale"

Stage : Développer les compétences de la 5ème à la Terminale Stage : "Développer les compétences de la 5ème à la Terminale" Session 2014-2015 Documents produits pendant le stage, les 06 et 07 novembre 2014 à FLERS Adapté par Christian AYMA et Vanessa YEQUEL d après

Plus en détail

Contrôle non destructif Magnétoscopie

Contrôle non destructif Magnétoscopie Contrôle non destructif Magnétoscopie Principes physiques : Le contrôle magnétoscopique encore appelé méthode du flux de fuite magnétique repose sur le comportement particulier des matériaux ferromagnétiques

Plus en détail

DM n o 8 TS1 2012 Physique 10 (satellites) + Chimie 12 (catalyse) Exercice 1 Lancement d un satellite météorologique

DM n o 8 TS1 2012 Physique 10 (satellites) + Chimie 12 (catalyse) Exercice 1 Lancement d un satellite météorologique DM n o 8 TS1 2012 Physique 10 (satellites) + Chimie 12 (catalyse) Exercice 1 Lancement d un satellite météorologique Le centre spatial de Kourou a lancé le 21 décembre 200, avec une fusée Ariane, un satellite

Plus en détail

Transformations nucléaires

Transformations nucléaires I Introduction Activité p286 du livre Transformations nucléaires II Les transformations nucléaires II.a Définition La désintégration radioactive d un noyau est une transformation nucléaire particulière

Plus en détail

L ÉNERGIE C EST QUOI?

L ÉNERGIE C EST QUOI? L ÉNERGIE C EST QUOI? L énergie c est la vie! Pourquoi à chaque fois qu on fait quelque chose on dit qu on a besoin d énergie? Parce que l énergie est à l origine de tout! Rien ne peut se faire sans elle.

Plus en détail

FUSION PAR CONFINEMENT MAGNÉTIQUE

FUSION PAR CONFINEMENT MAGNÉTIQUE FUSION PAR CONFINEMENT MAGNÉTIQUE Séminaire de Xavier GARBET pour le FIP 06/01/2009 Anthony Perret Michel Woné «La production d'énergie par fusion thermonucléaire contrôlée est un des grands défis scientifiques

Plus en détail

Différents types de matériaux magnétiques

Différents types de matériaux magnétiques Différents types de matériaux magnétiques Lien entre propriétés microscopiques et macroscopiques Dans un matériau magnétique, chaque atome porte un moment magnétique µ (équivalent microscopique de l aiguille

Plus en détail

Atelier : L énergie nucléaire en Astrophysique

Atelier : L énergie nucléaire en Astrophysique Atelier : L énergie nucléaire en Astrophysique Elisabeth Vangioni Institut d Astrophysique de Paris Fleurance, 8 Août 2005 Une calculatrice, une règle et du papier quadrillé sont nécessaires au bon fonctionnement

Plus en détail

Électricité statique. Introduction. Quelques étapes historiques importantes

Électricité statique. Introduction. Quelques étapes historiques importantes Électricité statique Introduction L'électricité statique peut apparaître comme peu importante de nos jours en regard de l'électrodynamique mais cette dernière a été précédée historiquement par l'observation

Plus en détail

par Alain Bonnier, D.Sc.

par Alain Bonnier, D.Sc. par Alain Bonnier, D.Sc. 1. Avons-nous besoin d autres sources d énergie? 2. Qu est-ce que l énergie nucléaire? 3. La fusion nucléaire Des étoiles à la Terre... 4. Combien d énergie pourrait-on libérer

Plus en détail

Groupe professionnel énergie de Centrale Nantes Intergroupe des centraliens de l énergie

Groupe professionnel énergie de Centrale Nantes Intergroupe des centraliens de l énergie Groupe professionnel énergie de Centrale Nantes Intergroupe des centraliens de l énergie Conférence du 19 mai 2006 rue Jean Goujon, 19h certitudes et incertitudes sur la fusion nucléaire - rôle d ITER

Plus en détail

CH IV) Courant alternatif Oscilloscope.

CH IV) Courant alternatif Oscilloscope. CH IV) Courant alternatif Oscilloscope. Il existe deux types de courant, le courant continu et le courant alternatif. I) Courant alternatif : Observons une coupe transversale d une «dynamo» de vélo. Galet

Plus en détail

Comment réaliser physiquement un ordinateur quantique. Yves LEROYER

Comment réaliser physiquement un ordinateur quantique. Yves LEROYER Comment réaliser physiquement un ordinateur quantique Yves LEROYER Enjeu: réaliser physiquement -un système quantique à deux états 0 > ou 1 > -une porte à un qubitconduisant à l état générique α 0 > +

Plus en détail

Photons, expériences de pensée et chat de Schrödinger: une promenade quantique

Photons, expériences de pensée et chat de Schrödinger: une promenade quantique Photons, expériences de pensée et chat de Schrödinger: une promenade quantique J.M. Raimond Université Pierre et Marie Curie Institut Universitaire de France Laboratoire Kastler Brossel Département de

Plus en détail

Professeur Eva PEBAY-PEYROULA

Professeur Eva PEBAY-PEYROULA 3-1 : Physique Chapitre 8 : Le noyau et les réactions nucléaires Professeur Eva PEBAY-PEYROULA Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Finalité du chapitre

Plus en détail

Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, 672 59 10 11 m 3 kg 1 s 2

Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, 672 59 10 11 m 3 kg 1 s 2 Introduction Page xxi (milieu de page) G = 6, 672 59 1 11 m 3 kg 1 s 2 Erratum de MÉCANIQUE, 6ème édition Page xxv (dernier tiers de page) le terme de Coriolis est supérieur à 1% du poids) Chapitre 1 Page

Plus en détail

La Fusion Nucléaire (Tokamak) Nicolas Carrard Jonathan Carrier Guillomet 12 novembre 2009

La Fusion Nucléaire (Tokamak) Nicolas Carrard Jonathan Carrier Guillomet 12 novembre 2009 La Fusion Nucléaire (Tokamak) Nicolas Carrard Jonathan Carrier Guillomet 12 novembre 2009 La matière L atome Les isotopes Le plasma Plan de l exposé Réactions nucléaires La fission La fusion Le Tokamak

Plus en détail

Etrangeté et paradoxe du monde quantique

Etrangeté et paradoxe du monde quantique Etrangeté et paradoxe du monde quantique Serge Haroche La physique quantique nous a donné les clés du monde microscopique des atomes et a conduit au développement de la technologie moderne qui a révolutionné

Plus en détail

C4: Réactions nucléaires, radioactivité et fission

C4: Réactions nucléaires, radioactivité et fission 1re B et C C4 Réactions nucléaires, radioactivité et fission 30 C4: Réactions nucléaires, radioactivité et fission 1. Définitions a) Nucléides (= noyaux atomiques) Les nucléides renferment les nucléons:

Plus en détail

Bases de la mécanique quantique

Bases de la mécanique quantique Mécanique quantique 1 Bases de la mécanique quantique 0. Théorie quantique - pourquoi? La théorie quantique est étroitement liée avec la notion du "dualisme onde - corpuscule". En physique classique, on

Plus en détail

Les Conditions aux limites

Les Conditions aux limites Chapitre 5 Les Conditions aux limites Lorsque nous désirons appliquer les équations de base de l EM à des problèmes d exploration géophysique, il est essentiel, pour pouvoir résoudre les équations différentielles,

Plus en détail

L'ÉNERGIE ET LA MATIÈRE PETITE EXPLORATION DU MONDE DE LA PHYSIQUE

L'ÉNERGIE ET LA MATIÈRE PETITE EXPLORATION DU MONDE DE LA PHYSIQUE Partie 1 De quoi c'est fait? De quoi sommes nous faits? Qu'est-ce que la matière qui compose les objets qui nous entourent? D'où vient l'énergie qui nous chauffe et nous éclaire, qui déplace les objets

Plus en détail

Lycée français La Pérouse TS. L énergie nucléaire CH P6. Exos BAC

Lycée français La Pérouse TS. L énergie nucléaire CH P6. Exos BAC SVOIR Lycée français La Pérouse TS CH P6 L énergie nucléaire Exos BC - Définir et calculer un défaut de masse et une énergie de liaison. - Définir et calculer l'énergie de liaison par nucléon. - Savoir

Plus en détail

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées.

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées. Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées. 1 Ce sujet aborde le phénomène d instabilité dans des systèmes dynamiques

Plus en détail

TS1 TS2 02/02/2010 Enseignement obligatoire. DST N 4 - Durée 3h30 - Calculatrice autorisée

TS1 TS2 02/02/2010 Enseignement obligatoire. DST N 4 - Durée 3h30 - Calculatrice autorisée TS1 TS2 02/02/2010 Enseignement obligatoire DST N 4 - Durée 3h30 - Calculatrice autorisée EXERCICE I : PRINCIPE D UNE MINUTERIE (5,5 points) A. ÉTUDE THÉORIQUE D'UN DIPÔLE RC SOUMIS À UN ÉCHELON DE TENSION.

Plus en détail

Électricité. 1 Interaction électrique et modèle de l atome

Électricité. 1 Interaction électrique et modèle de l atome 4 e - AL Électricité 1 Électricité 1 Interaction électrique et modèle de l atome 1.1 Électrisation par frottement Expérience 1.1 Une baguette en matière plastique est frottée avec un chiffon de laine.

Plus en détail

Qu est-ce qu un ordinateur quantique et à quoi pourrait-il servir?

Qu est-ce qu un ordinateur quantique et à quoi pourrait-il servir? exposé UE SCI, Valence Qu est-ce qu un ordinateur quantique et à quoi pourrait-il servir? Dominique Spehner Institut Fourier et Laboratoire de Physique et Modélisation des Milieux Condensés Université

Plus en détail

F = B * I * L. Force en Newtons Induction magnétique en teslas Intensité dans le conducteur en ampères Longueur du conducteur en mètres

F = B * I * L. Force en Newtons Induction magnétique en teslas Intensité dans le conducteur en ampères Longueur du conducteur en mètres LE M O TE U R A C O U R A N T C O N TI N U La loi de LAPLACE Un conducteur traversé par un courant et placé dans un champ magnétique est soumis à une force dont le sens est déterminée par la règle des

Plus en détail

Dr E. CHEVRET UE2.1 2013-2014. Aperçu général sur l architecture et les fonctions cellulaires

Dr E. CHEVRET UE2.1 2013-2014. Aperçu général sur l architecture et les fonctions cellulaires Aperçu général sur l architecture et les fonctions cellulaires I. Introduction II. Les microscopes 1. Le microscope optique 2. Le microscope à fluorescence 3. Le microscope confocal 4. Le microscope électronique

Plus en détail

EXERCICES SUPPLÉMENTAIRES

EXERCICES SUPPLÉMENTAIRES Questionnaire EXERCICES SUPPLÉMENTAIRES SCP 4010-2 LE NUCLÉAIRE, DE L'ÉNERGIE DANS LA MATIÈRE /263 FORME C Version corrigée: Équipe sciences LeMoyne d'iberville, septembre 2006. QUESTION 1 (5 pts) 1. La

Plus en détail

Panorama de l astronomie

Panorama de l astronomie Panorama de l astronomie 7. Les étoiles : évolution et constitution des éléments chimiques Karl-Ludwig Klein, Observatoire de Paris Gaël Cessateur & Gilles Theureau, Lab Phys. & Chimie de l Environnement

Plus en détail

La physique quantique couvre plus de 60 ordres de grandeur!

La physique quantique couvre plus de 60 ordres de grandeur! La physique quantique couvre plus de 60 ordres de grandeur! 10-35 Mètre Super cordes (constituants élémentaires hypothétiques de l univers) 10 +26 Mètre Carte des fluctuations du rayonnement thermique

Plus en détail

NOTICE DOUBLE DIPLÔME

NOTICE DOUBLE DIPLÔME NOTICE DOUBLE DIPLÔME MINES ParisTech / HEC MINES ParisTech/ AgroParisTech Diplômes obtenus : Diplôme d ingénieur de l Ecole des Mines de Paris Diplôme de HEC Paris Ou Diplôme d ingénieur de l Ecole des

Plus en détail

LE PHYSICIEN FRANCAIS SERGE HAROCHE RECOIT CONJOINTEMENT LE PRIX NOBEL DE PHYSIQUE 2012 AVEC LE PHYSICIEN AMERCAIN DAVID WINELAND

LE PHYSICIEN FRANCAIS SERGE HAROCHE RECOIT CONJOINTEMENT LE PRIX NOBEL DE PHYSIQUE 2012 AVEC LE PHYSICIEN AMERCAIN DAVID WINELAND LE PHYSICIEN FRANCAIS SERGE HAROCHE RECOIT CONJOINTEMENT LE PRIX NOBEL DE PHYSIQUE 0 AVEC LE PHYSICIEN AMERCAIN DAVID WINELAND SERGE HAROCHE DAVID WINELAND Le physicien français Serge Haroche, professeur

Plus en détail

G.P. DNS02 Septembre 2012. Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction

G.P. DNS02 Septembre 2012. Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction DNS Sujet Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3 Réfraction I. Préliminaires 1. Rappeler la valeur et l'unité de la perméabilité magnétique du vide µ 0. Donner

Plus en détail

Rapport. Mesures de champ de très basses fréquences à proximité d antennes de stations de base GSM et UMTS

Rapport. Mesures de champ de très basses fréquences à proximité d antennes de stations de base GSM et UMTS Rapport Mesures de champ de très basses fréquences à proximité d antennes de stations de base GSM et UMTS A.AZOULAY T.LETERTRE R. DE LACERDA Convention AFSSET / Supélec 2009-1 - 1. Introduction Dans le

Plus en détail

DIFFRACTion des ondes

DIFFRACTion des ondes DIFFRACTion des ondes I DIFFRACTION DES ONDES PAR LA CUVE À ONDES Lorsqu'une onde plane traverse un trou, elle se transforme en onde circulaire. On dit que l'onde plane est diffractée par le trou. Ce phénomène

Plus en détail

PHYSIQUE QUANTIQUE ET STATISTIQUE PHYS-H-200

PHYSIQUE QUANTIQUE ET STATISTIQUE PHYS-H-200 UNIVERSITÉ LIBRE DE BRUXELLES Faculté des sciences appliquées Bachelier en sciences de l ingénieur, orientation ingénieur civil Deuxième année PHYSIQUE QUANTIQUE ET STATISTIQUE PHYS-H-200 Daniel Baye revu

Plus en détail

IRM hépatique: ce que le manipulateur doit savoir

IRM hépatique: ce que le manipulateur doit savoir CHU Henri Mondor IRM hépatique: ce que le manipulateur doit savoir P.Zerbib, A.Luciani, F.Pigneur, R.Raymond, A.Rahmouni CHU Henri Mondor Créteil Service Imagerie Médicale Pr.A.RAHMOUNI Objectifs Comprendre

Plus en détail

TD 9 Problème à deux corps

TD 9 Problème à deux corps PH1ME2-C Université Paris 7 - Denis Diderot 2012-2013 TD 9 Problème à deux corps 1. Systèmes de deux particules : centre de masse et particule relative. Application à l étude des étoiles doubles Une étoile

Plus en détail

Mesure de la surface spécifique

Mesure de la surface spécifique Mesure de la surface spécifique Introducing the Acorn Area TM Acorn Area est un instrument révolutionnaire conçu pour mesurer la surface spécifique des nanoparticules en suspension dans un liquide. Utilisant

Plus en détail

PHY113 : Cours de Radioactivité 2009-2010

PHY113 : Cours de Radioactivité 2009-2010 Cours de Radioactivité Le but de ce cours est de permettre aux étudiants qui seront amenés à utiliser des sources radioactives d acquérir les bases de la radioactivité. Aussi bien au niveau du vocabulaire

Plus en détail

a. Fusion et énergie de liaison des noyaux b. La barrière Coulombienne c. Effet tunnel & pic de Gamov

a. Fusion et énergie de liaison des noyaux b. La barrière Coulombienne c. Effet tunnel & pic de Gamov V. Les réactions r thermonucléaires 1. Principes a. Fusion et énergie de liaison des noyaux b. La barrière Coulombienne c. Effet tunnel & pic de Gamov 2. Taux de réactions r thermonucléaires a. Les sections

Plus en détail

Chapitre I- Le champ électrostatique. I.1.1- Phénomènes électrostatiques : notion de charge électrique

Chapitre I- Le champ électrostatique. I.1.1- Phénomènes électrostatiques : notion de charge électrique Chapitre I- Le champ électrostatique I.- Notions générales I..- Phénomènes électrostatiques : notion de charge électrique Quiconque a déjà vécu l expérience désagréable d une «décharge électrique» lors

Plus en détail

Chapitre 15 - Champs et forces

Chapitre 15 - Champs et forces Choix pédagogiques Chapitre 15 - Champs et forces Manuel pages 252 à 273 Après avoir étudié les interactions entre deux corps en s appuyant sur les lois de Coulomb et de Newton, c est un nouveau cadre

Plus en détail

Développements en imagerie RMN spirale et application

Développements en imagerie RMN spirale et application Développements en imagerie RMN spirale et application à la caractérisation de la perméabilité de la barrière hémato-encéphalique sur deux modèles de tumeurs intracérébrales Marine Beaumont To cite this

Plus en détail

Energie nucléaire. Quelques éléments de physique

Energie nucléaire. Quelques éléments de physique Energie nucléaire Quelques éléments de physique Comment produire 1 GW électrique Nucléaire (rendement 33%) Thermique (38%) Hydraulique (85%) Solaire (10%) Vent : 27t d uranium par an : 170 t de fuel par

Plus en détail

Utilisation des matériaux magnétostrictifs filaires comme capteurs de mesure de champ magnétique

Utilisation des matériaux magnétostrictifs filaires comme capteurs de mesure de champ magnétique Utilisation des matériaux magnétostrictifs filaires comme capteurs de mesure de champ magnétique Eric CRESCENZO 1 Evagelos HRISTOFOROU 2 1) IXTREM 9 rue Edouard Denis Baldus, F-711 CHALON SUR SAONE Tél

Plus en détail

Contenu pédagogique des unités d enseignement Semestre 1(1 ère année) Domaine : Sciences et techniques et Sciences de la matière

Contenu pédagogique des unités d enseignement Semestre 1(1 ère année) Domaine : Sciences et techniques et Sciences de la matière Contenu pédagogique des unités d enseignement Semestre 1(1 ère année) Domaine : Sciences et techniques et Sciences de la matière Algèbre 1 : (Volume horaire total : 63 heures) UE1 : Analyse et algèbre

Plus en détail

L ÉLECTRICITÉ C EST QUOI?

L ÉLECTRICITÉ C EST QUOI? L ÉLECTRICITÉ C EST QUOI? L électricité est le moyen de transport de l énergie! L électricité, comme l énergie, est présente dans la nature mais on ne la voit pas. Sauf quand il y a un orage! L électricité

Plus en détail

Les mesures à l'inclinomètre

Les mesures à l'inclinomètre NOTES TECHNIQUES Les mesures à l'inclinomètre Gérard BIGOT Secrétaire de la commission de Normalisation sols : reconnaissance et essais (CNSRE) Laboratoire régional des Ponts et Chaussées de l'est parisien

Plus en détail

DM 10 : La fusion nucléaire, l énergie de l avenir? CORRECTION

DM 10 : La fusion nucléaire, l énergie de l avenir? CORRECTION Physique Chapitre 4 Masse, énergie, et transformations nucléaires DM 10 : La fusion nucléaire, l énergie de l avenir? CORRECTION Date :. Le 28 juin 2005, le site de Cadarache (dans les bouches du Rhône)

Plus en détail

Les Antennes indépendantes de la fréquence

Les Antennes indépendantes de la fréquence Conservatoire National des arts et Métiers - Centre régional de Marseille Examen Probatoire en Electronique présenté par Alex BELARBI Lors de la session de septembre 3 Les Antennes indépendantes de la

Plus en détail

SDLV120 - Absorption d'une onde de compression dans un barreau élastique

SDLV120 - Absorption d'une onde de compression dans un barreau élastique Titre : SDLV120 - Absorption d'une onde de compression dan[...] Date : 09/11/2011 Page : 1/9 SDLV120 - Absorption d'une onde de compression dans un barreau élastique Résumé On teste les éléments paraxiaux

Plus en détail

LE COSMODETECTEUR : UN EXEMPLE DE CHAÎNE DE MESURE

LE COSMODETECTEUR : UN EXEMPLE DE CHAÎNE DE MESURE LE COSMODETECTEUR : UN EXEMPLE DE CHAÎNE DE MESURE Enseignement : 1 ère STL Mesures et instrumentation Thème : Instrumentation : Instruments de mesure, chaîne de mesure numérique Notions et contenus :

Plus en détail

NOYAU, MASSE ET ENERGIE

NOYAU, MASSE ET ENERGIE NOYAU, MASSE ET ENERGIE I - Composition et cohésion du noyau atomique Le noyau atomique est composé de nucléons (protons+neutrons). Le proton a une charge positive comparativement au neutron qui n'a pas

Plus en détail

Où est passée l antimatière?

Où est passée l antimatière? Où est passée l antimatière? CNRS-IN2P3 et CEA-DSM-DAPNIA - T1 Lors du big-bang, à partir de l énergie disponible, il se crée autant de matière que d antimatière. Alors, où est passée l antimatière? Existe-t-il

Plus en détail

Introduction à la physique nucléaire et aux réacteurs nucléaires

Introduction à la physique nucléaire et aux réacteurs nucléaires Introduction à la physique nucléaire et aux réacteurs nucléaires Nassiba Tabti A.E.S.S. Physique (A.E.S.S. Physique) 5 mai 2010 1 / 47 Plan de l exposé 1 La Radioactivité Découverte de la radioactivité

Plus en détail

!!! atome = électriquement neutre. Science et technologie de l'environnement CHAPITRE 5 ÉLECTRICITÉ ET MAGNÉTISME

!!! atome = électriquement neutre. Science et technologie de l'environnement CHAPITRE 5 ÉLECTRICITÉ ET MAGNÉTISME 1 DÉFINITION DE L ÉLECTRICITÉ ET DE LA CHARGE ÉLECTRIQUE 2 LES FORCES D ATTRACTION ET DE RÉPULSION L électricité c est l ensemble des phénomènes provoqués par les charges positives et négatives qui existe

Plus en détail

I - Quelques propriétés des étoiles à neutrons

I - Quelques propriétés des étoiles à neutrons Formation Interuniversitaire de Physique Option de L3 Ecole Normale Supérieure de Paris Astrophysique Patrick Hennebelle François Levrier Sixième TD 14 avril 2015 Les étoiles dont la masse initiale est

Plus en détail

MATIE RE DU COURS DE PHYSIQUE

MATIE RE DU COURS DE PHYSIQUE MATIE RE DU COURS DE PHYSIQUE Titulaire : A. Rauw 5h/semaine 1) MÉCANIQUE a) Cinématique ii) Référentiel Relativité des notions de repos et mouvement Relativité de la notion de trajectoire Référentiel

Plus en détail

La fusion nucléaire. Le confinement magnétique GYMNASE AUGUSTE PICCARD. Baillod Antoine 3M7 29/10/2012. Sous la direction de Laurent Locatelli

La fusion nucléaire. Le confinement magnétique GYMNASE AUGUSTE PICCARD. Baillod Antoine 3M7 29/10/2012. Sous la direction de Laurent Locatelli GYMNASE AUGUSTE PICCARD La fusion nucléaire Le confinement magnétique Tokamak JET (http://www.isgtw.org/feature/small-sun-earth) Baillod Antoine 3M7 29/10/2012 Sous la direction de Laurent Locatelli RÉSUMÉ

Plus en détail

L ÉLECTRICITÉ, C EST QUOI?

L ÉLECTRICITÉ, C EST QUOI? L ÉLECTRICITÉ, C EST QUOI? L'électricité est le moyen de transport de l'énergie! L électricité, comme l énergie, est présente dans la nature mais on ne la voit pas. Sauf quand il y a un orage! L électricité

Plus en détail

Chapitre 0 Introduction à la cinématique

Chapitre 0 Introduction à la cinématique Chapitre 0 Introduction à la cinématique Plan Vitesse, accélération Coordonnées polaires Exercices corrigés Vitesse, Accélération La cinématique est l étude du mouvement Elle suppose donc l existence à

Plus en détail

À propos d ITER. 1- Principe de la fusion thermonucléaire

À propos d ITER. 1- Principe de la fusion thermonucléaire À propos d ITER Le projet ITER est un projet international destiné à montrer la faisabilité scientifique et technique de la fusion thermonucléaire contrôlée. Le 8 juin 005, les pays engagés dans le projet

Plus en détail

Caractéristiques des ondes

Caractéristiques des ondes Caractéristiques des ondes Chapitre Activités 1 Ondes progressives à une dimension (p 38) A Analyse qualitative d une onde b Fin de la Début de la 1 L onde est progressive puisque la perturbation se déplace

Plus en détail

Groupe Nanostructures et Systèmes Quantiques http://www.insp.jussieu.fr/-nanostructures-et-systemes-.html

Groupe Nanostructures et Systèmes Quantiques http://www.insp.jussieu.fr/-nanostructures-et-systemes-.html Axe principal: EDS Axes secondaires : Groupe Nanostructures et Systèmes Quantiques http://www.insp.jussieu.fr/-nanostructures-et-systemes-.html Institut des NanoSciences deparis http://www.insp.jussieu.fr/

Plus en détail

C3. Produire de l électricité

C3. Produire de l électricité C3. Produire de l électricité a. Electricité : définition et génération i. Définition La matière est constituée d. Au centre de l atome, se trouve un noyau constitué de charges positives (.) et neutres

Plus en détail

PROBLÈMES DE RELATIVITÉ RESTREINTE (L2-L3) Christian Carimalo

PROBLÈMES DE RELATIVITÉ RESTREINTE (L2-L3) Christian Carimalo PROBLÈMES DE RELATIVITÉ RESTREINTE (L2-L3) Christian Carimalo I - La transformation de Lorentz Dans tout ce qui suit, R(O, x, y, z, t) et R (O, x, y, z, t ) sont deux référentiels galiléens dont les axes

Plus en détail