F = 6 j.f est exprimée en newton. G est déplacé successivement de A à B, puis de B à C enfin de Cà D. Labo PC

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "F = 6 j.f est exprimée en newton. G est déplacé successivement de A à B, puis de B à C enfin de Cà D. Labo PC"

Transcription

1 SERIE 1 : TRAVAIL ET PUISSANCE EXERCICE 1 : CONNAISSANCES DU COURS Répondre par vrai ou faux 1 ) Le travail d une force est une grandeur vectorielle. 2 ) Le travail d une force est un scalaire 3 ) Le travail d une force est une grandeur algébrique 4 ) Une force parallèle au déplacement ne travaille pas 5 ) Le travail du poids est toujours moteur 6 ) Le travail des forces de frottement est toujours résistant. EXERCICE 2 : APPLIQUER LA METHODE Le point d application G d une force F est déplacé dans un repère orthonormé (o, i, j ).On donne F = 6 j.f est exprimée en newton. G est déplacé successivement de A à B, puis de B à C enfin de Cà D. On donne OA =2 i +4 j, OB =-3 i +4 j ; OC =2 i +8 j OD =-4 j Les coordonnées des points sont en cm. Calculer le travail effectué par la force sur chaque déplacement. EXERCICE 3 : LE CHEMIN EST IL IMPORTANT? Considérons les schémas suivants : 1 )Calculer le travail de la force sur le trajet AB sachant que : F = 10 N, l = 7,70 cm et α = )Calculer le travail de la force sur le trajet AC puis sur le trajet CB. Comparer les résultats obtenus et conclure. EXERCICE 4 : SKIEUR ET SON EQUIPAGE Un skieur et son équipement, de masse m = 80 kg, remonte une pente rectiligne, inclinée d'un angle = 20, grâce à un téléski. La force de frottement exercée par la neige sur les skis a la même direction que la vitesse et son sens est opposé au mouvement. Sa valeur est f = 30N. Le téléski tire le skieur et son équipement à vitesse constante sur un distance AB = L = 1500m. 1) Faire l'inventaire des forces qui s'appliquent au système {skieur et équipement} et les représenter sur le schéma. 2) Déterminer le travail du poids du système lors de ce déplacement. 3) Déterminer le travail de la force de frottement lors de ce déplacement. 4) La tension du câble qui tire le système fait un angle = 60 avec la ligne de plus grande pente. Déterminer le travail de la tension du câble lors de ce déplacement. EXERCICE 5 : SKIEUSE SUR PISTE VERGLACEE Une skieuse est tirée à vitesse constante, par un remonte-pente, sur une piste verglacée rectiligne de longueur L = 300 m, faisant un angle α = 20 avec l horizontale. La tige du remonte-pente fait un angle β = 30 avec la direction de la piste. La masse de la skieuse équipée est m = 58 kg. 1. Etude des différentes forces a. Faire un bilan des forces s exerçant sur la skieuse et les représenter sur un schéma. La force exercée par la tige est parallèle à sa direction et les frottements sont négligeables. b. Quelle relation existe-t-il entre les forces appliquées à la skieuse? 1 P a g e

2 2. Travail des forces : a. Quel est le travail de la résultante des forces? b. Exprimer le travail de chaque force. c. En déduire la valeur de la force de traction exercée par la tige. Donnée : g = 9,8 N / kg EXERCICE 6 : LE PARAPENTISTE Un parapentiste de masse m = 83 kg s élance du sommet du TOUSSAOU (vallée d Ossau) à l altitude z A = 1437m. Il atterrit à GÈRE-BÉLESTEN à l altitude z B = 430m. 1. Donner l expression littérale du travail du poids du corps et calculer sa valeur. 2. Entre ces lieux de départ et d arrivée, le parapentiste, emporté par un puissant courant ascendant, est passé au-dessus du village d ASTE-BÉON à l altitude z C = 1847 m. Cette information change-t-elle le résultat obtenu précédemment EXERCICE 7 : AUTOMOBILE SUR UN PENTE Une automobile de masse m = 1200 kg gravit une côte de pente constante 8% à la vitesse de 90 km/h. le moteur développe une puissance constante P = 30 kw. L air et les frottements divers qui s opposent à la progression du véhicule équivalent à une force unique f, parallèle au vecteur vitesse, de sens opposé et d intensité f = 260 N. 1) Quel est, pour une montée de durée 1 min : a) Le travail W m effectué par le moteur (c'est-à-dire le travail de la force motrice développée par le moteur et qui provoque le mouvement du véhicule) ; b) Le travail W(P ) développé par le poids du véhicule ; c) Le travail W(f ) de la force f? Quelle remarque ces résultats numériques vous suggèrent-ils? 2) Quelles sont les puissances P(P ) et P(f ) du poids P et de la force f? Données : - une route de pente 8% s élève de 8 m pour un parcours de 100 m le long de la route ; - intensité de la pesanteur : g = 9,8 N/kg EXERCICE 8 : TRACTION D UNE CARAVANE PAR UNE AUTOMOBILE Une automobile de masse M = 1200kg tracte à la vitesse v = 60 km/h une caravane de masse 800kg, dans une montée rectiligne de pente 8%. Les forces de frottements diverses, qui s opposent à l avancement, équivalent à une force unique, parallèle à la route, de sens contraire à celui du vecteur vitesse, d intensité constante ; cette force vaut : - Pour la voiture f =100N, - Pour la caravane f = 200N. 1 ) Faire le bilan des forces qui s exercent sur la voiture puis sur la caravane. On notera F l intensité de la force de traction qu exerce le moteur et F l intensité de la force avec laquelle le crochet d attelage tire sur la caravane. et ont la même direction que la ligne de plus grande pente. 2 ) En appliquant le principe de l inertie au véhicule puis à la caravane, calculer les intensités des forces et. 3 ) Quelle puissance le force développe t elle? Même question pour la force que le crochet exerce sur la caravane. 4 ) Quelle est la puissance totale des forces résistantes et? On prendra g = 10 N.kg -1. EXERCICE 9 : PENDULE SIMPLE Un pendule simple est constitué d'une bille de petite dimension, de masse m = 50g, reliée à un support fixe par un fil inextensible de longueur L = 60,0 cm et de masse négligeable. On écarte ce pendule de sa position d'équilibre d'un angle 0 = 30 et on le lâche sans vitesse initiale. 2 P a g e

3 1) Faire l'inventaire des forces qui s'appliquent à la bille du pendule et les représenter sur un schéma du dispositif. 2) Déterminer l'expression littérale du travail du poids de la bille du pendule entre sa position initiale et une position quelconque repérée par l'angle. 3) Calculer le travail du poids de cette bille entre la position initiale et la position d'équilibre E. 4) Déterminer le travail du poids de la bille entre les positions repérées par 0 et ) Déterminer le travail de la tension du fil entre deux positions quelconques du pendule. EXERCICE 10 : PENDULE SIMPLE Un pendule est constitué par une bille de très petite dimension de masse m égale à 100 g, fixée à l extrémité d une ficelle de longueur L égale à 1 m. Le pendule oscille dans un plan vertical avec une amplitude maximale d angle θ 0 égal à 40 (voir figure). 1 ) Calculer le travail du poids lorsque le pendule passe de A en B, puis de B en C. Quel le travail du poids au cours d une oscillation complète. 2 ) Peut-on écrire que le travail de la tension T du fil sur le trajet AB est égal à W = T.AB? Pourquoi? 3 ) En un point quelconque de la trajectoire de la bille, calculer la puissance de tension T. Que peut-on alors conclure sur le travail de la tension T entre A et B? g 9,8,/s 2 EXERCICE 11 : MOBILE SUR AUGE CYLINDRIQUE Un mobile de masse M = 100 g glisse sans frottements à l'intérieur d une auge cylindrique de rayon R = 1 m, d'axe horizontal O. Faire le bilan des forces qui s'appliquent au mobile et calculer leur quand ce dernier glisse de La position = 30 à la position = 0. EXERCICE 12 : ECHELLE CONTRE UN MUR Une échelle de longueur L= 4,0 m et de masse m=10kg, considérée comme étant sans épaisseur, est posée à plat sur le sol au pied d'un mur (situation 1). On relève cette échelle et on l'appuie contre le mur de telle façon qu'elle fasse avec celui-ci un angle =30 (situation 2) comme le montre la figure. Déterminer le travail du poids de l'échelle lors de cette opération. EXERCICE 13 : ETUDE GRAPHIQUE DU TRAVAIL Un système quelconque exerce sur un équipage en translation rectiligne, parallèlement à la direction du déplacement, une force dont l intensité en fonction de la distance parcourue est représentée sur la figure. 1-Calculer le travail fourni. 2-Comparer ce travail à l aire hachurée. Justifier. EXERCICE 14 : ETUDE GRAPHIQUE DU TRAVAIL La puissance d une force exercée sur un solide varie au cours du temps selon le graphique de la figure 1. 1-Calculer le travail fourni par la force entre les instants 0 et 150s. 2-Comparer ce travail à l aire hachurée. 3-La puissance, fournie par un moteur d automobile en fonction du temps, est représentée sur le graphique de la figure 2. Calculer le travail fourni par le moteur en se servant de la question P a g e

4 EXERCICE 15 : RESSORT EN OSCILLATION Un solide de masse m = 300 g est suspendu à l extrémité d un ressort qui s allonge de 8,6 cm lorsque l ensemble est en équilibre. 1) Quel est le coefficient de raideur du ressort? Un opérateur soulève le solide de 6 cm, il lâche le solide sans lui communiquer de vitesse. Quel sera le mouvement ultérieur du solide s il n y a pas de frottement? 2) Quel est le travail de la tension du ressort lorsque le solide passe à 3 cm avant et après la position d équilibre? EXERCICE 16 : RESSORT VERTICALE On suspend un corps de masse 0,2 kg à un ressort de masse négligeable de raideur k égale. Après quelques oscillations, le corps prend une position d équilibre. 1 ) Calculer au cours de cette opération a ) le travail du poids du corps ; b ) le travail de la force exercée par le ressort sur le corps ; c ) comparer ces deux travaux. 2 ) A partir de cette position d équilibre, on provoque très lentement un allongement supplémentaire de 10 cm. Calculer le travail de la force exercée par le ressort sur le corps, et le travail de la force supplémentaire qu il a fallu exercer pour provoquer ce nouvel allongement. 1) Calculer le travail de la force qui a permis d obtenir ce résultat. progressivement sur la masse de manière à atteindre la limite d élasticité de ce ressort. EXERCICE 17 : ETUDE GRAPHIQUE D UN RESSORT On possède un ressort à spires non jointives de longueur à vide 10 cm. La limite d élasticité de ce ressort correspond à max = 20 cm. L étude de l allongement sous l influence d une masse m a donné les résultats suivants : 2) Tracer la courbe f m(g) (mm) 5 9, , ,5 51 T ; en déduire le coefficient de raideur de ce ressort. 3) Le ressort n étant pas chargé, on tire progressivement sur une de ses extrémités de manière à ce qu il mesure 15 cm. Déterminer le travail de la force qui a permis cet allongement. 4) On place à l extrémité du ressort une masse de 80 g. Le ressort s allonge. On tire alors EXERCICE 18 : DISQUE EN ROTATION Un disque de masse m = 100 g, de rayon r = 20 cm tourne autour de l axe perpendiculaire au disque en son centre. 1) Il est animé d un mouvement de rotation uniforme, entretenu grâce à un moteur qui fourni une puissance de 36 mw. Un point A, situé à la périphérie du disque est animé d une vitesse de 2,4 m/s. a) Calculer la vitesse angulaire du disque. b) Calculer la vitesse du point B situé à 2 cm du centre du disque. c) Calculer le moment du couple moteur. d) Calculer le travail effectué par le couple moteur quand le disque tourne de 10 tours. 2) On coupe l alimentation du moteur : le disque s arrête au bout de 8 s après avoir tourné de 7,6 tours. Le frottement peut être représenté par une force constante, d intensité 1, N, tangente au disque. a) Calculer le travail de cette force pendant cette phase du mouvement. b) Calculer la puissance moyenne de la force de frottement durant cette phase. c) Calculer la puissance (instantanée) de la force de frottement au commencement de cette phase. 4 P a g e

5 EXERCICE 19 : DISQUE EN TORSION Le centre d un disque est fixé à un fil de torsion. Sur la périphérie du disque, est enroulée une ficelle qui porte une charge de masse m =200g. 1-Le disque a un rayon r = 5.0cm. ; à l équilibre le fil est tordu d un angle = 120 ; calculer sa constante de torsion C. 2-Déterminer le travail qu il faut fournir en tirant verticalement sur la ficelle ; la masse y restant suspendue, pour que le disque effectue un demi - tour de plus. 3-Même question si on décroche la masse avant de tirer sur la ficelle. EXERCICE 20 : TREUIL DIFFERENTIEL On considère un treuil différentiel constitué par le système représenté sur la figure ci - contre. Les deux brins de câble sont enroulés en sens contraire sur les deux tambours de rayons respectifs R et R. La poulie mobile de masse négligeable sert à soulever un fardeau de masse M = 200kg. 1 ) Quel est le déplacement h de la charge pour un tour de manivelle? 2) Calculer le moment du couple à exercer sur l axe du treuil afin de maintenir le système en équilibre. (On néglige les frottements de l air). Si la charge monte à vitesse constante, peut on calculer le moment de ce couple? Application numérique : R = 25 cm ; R = 15 cm ; g = 9,8 N.kg ) La charge monte à la vitesse constante de 0,20 m/s. Calculer la puissance mise en jeu par le poids de la charge. Pouvez vous calculer le moment du couple minimal à exercer sur la manivelle? EXERCICE 21 : TREUIL ACTIONNE PAR UNE MANIVELLE Un treuil de rayon r = 10cm est actionné à l aide d une manivelle de longueur L = 50cm. On exerce une force F perpendiculaire à la manivelle afin de faire monter une charge de masse m = 50kg. Le poids du treuil, de la manivelle et de la corde sont négligeables devant les autres forces qui leur sont appliquées. Les frottements au niveau de la corde sont négligés. 1-Calculer la valeur de la force F pour qu au cours de la montée, le centre de masse de la charge soit en mouvement rectiligne uniforme. 2-Quel est le travail effectué par la force F quand la manivelle effectue N =10 tours? 3-De quelle hauteur h la charge est-elle alors montée? 4-La manivelle est remplacée par un moteur qui exerce sur le treuil un couple de moment constant M. 4.1-Le treuil tourne de N = 10tours. Le couple moteur fournit un travail égal à celui effectué par la force F lors de la rotation précédente. Calculer le moment M du couple moteur. 4.2-La vitesse angulaire du treuil est constante et égale à = 1tr.s -1. Quelle est la puissance du couple moteur EXERCICE 22 : DEUX POULES SOLIDAIRES Deux poulies, solidaires l un de l autre, de rayons respectifs r 1 = 0,2m et r 2 = 0,5m sont mobiles autour d un axe horizontal. Leur masse totale est M. Sur la petite poulie est enroulée une corde de poids négligeable devant les autres forces qui lui sont appliquées. A l extrémité B de la corde est fixée une charge. 1-L ensemble reste en équilibre si la masse de la charge reste inférieure ou égale à m = 0,5kg. Calculer le moment constant du couple de frottements s exerçant sur les poulies au niveau de l axe. 2-Une charge de masse m = 10kg est fixée en B. Pour l élever, un manœuvre exerce une force (figure 1) à l extrémité d une corde passant sur la gorge de la grande poulie. Le couple de frottements étant le même que précédemment, calculer la valeur de pour que la charge soit montée avec une vitesse constante. 5 P a g e

6 3-On supprime la corde s enroulant sur la grande poulie et on entraîne le tout à l aide d un moteur (figure 2). Quel doit être le moment du couple moteur pour que la charge soit montée dans les mêmes conditions que la deuxième question? Le couple de frottement étant le même que précédemment. 4-Sachant que la vitesse de rotation de la poulie est n = 1tr.s -1, calculer la puissance du moteur. 5-De quelle hauteur h est montée la charge en 10s? 6-Quel aurait dû être le travail de la force musculaire exercée par le manœuvre, pour faire monter la charge de cette hauteur h. Figure 1 Figure 2 EXERCICE 23 : CHARIOT SUR PLAN INCLINE Un chariot A de masse ma =2 kg est placé sur un plan incliné d'un angle =30 par rapport à l'horizontale. Il est attaché à un fil qui passe par une poulie (voir figure) et qui porte à son extrémité un solide B de masse mb=1,1kg. On constate que, dans ces conditions les deux corps A et B sont animés d'un mouvement rectiligne uniforme. Pour une chute de B de 1m ; déterminer: 1-Le travail du poids de B. 2-Le travail du poids de A. 3-La somme de ces deux travaux. Que représente-t-elle? Conclure. 6 P a g e

Travail et Puissance d une force

Travail et Puissance d une force Travail et Puissance d une force Exercice 1 On pousse une caisse de poids P = 400 N, de A vers D, selon le trajet ABCD (voir figure ci-contre). Le parcours horizontal CD a pour longueur l = 4 La caisse

Plus en détail

Énergie cinétique : Théorème de l énergie cinétique

Énergie cinétique : Théorème de l énergie cinétique Énergie cinétique : Théorème de l énergie cinétique Exercice 18 Un mobile A de masse 100 g pouvant glisser sur une règle à coussin d air incliné d un angle α = 30 sur l horizontale est abandonné sans vitesse

Plus en détail

SERIE 3 / ENERGIE POTENTIELLE ET MECANIQUE ANNEE :

SERIE 3 / ENERGIE POTENTIELLE ET MECANIQUE ANNEE : SERIE 3 : ENERGIES POTENTIELLE ET MECANIQUE Remarque : Dans cette série, il est possible de résoudre certains exercices avec le théorème de l énergie cinétique, seulement il est clair que le but est de

Plus en détail

ENERGIE CINETIQUE ENERGIE POTENTIELLE

ENERGIE CINETIQUE ENERGIE POTENTIELLE ENERGIE CINETIQUE ENERGIE POTENTIELLE EXERCICE I : ENERGIE CINETIQUE Un disque homogène de centre O et de rayon r = 10cm, a une masse M = 1,3kg. Dans une première expérience, le disque roule sans glisser

Plus en détail

est possible de résoudre certains avec le théorème de l énergie cinétique, l énergie mécanique Remarque : Dans ces exercices, il Exercice 38

est possible de résoudre certains avec le théorème de l énergie cinétique, l énergie mécanique Remarque : Dans ces exercices, il Exercice 38 Mécanique & Électricité http://membres.lycos.fr/wphysiquechimie Premières S Énergie mécanique : Théorème de l énergie mécanique Remarque : Dans ces exercices, il seulement il est clair que le but est Exercice

Plus en détail

Tronc commun scientifique Mahdade Allal année scolaire Énergie cinétique et travail : activités

Tronc commun scientifique Mahdade Allal année scolaire Énergie cinétique et travail : activités Énergie cinétique et travail : activités Application 1 a. Calculer l énergie cinétique : d une voiture de masse 1, 0tonnes roulant à 90km/h d un camion de masse 30tonnes roulant à 90km/h b. Calculer la

Plus en détail

Travail et puissance d'une force

Travail et puissance d'une force Travail et puissance d'une force Exercice 1 Une grue met 18s pour soulever une charge de masse m=500kg sur une hauteur h=0m. La charge est animée d'un mouvement rectiligne uniforme. 1. Déterminer la valeur

Plus en détail

Travail et puissance d une force

Travail et puissance d une force Travail et puissance d une force Exercice 1 : Un morceau de savon de masse m = 200g glisse sans frottement sur un plan incliné d un angle de 30 par rapport à l horizontale. Donnée : g = 9,8N. kg 1 1- Quelles

Plus en détail

SERIE 2 : ENERGIE CINETIQUE

SERIE 2 : ENERGIE CINETIQUE SERIE 2 : ENERGIE CINETIQUE EXERCICE 1: CONNAISSANCES DU COURS 1 ) L énergie cinétique est-elle une grandeur vectorielle ou une grandeur scalaire algébrique ou une grandeur scalaire positive? Dépend-elle

Plus en détail

GROUPE SCOLAIRE K.M.ARAME SCIENCES PHYSIQUES ANNEE SCOLAIRE APPLICATIONS BASES DYNAMIQUES

GROUPE SCOLAIRE K.M.ARAME SCIENCES PHYSIQUES ANNEE SCOLAIRE APPLICATIONS BASES DYNAMIQUES EXERCICE N 1 : Mouvement sur un plan incliné On considère un solide de masse m et de centre d inertie G, en mouvement sur la droite de plus grande pente d un plan incliné d un angle α par rapport à l horizon

Plus en détail

TD 17 Approche énergétique du mouvement d un point matériel

TD 17 Approche énergétique du mouvement d un point matériel Mécanique I 1TPC TD 17 Approche énergétique du mouvement d un point matériel Exercice 1 Energie cinétique et théorème de l énergie cinétique (cours) 1. Donner la définition de l énergie cinétique d un

Plus en détail

CINEMATIQUE. EXERCICE II Les équations paramétriques du mouvement d un point matériel lancé dans l espace

CINEMATIQUE. EXERCICE II Les équations paramétriques du mouvement d un point matériel lancé dans l espace CINEMATIQUE EXERCICE I Un obus arrive dans une plaque à la vitesse 600m/s. il traverse cette plaque d épaisseur 5c m et continue sa course à 400m/s. a) Quelle est la durée de traversée de la plaque? b)

Plus en détail

TD 17 Approche énergétique du mouvement d un point matériel

TD 17 Approche énergétique du mouvement d un point matériel Mécanique I 1TPC TD 17 Approche énergétique du mouvement d un point matériel Exercice 1 Questions de cours 1. Rappeler la définition du travail et de la puissance d une force. Citer des cas de nullité

Plus en détail

Professeur : Mohamed lemine ould Hasnat

Professeur : Mohamed lemine ould Hasnat Énoncé de l exercice 1 On étudie le mouvement d un solide ponctuel S dans le référentiel terrestre supposé galiléen. Ce solide, de masse m, est initialement au repos en A. On le lance sur la piste ACD,

Plus en détail

Matière : Physique Classe : SG.

Matière : Physique Classe : SG. Matière : Physique Classe : SG. Premier exercice (7pts) : étude énergétique Un jouet d'enfant est formé d'un rail placé dans un plan vertical comme indique la figure ci-dessous. La partie ABC est un trajet

Plus en détail

TD 6 Moment cinétique

TD 6 Moment cinétique PH1ME2-C Université Paris 7 - Denis Diderot 2012-2013 TD 6 Moment cinétique 1. Force centrale 1. Définir une force centrale. 2. Donner les propriétés du moment cinétique d une masse ponctuelle uniquement

Plus en détail

Exercice 1: Exercice2:

Exercice 1: Exercice2: Exercice 1: Un corps de masse m 1 = 3,2 kg se déplace vers l ouest à la vitesse de 6,0 m/s. Un autre corps différent, de masse m 2 = 1,6 kg, se déplace vers le nord à la vitesse de 5,0 m/s. Les deux corps

Plus en détail

Exercices et Problèmes de renforcement en Mécanique

Exercices et Problèmes de renforcement en Mécanique Exercices et Problèmes de renforcement en Mécanique I Un ressort de raideur k = 9 N/m et de longueur à vide L = 4 cm, fixé par une de ces deux extrémités en un point O, d un plan, incliné de 3 sur l horizontal,

Plus en détail

Travail d'une force. Une force est constante si sa valeur, sa direction et son sens ne varient pas au cours du temps.

Travail d'une force. Une force est constante si sa valeur, sa direction et son sens ne varient pas au cours du temps. Travail d'une force Lorsque la force exercée sur un mobile a un effet sur la valeur de la vitesse du mobile, on dit qu elle travaille. Une force travaille, si son point d application se déplace dans une

Plus en détail

Professeur : Mohamed lemine ould Hasnat

Professeur : Mohamed lemine ould Hasnat Énoncé de l exercice 1 Un solide C, de dimensions négligeables, de masse m =100 g, pouvant glisser sans frottement sur une table horizontale, est fixée à l extrémité d un ressort à spires non jointives,

Plus en détail

SOMMAIRE. Chapitre correspondant dans le livre

SOMMAIRE. Chapitre correspondant dans le livre Devoir commun EXERCICES DE RÉVISIONS PARTIE PHYSIQUE 1S SOMMAIRE tableau de synthèse des révisions exercices supplémentaires corrigés des exercices supplémentaires TABLEAU DE SYNTHÈSE Chapitre du cours

Plus en détail

LYCEE MOURATH NDAW ANNEE SCOLAIRE PROF;NJAAGA JOOB TERMINALE S 1

LYCEE MOURATH NDAW ANNEE SCOLAIRE PROF;NJAAGA JOOB TERMINALE S 1 --------------------------------------------------------------------------------------------------------------- EXERCICE N 1 : Oscillation d un pendule simple Un pendule simple est constitué d un objet

Plus en détail

I Travail et puissance d une force II L énergie cinétique III Théorème de l énergie cinétique THÉORÈME DE L ÉNERGIE CINÉTIQUE

I Travail et puissance d une force II L énergie cinétique III Théorème de l énergie cinétique THÉORÈME DE L ÉNERGIE CINÉTIQUE I Travail et puissance d une force II L énergie cinétique III Théorème de l énergie cinétique THÉORÈME DE L ÉNERGIE CINÉTIQUE I travail et puissance d une force Notion de force : Une action mécanique peut

Plus en détail

Cette manipulation doit être effectuée 3 fois afin de minimiser certaines erreurs expérimentales.

Cette manipulation doit être effectuée 3 fois afin de minimiser certaines erreurs expérimentales. TP - N : LA LOI DE NEWTON But de l expérience : - Vérifier le principe fondamental de la dynamique pour un mouvement de translation uniformément accéléré. - Déterminer expérimentalement la valeur de g.

Plus en détail

LYCEE GALANDOU DIOUF Année scolaire 05 / 06 Classe 1 er S2 ENERGIE POTENTIELLE- ENERGIE MECANIQUE

LYCEE GALANDOU DIOUF Année scolaire 05 / 06 Classe 1 er S2 ENERGIE POTENTIELLE- ENERGIE MECANIQUE LYEE GLNDOU DIOUF nnée scolaire 05 / 06 lasse 1 er S2 ellule de Sciences Physiques Série P 3 : Exercice 1 ENERGIE POTENTIELLE- ENERGIE MENIQUE Un solide de masse m = 800g glisse sans frottement sur la

Plus en détail

Lycée de Kounoune TS Retrouver la série Page 1

Lycée de Kounoune TS Retrouver la série  Page 1 Lycée de Kounoune Série d exercices classe de Tle S2 2015/2016: prof : M.Diagne P2 : Applications des bases de la dynamique email : diagnensis@yahoo.fr EXERCICE 1 Sur un banc à coussin d'air, on étudie

Plus en détail

Lycée El Hadji Omar lamine Badji Année scolaire 2013-2014 Cellules de sciences physiques Classe : TS1 OSCILLATIONS MECANIQUES LIBRES EXERCICE 1: Un oscillateur harmonique est constitué d un ressort de

Plus en détail

Exercices Mécanique du solide

Exercices Mécanique du solide Exercices Mécanique du solide Exo 1 Balançoire Un enfant sur une balançoire est schématisé par un pendule oscillant autour d un axe horizontal grâce à une liaison parfaite. L angle avec la verticale est

Plus en détail

3. Le vecteur somme vectorielle des forces et colinéaire au vecteur variation de vitesse.

3. Le vecteur somme vectorielle des forces et colinéaire au vecteur variation de vitesse. Exercice 1 : Approche de la seconde loi de Newton On enregistre, à intervalles de temps réguliers τ = 20 ms, les positions successives da centre d'un palet autoporteur sur une table horizontale. L'enregistrement

Plus en détail

TD Mécanique du solide

TD Mécanique du solide TPC2 TD Mécanique du solide Solide en rotation autour d un axe fixe Exercice n o 1 : Ordres de grandeur des moments cinétiques 1 Le moment d inertie de la Terre en rotation uniforme autour de l axe passant

Plus en détail

Feuille d exercices n 19 : Mouvements de rotation et théorème du moment cinétique

Feuille d exercices n 19 : Mouvements de rotation et théorème du moment cinétique Feuille d exercices n 19 : Mouvements de rotation et théorème du moment cinétique Exercice 1 : Chute d un arbre : On assimile un arbre à une tige longue et homogène de longueur L et de masse m. On le scie

Plus en détail

Exemples d actions mécaniques Exercices corrigés. Corrigé

Exemples d actions mécaniques Exercices corrigés. Corrigé Exemples d actions mécaniques Exercices corrigés Exercice 1 : Un solide est en équilibre sur un plan incliné d un angle α par rapport à l horizontale. On néglige les forces de frottements dues à l air.

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section i-prépa -

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section i-prépa - POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Section i-prépa - Chapitre 10 : Oscillateurs mécaniques (II) 5. Oscillateur mécanique libre amorti : En présence de frottements, il n y a plus

Plus en détail

Travail et énergie cinétique ( ) ELfarissi Hammadi Exercice 1 Une bille masse m=15,0g est en chute libre sans vitesse initiale.

Travail et énergie cinétique ( ) ELfarissi Hammadi Exercice 1 Une bille masse m=15,0g est en chute libre sans vitesse initiale. Travail et énergie cinétique (2012-2013) ELfarissi Hammadi Exercice 1 Une bille masse m=15,0g est en chute libre sans vitesse initiale. Elle a été lâchée d'un balcon au 6 ème étage situé à une hauteur

Plus en détail

Le résultat du produit scalaire conduit à la formule suivante : soit

Le résultat du produit scalaire conduit à la formule suivante : soit ctivité ① Savoir calculer le travail d une force. Savoir calculer le travail du poids. OJECTIFS 1- Le travail d une force Le travail (W) d une force constante (F) lors du déplacement rectiligne de son

Plus en détail

Dynamique newtonienne

Dynamique newtonienne Dynamique newtonienne Contrairement à la cinématique, qui se limite à la description du mouvement, la dynamique a pour but l interprétation des causes du mouvement. Aspect historique Entre les années 1600

Plus en détail

Thème 2 : COMPRENDRE Lois et modèles p : 1 Ch.7. Travail et énergie

Thème 2 : COMPRENDRE Lois et modèles p : 1 Ch.7. Travail et énergie Thème 2 : COMPRENDRE Lois et modèles p : 1 Ch.7. Travail et énergie Chapitre 7 : Temps, mouvement et évolution Notions et contenus Travail d une force. Force conservative ; énergie potentielle. Forces

Plus en détail

Travail et énergie mécanique

Travail et énergie mécanique Travail et énergie mécanique Si le chapitre 5 donnait les lois de la mécanique permettant de connaître position, vitesse et accélération d un système soumis à un ensemble de forces extérieures, nous prenons

Plus en détail

Lycée Viette TSI 1. DS h 50. Problème 01 Trajectoire d une particule

Lycée Viette TSI 1. DS h 50. Problème 01 Trajectoire d une particule DS 03 02 12 2011 1 h 50 Problème 01 Trajectoire d une particule On considère un point matériel en mouvement dans un référentiel. L équation en polaire de la trajectoire en polaire s écrit : =.. avec =.,

Plus en détail

FORCES ET EFFETS DES FORCES I- INTERACTIONS MÉCANIQUES ET ACTIONS MÉCANIQUES

FORCES ET EFFETS DES FORCES I- INTERACTIONS MÉCANIQUES ET ACTIONS MÉCANIQUES Dans ce chapitre, nous allons étudier quelques exemples de forces ainsi que leurs effets produits sur un système. FORCES ET EFFETS DES FORCES I- INTERACTIONS MÉCANIQUES ET ACTIONS MÉCANIQUES Avant de faire

Plus en détail

L.E.I.D/G.S.A DEVOIR DE PC N 2 TS2A 2013/

L.E.I.D/G.S.A DEVOIR DE PC N 2 TS2A 2013/ DUREE :03heures EXERCICE N 1 :06 points Lorsque les pommes murissent, leurs membranes cellulaires s oxydent, engendrant la dégradation des acides gras à longues chaines qu elles contiennent. Il en résulte

Plus en détail

T-STL-PL Exercices sur les vitesses de rotation. T-STL-PL Exercices sur les vitesses de rotation

T-STL-PL Exercices sur les vitesses de rotation. T-STL-PL Exercices sur les vitesses de rotation T-STL-PL Exercices sur les vitesses de rotation T-STL-PL Exercices sur les vitesses de rotation T-STL-PL Exercices sur les moments des forces 1- Un disque homogène (S) de rayon R est mobile autour de son

Plus en détail

TD: Référentiel non galiléen : Forces d inerties Relation fondamentale de la dynamique, Energie

TD: Référentiel non galiléen : Forces d inerties Relation fondamentale de la dynamique, Energie TD: Référentiel non galiléen : Forces d inerties Relation fondamentale de la dynamique, Energie Exercice 1: Pendule dans une voiture Un fil de plomb de longueur l, de masse m100g (figure 1) est suspendu

Plus en détail

PHYSIQUE La mécanique

PHYSIQUE La mécanique PHYSIQUE La mécanique Manuel de l élève Exercices : corrigé Chapitre 7 Le travail et la puissance 7.1 Le concept de travail 1. Les situations A, C et D. 2. W 1 = F 1 x 1 = 120 N 4 m = 480 J W 2 = F 2 x

Plus en détail

PENDULE DE TORSION. PENDULE PESANT.

PENDULE DE TORSION. PENDULE PESANT. PENDULE SIMPLE PENDULE DE TORSION. Il est constitué d un disque de masse m et de rayon R suspendu en son centre par un fil de torsion de masse négligeable. L autre extrémité du fil est fixe. PENDULE PESANT.

Plus en détail

Annales d orthoptie (session de septembre 2007) EPREUVE DE PHYSIQUE

Annales d orthoptie (session de septembre 2007) EPREUVE DE PHYSIQUE Annales d orthoptie (session de septembre 7) EPREUVE DE PHYSIQUE EXERCICE I Les trois parties A, B et C du problème sont indépendantes Un solide en acier de masse m = 3, g peut se déplacer sur un plan

Plus en détail

PROBLEMES PLANS. Q1-1 Déterminer, par application du principe fondamental de la statique à l ensemble

PROBLEMES PLANS. Q1-1 Déterminer, par application du principe fondamental de la statique à l ensemble Michel Agullo 1 PROBLEMES PLANS Exercice 1 : Equilibre d une échelle On considère une échelle double en contact en C et D avec le sol Les 2 branches 1 et 2 sont articulées en O par une liaison pivot et

Plus en détail

Loi du moment cinétique

Loi du moment cinétique Loi du moment cinétique Cas d un point matériel, d un système de points matériels et d un solide en rotation autour d un axe fixe Introduction...3 I Quelques rappels sur la mécanique du solide...4 1 Les

Plus en détail

LCD Physique III e BC 1 3ExForces14 20/09/2017. Loi de Hooke

LCD Physique III e BC 1 3ExForces14 20/09/2017. Loi de Hooke LCD Physique III e BC 1 Loi de Hooke LCD Physique III e BC 2 LCD Physique III e BC 3 Compostion, décomposition et équilibre de forces Rappel : Relations de trigonometrie 1. Un Inuit tire une luge avec

Plus en détail

Partie Mécanique. Mécanique Newtonienne (Force, Energie, Travail) Chapitre II. 1. Action Mécanique

Partie Mécanique. Mécanique Newtonienne (Force, Energie, Travail) Chapitre II. 1. Action Mécanique 1 Physique : Force, Energie et Travail Partie Mécanique Chapitre II Mécanique Newtonienne (Force, Energie, Travail) I. Les Forces 1. Action Mécanique Une action mécanique s exerçant sur un système peut

Plus en détail

Etalonnage d un ressort Comment déterminer la constante de raideur d un ressort

Etalonnage d un ressort Comment déterminer la constante de raideur d un ressort Statique - 7 - - 8 - T.P. Etalonnage d un ressort Comment déterminer la constante de raideur d un ressort Niveau : 10 (étude des forces) Durée Pré requis : Loi de proportionnalité, connaître la notion

Plus en détail

Mouvement Rectiligne

Mouvement Rectiligne Mouvement Rectiligne Etude cinématique dynamique Enoncés Exercice 1 (Etude du mouvement rectiligne d un point matériel) Un mobile M effectue un mouvement dans le plan (O, x, y) muni d un repère R (O, i,

Plus en détail

Les oscillations libres d un pendule élastique Oscillations libres non amorties Série d exercices corrigés

Les oscillations libres d un pendule élastique Oscillations libres non amorties Série d exercices corrigés Les oscillations libres d un pendule élastique Oscillations libres non amorties Série d exercices corrigés Exercice 1 : On considère l'oscillateur horizontal (Figure 1) constitué par un ressort de raideur

Plus en détail

THEOREME DE L'ENERGIE CINETIQUE

THEOREME DE L'ENERGIE CINETIQUE THEOREME DE L'ENERGIE CINETIQUE I MOUVEMENT DE TRANSLATION : LA CHUTE LIBRE 1 Expérience et référentiel L'origine des temps(t = 0) se situe lorsque la bille quitte l'électro-aimant et l'origine des abscisses

Plus en détail

Amérique du Sud 2005 Sans calculatrice I. ÉMISSION ET RÉCEPTION D UNE ONDE RADIO (4 points)

Amérique du Sud 2005 Sans calculatrice I. ÉMISSION ET RÉCEPTION D UNE ONDE RADIO (4 points) Amérique du Sud 25 Sans calculatrice I. ÉMISSION ET RÉCEPTION D UNE ONDE RADIO (4 points) Au cours d une séance de travaux pratiques, les élèves réalisent un montage permettant d émettre puis de recevoir

Plus en détail

Exercices de dynamique

Exercices de dynamique Exercices de dynamique Exercice 1 : 1) Une automobile assimilable à un solide de masse m=1200 kg, gravite une route rectiligne de pente 10 % (la route s élève de 10 m pour un parcours de 100m) à la vitesse

Plus en détail

Mouvement d un solide en rotation autour d un axe fixe

Mouvement d un solide en rotation autour d un axe fixe Mouvement d un solide en rotation autour d un axe fixe II. Moment cinétique scalaire d un solide en rotation autour d un axe fixe 1. Moment cinétique d un point matériel par rapport à un point On appelle

Plus en détail

Problème 1 : «Tomber plus vite que la chute libre»

Problème 1 : «Tomber plus vite que la chute libre» Problème 1 : «Tomber plus vite que la chute libre» Nous savons tous qu'en l'absence de tout frottement aérodynamique, deux objets de masses différentes soumis à la gravité possèdent la même accélération

Plus en détail

Chapitre 7 : Energie mécanique d un système

Chapitre 7 : Energie mécanique d un système e B et C 7 Energie mécanique d un système 66 Le mot «énergie» est utilisé couramment, mais sauriez-vous le définir avec précision? Parmi toutes les formes d énergie, l énergie mécanique occupe une importance

Plus en détail

La force exercée sur le sol par chaque bras se décompose en force de pesanteur et en force de frottement :

La force exercée sur le sol par chaque bras se décompose en force de pesanteur et en force de frottement : 10 Plan incliné Physique passerelle hiver 2016 1. Décomposition d une force Le poids de l athlète ci-dessous se répartit dans ses deux bras : La force exercée sur le sol par chaque bras se décompose en

Plus en détail

Chapitre N 10 A B A B. * 0 α π/2 : W ( F ) 0 : travail moteur A B. * π/2 < α π : W ( F ) 0 : travail résistant.

Chapitre N 10 A B A B. * 0 α π/2 : W ( F ) 0 : travail moteur A B. * π/2 < α π : W ( F ) 0 : travail résistant. Cours physique Chapitre N 0 L énergie cinétique I- Notion d énergie cinétique : ) Rappel : - Tout corps en mouvement possède de l énergie cinétique. - L énergie cinétique d un corps dépend de sa masse

Plus en détail

Etude énergétique des systèmes mécaniques

Etude énergétique des systèmes mécaniques Etude énergétique des systèmes mécaniques I) TRAVAIL D UNE FORCE CONSTANTE 1) Expression du travail (rappel) 2) Travail du poids d un corps II) TRAVAIL D UNE FORCE QUELCONQUE 1) Travail élémentaire a)

Plus en détail

Travail - Puissance. Travail moteur, travail résistant

Travail - Puissance. Travail moteur, travail résistant Travail - Puissance -Travail : Le «travail» est la grandeur l action d une force qui déplace son point d application. Travail moteur, travail résistant travail résistant travail moteur si la force favorise

Plus en détail

L. Avicenne Gafsa Série N

L. Avicenne Gafsa Série N donné L orthogonale PU L. vicenne afsa Série : UP CLSSE : 3 UP ed PRF HR DTE : / /201 4 - UEssentiel à retenir U1- oment d une force : RF/ R= + F. U1- Force de Laplace F force de Laplace ses caractéristiques

Plus en détail

11 Travail et puissance

11 Travail et puissance 11 Travail et puissance Physique passerelle hiver 2016 1. Travail Définition du travail en physique : énergie fournie lorsqu une force déplace un objet. Le travail en physique est donc intimement lié à

Plus en détail

SERIE N 7 ETUDE DES OSCILLATIONS MECANIQUE LIBRES

SERIE N 7 ETUDE DES OSCILLATIONS MECANIQUE LIBRES SERIE N 7 ETUDE DES OSCILLATIONS MECANIQUE LIBRES EXERCICE 1 Dans cet eercice, les réponses attendues doivent être rédigées de façon succincte. Le modèle d'oscillateur étudié est décrit ci-contre, et les

Plus en détail

2 )- Que peut-on en conclure dans chaque cas. 2

2 )- Que peut-on en conclure dans chaque cas. 2 F(N) L.M.D-ST Eercice 1 : Une particule de masse m=10 kg se déplaçant sur une trajectoire rectiligne, sans frottement, est soumise à la force F() représentée sur la figure ci-dessous. 5 0 15 10 5 (m) 0

Plus en détail

CHAPITRE I Oscillations libres non amorties Système à un degré de liberté CHAPITRE I

CHAPITRE I Oscillations libres non amorties Système à un degré de liberté CHAPITRE I Page1 CHAPITRE I Oscillations libres non amorties : Système à un degré de liberté I.1 Généralités sur les vibrations I.1.1 Mouvement périodique : Définition : C est un mouvement qui se répète à intervalles

Plus en détail

Couple, travail et énergie cinétique

Couple, travail et énergie cinétique Chapitre 8 Couple, travail et énergie cinétique Découvrir Activité documentaire n 1 Couple, puissance et vitesse d un moteur 1. La puissance maximale de 90 kw est obtenue à un régime moteur de 5 000 tr/min.

Plus en détail

Université Joseph Fourier. UE PHY114 et PHY115 Examen terminal : mécanique du point. Mercredi 17 décembre 2014 durée : 1 heure 30 minutes

Université Joseph Fourier. UE PHY114 et PHY115 Examen terminal : mécanique du point. Mercredi 17 décembre 2014 durée : 1 heure 30 minutes Université Joseph Fourier UE PHY114 et PHY115 Examen terminal : mécanique du point Mercredi 17 décembre 2014 durée : 1 heure 30 minutes Numéro d anonymat : documents non autorisés calculatrices autorisées

Plus en détail

GRUE PORTUAIRE Résumé de correction Présentation

GRUE PORTUAIRE Résumé de correction Présentation Date : Nom Prénom : GRUE PORTUAIRE Résumé de correction Présentation La plupart des grues portuaires poursuivent le même but : limiter et éviter le levage des charges L'objectif, une fois la charge sortie

Plus en détail

Le plan sur lequel se déplace le solide S est horizontal. La position du centre d'inertie G est donnée par

Le plan sur lequel se déplace le solide S est horizontal. La position du centre d'inertie G est donnée par P12-OSCILLATIONS MECANIQUES TRAVAUX DIRIGÉS TERMINALEE S 1 Oscillateur mécanique horizontal Un oscillateur mécanique est constitué d'un ressort à spires non jointives de raideur k dont une extrémité est

Plus en détail

Systèmes mécaniques oscillants : exercices

Systèmes mécaniques oscillants : exercices Systèmes mécaniques oscillants : exercices Exercice 1 : 1. Définir les notions suivantes : Oscillateur mécanique - mouvement oscillatoire - oscillation libre - amplitude de mouvement - élongation du mouvement

Plus en détail

1 ere S Chapitre P7 : Le travail d une force

1 ere S Chapitre P7 : Le travail d une force 1 ere S Chapitre P7 : Le travail d une force Le travail d une force 2008-2009 Comment tirer le meilleur parti de la force des hommes sans augmenter leur fatigue? C est à partir de cette interrogation,

Plus en détail

Devoir n 3 de sciences physiques (2 heures)

Devoir n 3 de sciences physiques (2 heures) Lycée de Bambey erminale Sa Année: 7/8 Devoir n 3 de sciences physiques ( heures) 1 Exercice 1: Réaction entre un acide fort et une base forte (8 points) Les parties I et II sont indépendantes. Partie

Plus en détail

ETUDE DES OSCILLATIONS MECANIQUE FORCEES

ETUDE DES OSCILLATIONS MECANIQUE FORCEES EXERCICE 1 ETUDE DES OSCILLATIONS MECANIQUE FORCEES A/ Un pendule élastique horizontal est formé d'un ressort (R) à spires non jointives, de masse négligeable, de raideur K=20N.m -1 dont l'une de ses extrémités

Plus en détail

BTS 91: Exercices issus de sujets de BTS

BTS 91: Exercices issus de sujets de BTS BTS 89: Pour effectuer la phase d essorage, le moteur d un lave-linge tourne à 4200 tr.min-1. Sur l axe de ce moteur, est fixée une poulie de 5 cm de diamètre. Une autre poulie de 28 cm de diamètre est

Plus en détail

Cours n 7 : Oscillations mécaniques

Cours n 7 : Oscillations mécaniques Cours n 7 : Oscillations mécaniques Introduction Depuis longtemps, les savants ont cherché à expliquer les phénomènes oscillatoires et vibratoires qui existent sous diverses formes dans des systèmes physiques

Plus en détail

M3. Energie en mécanique du point matériel.

M3. Energie en mécanique du point matériel. M3.. TD : rechercher et consolider les bases 1. Looping dans une gouttière. y H g A h C l O I θ P x Un mobile P assimilé à un point matériel de masse m se déplace sur un rail situé dans le plan vertical

Plus en détail

ATTENTION : L'exercice 4 NE sont PAS à traiter par les élèves ayant choisi l'option physique chimie.

ATTENTION : L'exercice 4 NE sont PAS à traiter par les élèves ayant choisi l'option physique chimie. Nom : 12 février 216 T ale S DS N 3 DE PHYSIQUE-CHIMIE Durée 3h Aucun document Calculatrices NON autorisées Tout sujet non rendu avec la copie sera pénalisé de 1 point - Le barème indiqué sur 2 points

Plus en détail

Le graphe, de la figure (2), montre la variation de x en fonction de temps.

Le graphe, de la figure (2), montre la variation de x en fonction de temps. MATIERE; PHYSIQUE CLASSE; --SV-SG----------------------- DUREE---1 ''-18 ''------------- Premier exercice(7pts) Oscillateur élastique horizontal. On dispose d'un oscillateur élastique formé d'un ressort,

Plus en détail

Chapitre 7 : Travail et énergie (p. 183)

Chapitre 7 : Travail et énergie (p. 183) PRTIE 2 - COMPRENDRE : LOIS ET MODÈLES Chapitre 7 : Travail et énergie (p. 183) Compétences exigibles : Extraire et exploiter des informations relatives à la mesure du temps pour justifier l évolution

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. -Section Audioprothésiste- prépa intensive

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. -Section Audioprothésiste- prépa intensive POLY-PREPAS Centre de Préparation aux Concours Paramédicaux -Section Audioprothésiste- prépa intensive 1 Chapitre 1 : Cinématique - Vitesses I. Vecteur-vitesse d un point d un solide : a) Vitesse linéaire

Plus en détail

MINESTRE DE L EDUCATION ET DE LAFORMATION SERIE N 8 SEANCE N 16 SCIENCE-TECHNIQUE-EXP-MATHS

MINESTRE DE L EDUCATION ET DE LAFORMATION SERIE N 8 SEANCE N 16 SCIENCE-TECHNIQUE-EXP-MATHS REPUBLIQUETUNISIENNE PROF/ MABROUKI SALAH MINESTRE DE L EDUCATION ET DE LAFORMATION SERIE N 8 SEANCE N 16 SECTION / SCIENCE-TECHNIQUE-EXP-MATHS Osc ~ Libre ~. ~ 2 EXERCICEN 1 On dispose d un pendule élastique

Plus en détail

BREVET DE TECHNICIEN SUPERIEUR

BREVET DE TECHNICIEN SUPERIEUR DOSSIER 7 : MECANIQUE 3.Duhamel B.T.S S.C.B.H Page N 1/6 Dynamique. Relation fondamentale de la dynamique. I. Principe d inertie.( 1 ére loi de Newton (1642-1727), énoncé par alilée (1564-1642)). Par rapport

Plus en détail

Lycée Polyvalent de Montbéliard - Physique-Chimie - TSI Reconnaître et décrire une translation rectiligne, une translation circulaire.

Lycée Polyvalent de Montbéliard - Physique-Chimie - TSI Reconnaître et décrire une translation rectiligne, une translation circulaire. Mécanique 5 Mouvement d un solide en rotation autour d un axe fixe Lycée Polyvalent de Montbéliard - Physique-Chimie - TSI 1-2016-2017 Contenu du programme officiel : Notions et contenus Définition d un

Plus en détail

TROISIEME PARTIE - ENERGIE CINETIQUE ET SECURITE ROUTIERE

TROISIEME PARTIE - ENERGIE CINETIQUE ET SECURITE ROUTIERE TROISIEME PARTIE - ENERGIE CINETIQUE ET SECURITE ROUTIERE CHAPITRE 7 ENERGIE CINETIQUE ET SECURITE ROUTIERE Travail d une force 1. Connaître et appliquer la relation W = F.l.cosa pour a = 0, 90 et 180

Plus en détail

TERMINALE S Cours TRAVAIL ET ENERGIE MECANIQUE. B sur le segment [AB] est égal au produit scalaire du vecteur force

TERMINALE S Cours TRAVAIL ET ENERGIE MECANIQUE. B sur le segment [AB] est égal au produit scalaire du vecteur force TERMINALE S Cours TRAVAIL ET ENERGIE MECANIQUE 1) Travail d une force constante Le travail d une force constante dont le point d application M se déplace de A à B sur le segment [AB] est égal au produit

Plus en détail

Statique 1. = = cste. v v G

Statique 1. = = cste. v v G Statique 1 Introduction : La statique est l étude des équilibres. Si un solide est en équilibre dans un repère lié à un référentiel donné, la vitesse de son centre d inertie est nulle dans ce repère :

Plus en détail

THEME : SPORT. Sujet N 9

THEME : SPORT. Sujet N 9 THEME : SPORT Sujet N 9 Exercice n 1 : J'apprends mon cours 1- Qu'est ce qu'un référentiel? 2- Enoncer le principe d'inertie. Exercice n 2 : Lancer du marteau Le lancer de «marteau» est une épreuve d'athlétisme

Plus en détail

Polynésie 09/2009 EXERCICE I. RECORD DE SAUT EN LONGUEUR À MOTO (6 points)

Polynésie 09/2009 EXERCICE I. RECORD DE SAUT EN LONGUEUR À MOTO (6 points) Polynésie 9/29 EXERCICE I. RECORD DE SAUT EN LONGUEUR À MOTO (6 points) http://labolycee.org Le 31 mars 28, l Australien Robbie Maddison a battu son propre record de saut en longueur à moto à Melbourne.

Plus en détail

Documents de Physique-Chimie M. MORIN

Documents de Physique-Chimie M. MORIN 1 Thème : Lois et modèles Partie : Temps, mouvement et évolution. Cours 21 : Travail d une force-energies I. Travail d une force. 1. Effets d une force. Les forces appliquées à un système peut : - Déformer

Plus en détail

Chapitre 2, 3 & 4: Cinématique, force & dynamique Exercices de révision

Chapitre 2, 3 & 4: Cinématique, force & dynamique Exercices de révision Chapitre 2, 3 & 4: Cinématique, force & dynamique Exercices de révision 1) Un astronome sur la Terre, voit une éruption sur le soleil. (distance Terre - Soleil = 1,49 x 10 11 m; vitesse lumière = 3,00

Plus en détail

Chapitre 7 : Energie mécanique d un système

Chapitre 7 : Energie mécanique d un système e B et C 7 Energie mécanique d un système 66 Le mot «énergie» est utilisé couramment, mais sauriez-vous le définir avec précision? Parmi toutes les formes d énergie, l énergie mécanique occupe une importance

Plus en détail

TD ELECTROTECHNIQUE 1 ère année Module MC2-2. V. Chollet - TD-Trotech07-28/08/2006 page 1

TD ELECTROTECHNIQUE 1 ère année Module MC2-2. V. Chollet - TD-Trotech07-28/08/2006 page 1 TD ELECTROTECHNIQUE 1 ère année Module MC2-2 V. Chollet - TD-Trotech07-28/08/2006 page 1 IUT BELFORT MONTBELIARD Dpt Mesures Physiques TD ELECTROTECHNIQUE n 1 Avec l aide du cours, faire une fiche faisant

Plus en détail

Corrigés des exercices

Corrigés des exercices Il est intéressant d insister sur la définition du vecteur accélération pour enlever l idée qu un système accélère uniquement lors de variations de la valeur de son vecteur vitesse 4 Comment énoncer la

Plus en détail

Chap. 9 : La mécanique de Newton Exercices

Chap. 9 : La mécanique de Newton Exercices Terminale S Physique Chapitre 9 : La mécanique de Newton Page 1 sur 7 Exercice n 1 p219 1. Le mouvement de ce mobile est rectiligne et uniforme. 2. La valeur de la vitesse est constante. 3. Le vecteur-vitesse

Plus en détail

1. Sur un schéma représentez la force gravitationnelle exercée par la Terre (masse M T ) sur un satellite S (masse m S ) situé à la distance r de son

1. Sur un schéma représentez la force gravitationnelle exercée par la Terre (masse M T ) sur un satellite S (masse m S ) situé à la distance r de son Physique TC 1 Correction 1. Sur un schéma représentez la force gravitationnelle exercée par la Terre (masse M T ) sur un satellite S (masse m S ) situé à la distance r de son centre. 2. Proposer une expression

Plus en détail

Bien que la notion d énergie soit omniprésente, même dans la vie de tous les jours, il s avère très difficile de la définir de façon précise.

Bien que la notion d énergie soit omniprésente, même dans la vie de tous les jours, il s avère très difficile de la définir de façon précise. Chapitre 5 Énergie mécanique 5.1 Notion d énergie 5.1.1 Définition Bien que la notion d énergie soit omniprésente, même dans la vie de tous les jours, il s avère très difficile de la définir de façon précise.

Plus en détail

EXAMEN #2 PHYSIQUE MÉCANIQUE 20% de la note finale

EXAMEN #2 PHYSIQUE MÉCANIQUE 20% de la note finale EXAMEN #2 PHYSIQUE MÉCANIQUE 20% de la note finale Hiver 2013 Nom : Chaque question à choix multiples vaut 3 points 1. On appuie horizontalement sur un bloc placé le long d un mur de telle sorte que le

Plus en détail