Programmation linéaire Séance 4 Dualité et critères multiples. Philippe Morignot
|
|
|
- Marie-Jeanne Normandin
- il y a 9 ans
- Total affichages :
Transcription
1 Programmation linéaire Séance 4 Dualité et critères multiples Philippe Morignot [email protected]
2 Plan des séances 1. Programmation linéaire 2. Programmation linéaire en nombres entiers 3. Modélisation 4. Dualité et critères multiples + QCM 5. Contrôle
3 Dualité Définitions (1/2) Pour un programme linéaire minf(x) telquex X, onobtientf(x opt ) pouruncertainx opt X. Quesepassetilsionmodifielégèrementles données d entrée? Une contrainte est dite saturée ssi sa variable d écart est nulle. La valeur duale associée à une contrainte est la quantité dont varie la fonction de coût/ objectif quand onfaitvarierd uneunitélavaleurdusecondmembre.
4 Programme primal : Dualité Définitions (2/2) Programme dual : min C x tel que : max t By tel que : A x B t Ay t C x 0 y 0 t y i t x j b i c j a i,j b i a j,i c j
5 Dualité Propriétés Le problème dual du problème dual est le problème primal. Programme primal Programme dual Programme non réalisable Programme non borné Programme non borné Programme non réalisable Programme optimum Programme optimum Coût opt. primal = coût opt. dual Coût opt. dual = coût opt. primal Contrainte isaturée y i 0 Contrainte inon saturée y i = 0 x j 0 Contrainte jsaturée x j = 0 Contrainte jnon saturée (Démonstrations disponibles dans le cours IFT2505 de Jacques Ferland.)
6 Dualité Conséquences Si on cherche la valeur optimale de la fonction de coût / objectif, résoudre le programme linéaire primal est équivalent à résoudre le programme linéaire dual. Pour un programme linéaire primal, l algorithme du simplexe donne à l optimum les valeurs des variables duales. Il n est pas nécessaire de résoudre le programme linéaire dual pour connaître les variables duales à l optimum. Si le programme dual est plus facile à résoudre que le programme primal, le résoudre et prendre les variables duales du programme dual. Modifier une contrainte (b i ) dans le programme linéaire primal est équivalent à modifier un coût (b i ) dans la fonction de coût / objectif du programme linéaire dual. Modifier une contrainte peut rendre le programme linéaire primal non réalisable(sans solution), alors que changer un coût est simple.
7 Dualité Exemple (1 / 2) J ai 3h sur une machine 1 et 5h sur une machine 2. Pour produire 1 tonne de produit A, il me faut 2h sur la machine 1 et 1h sur la machine 2. Pour produire 1 tonne de produit B, il me faut 2h sur la machine 2 et 1h sur la machine 1. Le produit A se vend 600 /tonne et le produit B 700. Quelle est la production optimale? Programme primal: Programme dual: 2x+ y 3 2u+ v 6 x+2y 5 u+2v 7 max(6x+7y) min(3u+5v)
8 Dualité Exemple (2 / 2) 2x+ y 3 2u+ v 6 x+2y 5 u+2v 7 max(6x+7y) min(3u+5v) Interprétation du programme dual : 3u+5v est une quantité qui, à l optimum, vaut l optimum du primal et qui est exprimée en, puisque6 et7 sontdes. 3 et 5 sont les disponibilités (en h) des machines, donc u et v sont les coûts(puisque il s agit d une minimisation) horaires de non-exploitation. La première contrainte 2u+v 6 signifie que ne pas utiliser la machine 1 pendant 2h et la machine 2 pendant 1h coûte au moins 600, puisque sinononpourraitproduire1tonnedeproduita. (u,v) opt =(5/3,8/3) Chaque heure inutilisée de la machine 1 (resp., 2) coût 167 (resp., 267 ). Le programme dual mesure l impact de la mauvaise utilisation des ressources(en sciences économiques et gestion).
9 Optimisation multicritère Introduction Dans un problème de planification de ressources humaines, on veut maximiser le gain en euros, la qualité de service et les relations sociales. Gain en euros Relations sociales Qualité de service Mais interdépendance des critères : comment trouver la solutionoptimale?etqueveutdire«optimale»?
10 Optimisation multicritère Formulation Programme linéaire monocritère : Programme linéaire multicritère : min ( (% ' & &) tel que : i, () *,& ' & b i j, ' & 0 k,min (, - = (% &, - ' &) tel que : i, ) *,& ' & ( b i j, ' & 0
11 Optimisation multicritère Définition (1/2) Pour un programme linéaire de minimisation, la solution x domine la solution y: x D y k, F k (x) F k (y) F 2 F 2 y y x x x domine y F 1 x ne domine pas y F 1
12 Optimisation multicritère Définition (2/2) F 2 s 5 s 4 s 3 s 2 s 1 s 6 s 7 s 8 s 9 s 10 F 1 Le front de Pareto est constitué par les solutions efficaces du problème. Comment les départager?
13 Méthodes de départage (1/3) Agrégation de critères 1. Une nouvelle fonction de coût Fest la combinaison linéaire des critères F i : min F(x) avec F(x) = 5 *,*(') 2. Résolution monocritère avec F. Avantage : Désavantages : Simple. -On n atteint pas forcément un optimum. -Comment choisir les coefficients p i?
14 Méthodes de départage (2/3) Sérialisation (1)Fixerunordresurlescritèreset(2)lesrésoudreunàundanscet ordre. Hypothèse (programme linéaire non compensatoire) : la qualité du critèrek nepeutpasêtredévaloriséeparlecritèrek+1. Procédure SERIALISATION() POURTOUTk de1àk 1. Fixerlecritèrek-1(onsupposequ un0 e critèreestfixé). 2. Résoudre le programme linéaire pour le critère k. (Un programme linéaire est équivalent à un critère.) Avantages : efficacité ; décompose le problème en sousproblèmes. Désavantages : K programmes linéaires à résoudre ; la solution optimale obtenue varie suivant l ordre.
15 Méthodes de départage (3/3) Tableau des gains 1. RésoudreséparémentchacundesKcritèresF k : Critère Solution 1 Solution 2 Solution K F 1 F 1,1 F 1,2 F 1,K F 2 F 2,1 F 2,2 F 2,K F K F K,1 F K,2 F K,K Le point idéal (F 1,1, F 2,2,, F K,K ) est inaccessible parce que tous lescritèresf i,i nepeuventpasêtreatteintsenmêmetemps. 2. Chercherleminimumdel écartmaximumaupointidéal: min λ tel que : k, F kk -f k λ(f kk -min i (F k,i )) // Normerle 1 er terme. k, - f = % &, - ' & // f k est la fonction objectif. i, x i 0 // Solution non nec. réalisable
16 Coût réduit d une variable Définition Le coût réduit j d une variable x j est : j = c j - 7) *, & > * t x j c j Apport Pertes a i,j b i y i Dans un programme linéaire primal(avec maximisation): Dansl algorithmedusimplexe,si j >0,alorslavariablex j entre en base. Lecritèred arrêtdel algorithmedusimplexeest: j, j 0
17 Génération de colonnes Principe Utile si, dans un programme linéaire, le nombre de variables est grand et que beaucoup de variables sont nulles. Décomposer le problème: Avoir un problème maître Audébut,aucunevariable;leplussimplepossible. Programmation par but (pour que le programme linéaire reste réalisable). Avoir un problème esclave. 1variablededécision=1colonne.
18 Génération de colonnes Algorithme (1/2) 1. Résoudre le programme linéaire maître(sur R). 2. TANT QUE il existe un coût réduit négatif, reporter les variables duales y i à l optimum dans le problème esclave. a) Siunevariabledualey i estnulle,lacontraintei peut être améliorée. b) Si une variable duale y i est positive, la contrainte i est saturée. 3. Résoudre le problème esclave. 4. Reporter les solutions du problème esclave dans leproblèmemaître,etgoto1.
19 Génération de colonnes Algorithme (2/2) Problème maître : Problème esclave : y i < variables t x j c j Virtuellement, > variables. Créées à la demande. a i,j b i x j Tant que j / j < 0
20 Génération de colonnes En variables entières (1 / 2) Comment résoudre un grand programme linéaire en variables entières? 1 e idée : séparation / évaluation (branch & bound) avec une génération de colonnes sur chaque nœud pour trouver la solution relâchée. Désavantage: À chaque nœud du B&B, n algorithmes du simplexe (avec n grand) doivent être lancés. Beaucoup trop long en général, car le nombre de variables est grand.
21 Génération de colonnes En variables entières (2 / 2) Algorithmedebranch&cut: Commel algorithmedebranch&boundmais,dansun nœud, ne développer qu un seul nœud-fils, et non considérer les 2 nœuds-fils possibles. A chaque nœud, choisir la variable la plus proche d unevaleurentièreetlafixeràcettevaleur. Caractéristiques: Algorithme plus rapide que la génération de colonnes en variables entières. Mais solution sous-optimale.
22 Conclusion Les variables duales permettent de détecter quand une contrainte ne peut plus être améliorée. Dans un programme linéaire multicritère, la dominance et le front de Pareto permettent de représenter les solutions efficaces du problème. Agrégation, sérialisation et tableau des gains sont des méthodes pour trouver un compromis. Pour un programme linéaire contenant beaucoup de variables, le séparer en un problème maître et un problème esclave et itérer (plus efficace qu avec un algorithme du simplexe).
Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/
Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation
Optimisation Discrète
Prof F Eisenbrand EPFL - DISOPT Optimisation Discrète Adrian Bock Semestre de printemps 2011 Série 7 7 avril 2011 Exercice 1 i Considérer le programme linéaire max{c T x : Ax b} avec c R n, A R m n et
Programmation linéaire
1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit
Sujet 4: Programmation stochastique propriétés de fonction de recours
Sujet 4: Programmation stochastique propriétés de fonction de recours MSE3313: Optimisation Stochastiqe Andrew J. Miller Dernière mise au jour: October 19, 2011 Dans ce sujet... 1 Propriétés de la fonction
Programmation linéaire et Optimisation. Didier Smets
Programmation linéaire et Optimisation Didier Smets Chapitre 1 Un problème d optimisation linéaire en dimension 2 On considère le cas d un fabricant d automobiles qui propose deux modèles à la vente, des
La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique
La programmation linéaire : une introduction Qu est-ce qu un programme linéaire? Qu est-ce qu un programme linéaire? Exemples : allocation de ressources problème de recouvrement Hypothèses de la programmation
Programmation linéaire
Programmation linéaire DIDIER MAQUIN Ecole Nationale Supérieure d Electricité et de Mécanique Institut National Polytechnique de Lorraine Mathématiques discrètes cours de 2ème année Programmation linéaire
Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA
75. Un plombier connaît la disposition de trois tuyaux sous des dalles ( voir figure ci dessous ) et il lui suffit de découvrir une partie de chacun d eux pour pouvoir y poser les robinets. Il cherche
Optimisation des fonctions de plusieurs variables
Optimisation des fonctions de plusieurs variables Hervé Hocquard Université de Bordeaux, France 8 avril 2013 Extrema locaux et globaux Définition On étudie le comportement d une fonction de plusieurs variables
Travaux dirigés n 1. Programmation linéaire
Université de Reims Champagne Ardenne U.F.R. de Sciences Exactes et Naturelles MASTER 1 Informatique - 2014/2015 Pierre Delisle Travaux dirigés n 1 Programmation linéaire Exercice 1 (Résolution d'un programme
RECHERCHE OPERATIONNELLE
RECHERCHE OPERATIONNELLE 0. Introduction. Ce cours a été enseigné jusqu en 2002, en année de licence, à la MIAGE de NANCY. L objectif principal de ce cours est d acquérir une connaissance approfondie de
Programmation Linéaire - Cours 1
Programmation Linéaire - Cours 1 P. Pesneau [email protected] Université Bordeaux 1 Bât A33 - Bur 265 Ouvrages de référence V. Chvátal - Linear Programming, W.H.Freeman, New York, 1983.
Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes
Loris MARCHAL Laboratoire de l Informatique du Parallélisme Équipe Graal Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes Thèse réalisée sous la direction
Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples
45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et
Optimisation multi-critère pour l allocation de ressources sur Clouds distribués avec prise en compte de l énergie
Optimisation multi-critère pour l allocation de ressources sur Clouds distribués avec prise en compte de l énergie 1 Présenté par: Yacine KESSACI Encadrement : N. MELAB E-G. TALBI 31/05/2011 Plan 2 Motivation
Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires
Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires Julien Jorge [email protected] Laboratoire d Informatique de Nantes Atlantique,
Nouvelles propositions pour la résolution exacte du problème de sac à dos bi-objectif unidimensionnel en variables binaires
Nouvelles propositions pour la résolution exacte du problème de sac à dos bi-objectif unidimensionnel en variables binaires Julien Jorge, Xavier Gandibleux Laboratoire d Informatique de Nantes Atlantique
Cours de Master Recherche
Cours de Master Recherche Spécialité CODE : Résolution de problèmes combinatoires Christine Solnon LIRIS, UMR 5205 CNRS / Université Lyon 1 2007 Rappel du plan du cours 16 heures de cours 1 - Introduction
LES MÉTHODES DE POINT INTÉRIEUR 1
Chapitre XIII LES MÉTHODES DE POINT INTÉRIEUR 1 XIII.1 Introduction Nous débutons par un rappel de la formulation standard d un problème d optimisation 2 linéaire et donnons un bref aperçu des différences
Chapitre 5 : Flot maximal dans un graphe
Graphes et RO TELECOM Nancy A Chapitre 5 : Flot maximal dans un graphe J.-F. Scheid 1 Plan du chapitre I. Définitions 1 Graphe Graphe valué 3 Représentation d un graphe (matrice d incidence, matrice d
INFO-F-310 - Algorithmique 3 et Recherche Opérationnelle
INFO-F- - Algorithmique et Recherche Opérationnelle Yves De Smet Bernard Fortz - Table des matières I Introduction Aide à la décision et modèles mathématiques Quelques exemples de modèles mathématiques
Relation d ordre. Manipulation des relations d ordre. Lycée Pierre de Fermat 2012/2013 Feuille d exercices
Lycée Pierre de Fermat 2012/2013 MPSI 1 Feuille d exercices Manipulation des relations d ordre. Relation d ordre Exercice 1. Soit E un ensemble fixé contenant au moins deux éléments. On considère la relation
Théorèmes de Point Fixe et Applications 1
Théorèmes de Point Fixe et Applications 1 Victor Ginsburgh Université Libre de Bruxelles et CORE, Louvain-la-Neuve Janvier 1999 Published in C. Jessua, C. Labrousse et D. Vitry, eds., Dictionnaire des
Chapitre 3. Les distributions à deux variables
Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles
GENCOL : une équipe et un logiciel d optimisation
GENCOL : une équipe et un logiciel d optimisation Jacques Desrosiers * * HEC Montréal et GERAD, Canada [email protected] RÉSUMÉ. Dans cet article, on raconte l histoire de l équipe GENCOL et du
OPTIMISATION À UNE VARIABLE
OPTIMISATION À UNE VARIABLE Sommaire 1. Optimum locaux d'une fonction... 1 1.1. Maximum local... 1 1.2. Minimum local... 1 1.3. Points stationnaires et points critiques... 2 1.4. Recherche d'un optimum
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante
L apport du HPC pour l optimisation. Eric Jacquet-Lagrèze. FORUM TERATEC 28 juin 2011
L apport du HPC pour l optimisation Eric Jacquet-Lagrèze FORUM TERATEC 28 juin 2011 Sommaire 1 / Recherche Opérationnelle et calcul scientifique 2 / Où se trouve la complexité et quels enjeux pour le HPC?
Fonctions de plusieurs variables
Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme
Cours de recherche opérationnelle I
1 Cours de recherche opérationnelle I Nadia Brauner [email protected] Grenoble, 2014-2015 Auteurs Ont participé à la rédaction de ce cours (par ordre d arrivée) Nadia Brauner Christophe Rapine Julien
Cours des Méthodes de Résolution Exactes Heuristiques et Métaheuristiques
Université Mohammed V, Faculté des Sciences de Rabat Laboratoire de Recherche Mathématiques, Informatique et Applications Cours des Méthodes de Résolution Exactes Heuristiques et Métaheuristiques MASTER
Programmation linéaire
CHAPTER 1 Programmation linéaire 1.1. Qu'est-ce que la programmation linéaire 1.1.1. Exemple: le problème du régime de Polly [1, p.3]. Besoins journaliers: Énergie: 2000 kcal Protéines: 55g Calcium: 800
CCP PSI - 2010 Mathématiques 1 : un corrigé
CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P
Arbres binaires de décision
1 Arbres binaires de décision Résumé Arbres binaires de décision Méthodes de construction d arbres binaires de décision, modélisant une discrimination (classification trees) ou une régression (regression
Info0804. Cours 6. Optimisation combinatoire : Applications et compléments
Recherche Opérationnelle Optimisation combinatoire : Applications et compléments Pierre Delisle Université de Reims Champagne-Ardenne Département de Mathématiques et Informatique 17 février 2014 Plan de
Dualité dans les espaces de Lebesgue et mesures de Radon finies
Chapitre 6 Dualité dans les espaces de Lebesgue et mesures de Radon finies Nous allons maintenant revenir sur les espaces L p du Chapitre 4, à la lumière de certains résultats du Chapitre 5. Sauf mention
Les équations différentielles
Les équations différentielles Equations différentielles du premier ordre avec second membre Ce cours porte exclusivement sur la résolution des équations différentielles du premier ordre avec second membre
Résolution de systèmes linéaires par des méthodes directes
Résolution de systèmes linéaires par des méthodes directes J. Erhel Janvier 2014 1 Inverse d une matrice carrée et systèmes linéaires Ce paragraphe a pour objet les matrices carrées et les systèmes linéaires.
Fonctions de plusieurs variables
Maths MP Exercices Fonctions de plusieurs variables Les indications ne sont ici que pour être consultées après le T (pour les exercices non traités). Avant et pendant le T, tenez bon et n allez pas les
Programmation mathématique Discrète et Modèles Linéaires
Université Pierre et Marie Curie Master IAD Module PDML Programmation mathématique Discrète et Modèles Linéaires Pierre Fouilhoux [email protected] 29 septembre 2013 Table des matières I Programmation
Corrigé des TD 1 à 5
Corrigé des TD 1 à 5 1 Premier Contact 1.1 Somme des n premiers entiers 1 (* Somme des n premiers entiers *) 2 program somme_entiers; n, i, somme: integer; 8 (* saisie du nombre n *) write( Saisissez un
Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.
1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le
Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre
IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables
Principes d implémentation des métaheuristiques
Chapitre 2 Principes d implémentation des métaheuristiques Éric D. Taillard 1 2.1 Introduction Les métaheuristiques ont changé radicalement l élaboration d heuristiques : alors que l on commençait par
Équations non linéaires
Équations non linéaires Objectif : trouver les zéros de fonctions (ou systèmes) non linéaires, c-à-d les valeurs α R telles que f(α) = 0. y f(x) α 1 α 2 α 3 x Equations non lineaires p. 1/49 Exemples et
Cours d analyse numérique SMI-S4
ours d analyse numérique SMI-S4 Introduction L objet de l analyse numérique est de concevoir et d étudier des méthodes de résolution de certains problèmes mathématiques, en général issus de problèmes réels,
Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche
Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche Bachir Bekka Février 2007 Le théorème de Perron-Frobenius a d importantes applications en probabilités (chaines
Plus courts chemins, programmation dynamique
1 Plus courts chemins, programmation dynamique 1. Plus courts chemins à partir d un sommet 2. Plus courts chemins entre tous les sommets 3. Semi-anneau 4. Programmation dynamique 5. Applications à la bio-informatique
La demande Du consommateur. Contrainte budgétaire Préférences Choix optimal
La demande Du consommateur Contrainte budgétaire Préférences Choix optimal Plan du cours Préambule : Rationalité du consommateur I II III IV V La contrainte budgétaire Les préférences Le choix optimal
Apprentissage par renforcement (1a/3)
Apprentissage par renforcement (1a/3) Bruno Bouzy 23 septembre 2014 Ce document est le chapitre «Apprentissage par renforcement» du cours d apprentissage automatique donné aux étudiants de Master MI, parcours
Lagrange, où λ 1 est pour la contrainte sur µ p ).
Chapitre 1 Exercice 1 : Portefeuilles financiers Considérons trois types d actions qui sont négociées à la bourse et dont les rentabilités r 1, r 2 et r 3 sont des variables aléatoires d espérances µ i
4.2 Unités d enseignement du M1
88 CHAPITRE 4. DESCRIPTION DES UNITÉS D ENSEIGNEMENT 4.2 Unités d enseignement du M1 Tous les cours sont de 6 ECTS. Modélisation, optimisation et complexité des algorithmes (code RCP106) Objectif : Présenter
Journées Télécom-UPS «Le numérique pour tous» David A. Madore. [email protected]. 29 mai 2015
et et Journées Télécom-UPS «Le numérique pour tous» David A. Madore Télécom ParisTech [email protected] 29 mai 2015 1/31 et 2/31 : définition Un réseau de R m est un sous-groupe (additif) discret L
1 de 46. Algorithmique. Trouver et Trier. Florent Hivert. Mél : [email protected] Page personnelle : http://www.lri.fr/ hivert
1 de 46 Algorithmique Trouver et Trier Florent Hivert Mél : [email protected] Page personnelle : http://www.lri.fr/ hivert 2 de 46 Algorithmes et structures de données La plupart des bons algorithmes
LE PROBLEME DU PLUS COURT CHEMIN
LE PROBLEME DU PLUS COURT CHEMIN Dans cette leçon nous définissons le modèle de plus court chemin, présentons des exemples d'application et proposons un algorithme de résolution dans le cas où les longueurs
Conception de réseaux de télécommunications : optimisation et expérimentations
Conception de réseaux de télécommunications : optimisation et expérimentations Jean-François Lalande Directeurs de thèse: Jean-Claude Bermond - Michel Syska Université de Nice-Sophia Antipolis Mascotte,
CHAPITRE 5. Stratégies Mixtes
CHAPITRE 5 Stratégies Mixtes Un des problèmes inhérents au concept d équilibre de Nash en stratégies pures est que pour certains jeux, de tels équilibres n existent pas. P.ex.le jeu de Pierre, Papier,
Continuité en un point
DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à
Cours d Analyse. Fonctions de plusieurs variables
Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........
Cours de Recherche Opérationnelle IUT d Orsay. Nicolas M. THIÉRY. E-mail address: [email protected] URL: http://nicolas.thiery.
Cours de Recherche Opérationnelle IUT d Orsay Nicolas M. THIÉRY E-mail address: [email protected] URL: http://nicolas.thiery.name/ CHAPTER 1 Introduction à l optimisation 1.1. TD: Ordonnancement
Programmation par contraintes. Laurent Beaudou
Programmation par contraintes Laurent Beaudou On se trouve où? Un problème, une solution : la solution est-elle une solution du problème? simulation, vérification 2 On se trouve où? Un problème, une solution
Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.
Promotion X 004 COURS D ANALYSE DES STRUCTURES MÉCANIQUES PAR LA MÉTHODE DES ELEMENTS FINIS (MEC 568) contrôle non classant (7 mars 007, heures) Documents autorisés : polycopié ; documents et notes de
CHOIX OPTIMAL DU CONSOMMATEUR. A - Propriétés et détermination du choix optimal
III CHOIX OPTIMAL DU CONSOMMATEUR A - Propriétés et détermination du choix optimal La demande du consommateur sur la droite de budget Résolution graphique Règle (d or) pour déterminer la demande quand
Couplage Planification et Ordonnancement : Approche hiérarchique et décomposition
Université d Angers Année 2010, N ordre 1037 Couplage Planification et Ordonnancement : Approche hiérarchique et décomposition Thèse de doctorat Spécialité Informatique École doctorale Sciences et Technologies
Introduction à la Programmation par Contraintes (PPC) Ruslan Sadykov LIX, École Polytechnique
Introduction à la Programmation par Contraintes (PPC) Ruslan Sadykov LIX, École Polytechnique Contenu Introduction Modélisation Problèmes de satisfaction des contraintes Exemples des modèles PPC simples
Optimisation for Cloud Computing and Big Data
1 / 23 Optimisation for Cloud Computing and Big Data Olivier Beaumont, Lionel Eyraud-Dubois 2 / 23 Aujourd hui Problèmes de fiabilité on va oublier la dynamicité Placement de VMs en programmation par contraintes
Calcul différentiel sur R n Première partie
Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité
Contrainte de flot pour RCPSP avec temps de transfert
Contrainte de flot et x-rcpsc T 1 Contrainte de flot pour RCPSP avec temps de transfert PS temp, s ij Cmax BENOIST Thierry BOUYGUES/e-Lab DIAMANTINI Maurice ENSTA/LMA Contrainte de flot et x-rcpsc T Présentation
Agrégation de liens xdsl sur un réseau radio
Agrégation de liens xdsl sur un réseau radio Soutenance TX Suiveur: Stéphane Crozat Commanditaire: tetaneutral.net/laurent Guerby 1 02/02/212 Introduction 2 Introduction: schéma 3 Définition d un tunnel
Cours 9. Régimes du transistor MOS
Cours 9. Régimes du transistor MOS Par Dimitri galayko Unité d enseignement Élec-info pour master ACSI à l UPMC Octobre-décembre 005 Dans ce document le transistor MOS est traité comme un composant électronique.
Premier modèle - Version simple
Chapitre 1 Premier modèle - Version simple Les individus vivent chacun six générations successives d adultes, chacune d une durée de dix ans, sans distinction faite entre les individus d une même génération.
FONCTION DE DEMANDE : REVENU ET PRIX
FONCTION DE DEMANDE : REVENU ET PRIX 1. L effet d une variation du revenu. Les lois d Engel a. Conditions du raisonnement : prix et goûts inchangés, variation du revenu (statique comparative) b. Partie
Grandes lignes ASTRÉE. Logiciels critiques. Outils de certification classiques. Inspection manuelle. Definition. Test
Grandes lignes Analyseur Statique de logiciels Temps RÉel Embarqués École Polytechnique École Normale Supérieure Mercredi 18 juillet 2005 1 Présentation d 2 Cadre théorique de l interprétation abstraite
ECR_DESCRIPTION CHAR(80), ECR_MONTANT NUMBER(10,2) NOT NULL, ECR_SENS CHAR(1) NOT NULL) ;
RÈGLES A SUIVRE POUR OPTIMISER LES REQUÊTES SQL Le but de ce rapport est d énumérer quelques règles pratiques à appliquer dans l élaboration des requêtes. Il permettra de comprendre pourquoi certaines
INTRODUCTION AU DATA MINING
INTRODUCTION AU DATA MINING 6 séances de 3 heures mai-juin 2006 EPF - 4 ème année - Option Ingénierie d Affaires et de Projets Bertrand LIAUDET TP DE DATA MINING Le TP et le projet consisteront à mettre
= constante et cette constante est a.
Le problème Lorsqu on sait que f(x 1 ) = y 1 et que f(x 2 ) = y 2, comment trouver l expression de f(x 1 )? On sait qu une fonction affine a une expression de la forme f(x) = ax + b, le problème est donc
Théorie et codage de l information
Théorie et codage de l information Les codes linéaires - Chapitre 6 - Principe Définition d un code linéaire Soient p un nombre premier et s est un entier positif. Il existe un unique corps de taille q
Annexe 6. Notions d ordonnancement.
Annexe 6. Notions d ordonnancement. APP3 Optimisation Combinatoire: problèmes sur-contraints et ordonnancement. Mines-Nantes, option GIPAD, 2011-2012. [email protected] Résumé Ce document
Utilisation du backtrack intelligent dans un branch-and-bound Application au problème d Open-Shop
Utilisation du backtrack intelligent dans un branch-and-bound Application au problème d Open-Shop Narendra Jussien et Christelle Guéret École des Mines de Nantes 4 rue Alfred Kastler BP 20722 F-44300 Nantes
Quantification Scalaire et Prédictive
Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction
PROSPECTUS N 1 CRÉDIT À LA CONSOMMATION
PROSPECTUS N 1 CRÉDIT À LA CONSOMMATION PRÊT À TEMPÉRAMENT ÉTABLI PAR ACTE AUTHENTIQUE PRÊT À TEMPÉRAMENT D'APPLICATION À DATER DU 01.06.2006 CREDIMO S.A. Weversstraat 6-8-10 1730 ASSE Tél. +32(0)2 454
INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES
INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES Dominique LAFFLY Maître de Conférences, Université de Pau Laboratoire Société Environnement Territoire UMR 5603 du CNRS et Université de Pau Domaine
Soutenance de stage Laboratoire des Signaux et Systèmes
Soutenance de stage Laboratoire des Signaux et Systèmes Bornes inférieures bayésiennes de l'erreur quadratique moyenne. Application à la localisation de points de rupture. M2R ATSI Université Paris-Sud
données en connaissance et en actions?
1 Partie 2 : Présentation de la plateforme SPSS Modeler : Comment transformer vos données en connaissance et en actions? SPSS Modeler : l atelier de data mining Large gamme de techniques d analyse (algorithmes)
EPREUVE OPTIONNELLE d INFORMATIQUE CORRIGE
EPREUVE OPTIONNELLE d INFORMATIQUE CORRIGE QCM Remarque : - A une question correspond au moins 1 réponse juste - Cocher la ou les bonnes réponses Barème : - Une bonne réponse = +1 - Pas de réponse = 0
introduction Chapitre 5 Récursivité Exemples mathématiques Fonction factorielle ø est un arbre (vide) Images récursives
introduction Chapitre 5 Images récursives http ://univ-tln.fr/~papini/sources/flocon.htm Récursivité http://www.poulain.org/fractales/index.html Image qui se contient elle-même 1 Exemples mathématiques
ALGORITHMIQUE II NOTION DE COMPLEXITE. SMI AlgoII
ALGORITHMIQUE II NOTION DE COMPLEXITE 1 2 Comment choisir entre différents algorithmes pour résoudre un même problème? Plusieurs critères de choix : Exactitude Simplicité Efficacité (but de ce chapitre)
Architecture des Systèmes d Information Architecture des Systèmes d Information
Plan... Tableaux et tris I3 - Algorithmique et programmation 1 Rappels Nicol Delestre 2 Tableaux à n dimensions 3 Initiation aux tris Tableaux - v2.0.1 1 / 27 Tableaux - v2.0.1 2 / 27 Rappels : tableau
Votre partenaire idéal
Technologie Partenaire Votre partenaire idéal Avnet Supply Chain Solutions Nos partenaires 2 Avnet Supply Chain Solutions Votre partenaire idéal Confiez votre logistique à un spécialiste Dans l environnement
Cours Optimisation Partie Optimisation Combinatoire. Année scolaire 2008-2009. Gérard Verfaillie ONERA/DCSD/CD, Toulouse Gerard.Verfaillie@onera.
Cours Optimisation Partie Optimisation Combinatoire 3ième année ISAE Année scolaire 2008-2009 Gérard Verfaillie ONERA/DCSD/CD, Toulouse [email protected] Septembre 2008 Résumé Ce document couvre
Data 2 Business : La démarche de valorisation de la Data pour améliorer la performance de ses clients
Data 2 Business : La démarche de valorisation de la Data pour améliorer la performance de ses clients Frédérick Vautrain, Dir. Data Science - Viseo Laurent Lefranc, Resp. Data Science Analytics - Altares
Chapitre 6. Fonction réelle d une variable réelle
Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette
Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48
Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation
Introduction : Les modes de fonctionnement du transistor bipolaire. Dans tous les cas, le transistor bipolaire est commandé par le courant I B.
Introduction : Les modes de fonctionnement du transistor bipolaire. Dans tous les cas, le transistor bipolaire est commandé par le courant. - Le régime linéaire. Le courant collecteur est proportionnel
Pourquoi l apprentissage?
Pourquoi l apprentissage? Les SE sont basés sur la possibilité d extraire la connaissance d un expert sous forme de règles. Dépend fortement de la capacité à extraire et formaliser ces connaissances. Apprentissage
LES MÉTA-HEURISTIQUES : quelques conseils pour en faire bon usage
LES MÉTA-HEURISTIQUES : quelques conseils pour en faire bon usage Alain HERTZ Ecole Polytechnique - GERAD Département de mathématiques et de génie industriel CP 679, succ. Centre-ville, Montréal (QC) H3C
Complexité. Licence Informatique - Semestre 2 - Algorithmique et Programmation
Complexité Objectifs des calculs de complexité : - pouvoir prévoir le temps d'exécution d'un algorithme - pouvoir comparer deux algorithmes réalisant le même traitement Exemples : - si on lance le calcul
1 Introduction et modèle mathématique
Optimisation parallèle et mathématiques financières Optimisation parallèle et mathématiques financières Pierre Spiteri 1 IRIT ENSEEIHT, UMR CNRS 5505 2 rue Charles Camichel, B.P. 7122 F-31 071 Toulouse,
Joueur B Pierre Feuille Ciseaux Pierre (0,0) (-1,1) (1,-1) Feuille (1,-1) (0,0) (-1,1) Ciseaux (-1,1) (1,-1) (0.0)
CORRECTION D EXAMEN CONTROLE CONTINU n 1 Question de cours Question 1 : Les équilibres de Cournot et de Stackelberg sont des équilibres de situation de duopole sur un marché non coopératif d un bien homogène.
