Cours I Éléments de balistique
|
|
|
- Christelle Primeau
- il y a 9 ans
- Total affichages :
Transcription
1 Introduction au vol spatial Cours I Éléments de balistique Be it thy course to busy giddy minds HENRY IV, in Part 2 IV, v v2.1.1 by-sa Olivier Cleynen 1/12
2 Introduction En posant les bases nécessaires à l étude des trajectoires orbitales au cours suivant, ce Cours I : Éléments de balistique a pour objectif de répondre à deux questions : Comment étudie-t-on la trajectoire et le comportement des corps en chute libre? Comment passe-t-on d une simple trajectoire de chute à une orbite? 1. L accélération en tant que vecteur Il est utile de revenir sur la définition de l accélération. Dans la vie courante, elle est souvent perçue comme la variation de la vitesse longitudinale avec le temps par exemple, «l accélération d une voiture» pourra être mesurée par la vitesse de l aiguille du compteur de vitesse. Nous utiliserons une définition plus générale et bien plus puissante : l accélération en tant que changement du vecteur de la vitesse dans le temps. a d v dt (I-1.1) où la norme du vecteur a est en m/s² ; et celle du vecteur v est en m/s. Figure 1.1 : Accélération moyenne entre deux points où la vitesse a varié, en norme et en direction. 2/12
3 La notation vectorielle est fondamentalement importante et d une utilité sans pareille en mécanique. On découvre par exemple qu une automobile qui suit un virage subit une accélération même si sa vitesse est constante (figure 1.2). Figure 1.2 : Accélération subie par un objet suivant une trajectoire arbitraire, le long de laquelle sa vitesse reste constante. Figure 1.3 : Accélération subie par un objet suivant une trajectoire arbitraire, le long de laquelle sa vitesse augmente constamment (de gauche à droite) 3/12
4 2. Outils pour l analyse des trajectoires a) La seconde loi de Newton La seconde loi de Newton doit sans condition recevoir toute l estime et la révérence de l étudiant/e en ingénierie. Elle nous servira de point de départ dans de multiples analyses de trajectoire. En substance, la seconde loi de Newton stipule que l accélération n est rien d autre qu une force, à une constante près : la masse. m a Σ F (I-2.1) où la norme de a est en m/s², celle de F est en N, et la masse m est mesurée en kg. Ainsi, pour générer une accélération, il nous faudra impérativement appliquer une force nette dans la même direction, qui sera d autant plus grande que la masse sera grande. À l inverse, toute force nette sur un corps équivaut à une accélération (d autant plus faible que sa masse est grande). Il n y a aucune relation de cause à effet ; la relation est instantanée et universelle. En balistique et dans l analyse des trajectoires spatiales en général, nous utiliserons la seconde loi de Newton pour prédire des trajectoires (liées à l accélération) à partir des forces exercées sur les véhicules (fusées, satellites). b) La conservation de l énergie Lorsque la trajectoire d un corps est connue, il est souvent possible de connaître sa vitesse ou son altitude en un point en utilisant le principe de la conservation de l énergie. Ce principe stipule en substance que l énergie ne peut ni être détruite, ni créée. Entre deux instants, elle ne peut donc que s être transformée. Il faudra prendre garde à bien définir les systèmes au sein desquels nous utilisons cet outil. Par exemple, un satellite en orbite haute échange énergie cinétique et énergie potentielle d altitude ; on peut quantifier la variation de l une de ces deux grandeurs en connaissant celle de l autre. Par contre, un véhicule traversant l atmosphère dissipe beaucoup d énergie par frottement et son énergie mécanique n est pas du tout constante. 4/12
5 c) Démarche générale Pour pouvoir prédire la trajectoire et le comportement d un objet (par exemple, déterminer la portée d un lancer de pierre), il est usuel d avoir recours à la démarche suivante : On détermine les forces qui s appliquent sur l objet, et la façon dont elles varient en fonction du temps et de sa position ; L accélération de l objet peut être ainsi déterminée avec la seconde loi de Newton. Le choix du systèmes de coordonnées (avec lequel mesurer la position de l objet) n a rigoureusement pas d importance. Pour faciliter l analyse de la situation, nous utilisons souvent un système dans lequel une des forces au moins ne variera que sur une coordonnée. La vitesse puis la position de l objet en fonction du temps peut être déterminée à partir de l accélération. On peut également ainsi déterminer chaque coordonnée en fonction des autres, c est à dire la trajectoire pure de l objet. Nous retrouverons cette démarche dans toutes les analyses de trajectoire à base de mécanique Newtonienne. 5/12
6 3. Modèle simple de chute libre a) Fusée expérimentale de courte portée La façon la plus instructive d aborder les méthodes détaillées plus haut est de les appliquer avec un exemple simple. Imaginons donc une petite fusée expérimentale de masse de 10 kg (que nous considérerons constante). Elle accélère le long d un rail incliné à 30 par rapport à la verticale. Lorsqu elle arrive au bout du rail, le moteur est coupé ; son altitude est alors de 15m et sa vitesse de 100 m/s. Quel est le temps de vol? Quelle est l altitude maximale atteinte? Quelle est la portée du tir? b) Limites du modèle orthogonal Il est tentant d utiliser les équations de mouvement obtenues ci-haut pour étudier la trajectoire de la fusée lorsque l on allonge le tir. Pourtant, dès que l on dépasse quelques kilomètres de portée, deux problèmes importants viennent compliquer l analyse, du fait de la courbure de la Terre : La surface du sol, modélisée par l altitude zéro (abscisses), se dérobe sous l horizontale au fur et à mesure que l on s éloigne du pas de tir ; La gravité s applique toujours à la verticale, mais cette «verticale», perpendiculaire à la surface terrestre, vient prendre une composante sur l axe des abscisses. On perçoit ainsi les limites des coordonnées rectangulaires utilisées plus haut. Les coordonnées polaires permettront de faciliter l analyse du comportement du projectile. 6/12
7 4. Chute libre à la surface d une planète a) Coordonnées polaires Pour pouvoir plus facilement exprimer les trajectoires à la surface de la Terre de façon mathématique, il est judicieux d employer un système de coordonnées polaires. Nous nous contenterons ici d en présenter les grandes lignes. On définit les vecteurs unitaires e et e r, qui ont la particularité de se déplacer avec l objet étudié. Figure 1.4 Système de coordonnées polaires Le vecteur r suffit alors à décrire la position de A, de sorte que r r e r. En définissant v, le vecteur vitesse de A, et, a son vecteur accélération (tels que v = ṙ et a = v ), on montre que l on peut décrire a comme la somme des deux vecteurs : 7/12
8 a = ( a r ) e r + ( a ) e a = ( r r θ 2 ) e r + (r θ + 2ṙ θ) e (I-4.1) Figure 1.5 Accélération exprimée selon des coordonnées polaires Cette équation (I-4.1) permet d exprimer toute accélération selon deux termes, l un radial (multiple de e r ), et l autre orthogonal (multiple de e ). On peut la reformuler avec un doublet d équations, l une dans la direction radiale et l autre dans la direction orthogonale : a r = r r θ 2 a = r θ + 2 ṙ θ Il se trouve que dans la première équation r θ 2 = 1 r v 2, et que dans la seconde r θ + 2ṙ θ = d dt (r2 θ) = d dt (r v ). 8/12
9 Reformulons alors le doublet d équations : a r = r v 2 r (I-4.2) a = d dt (r v ) (I-4.3) Il faut bien insister sur le fait que cette paire d équations (I-4.2/3) n a rien de physique elle ne décrit aucune trajectoire particulière. Il s agit seulement d une description mathématique d un mouvement entièrement arbitraire. b) Le mouvement de chute libre en coordonnées polaires L intérêt des coordonnées polaires est ici. Désormais, nous plaçons notre origine au centre de la Terre : la force de gravitation est toujours dirigée dans la direction radiale (celle de r ). Elle sera absente de tous les termes orthogonaux, ce qui allège nos équations de façon appréciable. Figure 1.6 : mouvement de chute libre arbitraire autour d une planète. Pour décrire le mouvement d un corps de masse m en chute libre dans ce repère, on applique la relation Σ F = m a dans chacune des directions r et respectivement : Σ F r = m a r P m = r v 2 r (I-4.4) 9/12
10 Σ F = m a 0 = d dt (r v ) (I-4.5) Ce système d équations peut être utilisé pour décrire un mouvement de chute libre. Le comportement de n importe quel corps qui est soumis uniquement à la gravité pourra être décrit avec deux expressions r(t) et θ(t) qui solutionneront les deux équations ci-dessus. On utilise aussi couramment une équation de trajectoire, de la forme r(θ), que nous aurons l occasion d étudier au cours II. c) Une première approche de la chute libre en équations polaires Le système d équations ci-dessus n a rien d accueillant pour l étudiant/e accoutumé/e aux équations en coordonnées orthogonales et pour cause : il apparaît rapidement que le rayon r, l angle θ, et les vitesses et accélérations radiales et orthogonales sont tous intrinsèquement liés. Il n y a pas d équation de trajectoire simple qui satisfasse les conditions imposées par une chute libre arbitraire autour d une planète! Afin d explorer progressivement la forme que prendra finalement une solution complète aux équations ci-dessus, nous pouvons simplifier notre cas d étude. Si nous revenons à notre petite fusée expérimentale, nous pouvons nous limiter à une faible variation d altitude par exemple, quelques centaines de mètres : le rayon r par rapport au centre de la Terre varie très peu 1. Comme le produit r v reste constant le long de la trajectoire (I-4.5) il est raisonnable de considérer v et v 2 /r comme étant constants également. Dans ce cas bien particulier le couple d équations (I-4.4/5) se simplifie alors pour donner : r = v 2 r P m cst (I-4.6) v cst (I-4.7) 1 Un rapide calcul révélera qu il s agit d une variation de moins d un six-millième. 10/12
11 Ces deux équations nous permettent de prévoir le point de chute du projectile, et surtout de se donner une meilleure représentation de sa trajectoire. Elles ne donneront des résultats corrects que lorsque le rayon varie très faiblement. Nous prendrons garde à ne pas l utiliser en dehors de notre cas d étude bien particulier 2. Figure 1.7 : Trajectoire de chute libre autour d une planète. Lorsque le rayon varie peu (l illustration exagère cette variation), la vitesse orthogonale v est approximativement constante, de même que la valeur r. Notons enfin que le poids P varie avec l altitude, même si ces variations peuvent être négligées à proximité de la surface terrestre. Nous aurons soin d étudier ces subtilités dans le cours II. d) Mouvement de chute libre circulaire Nous pouvons faire notre jeu du système d équations (I-4.4/5) en imposant une trajectoire circulaire. Notre lancer est alors tel que le corps en chute libre ne retombe jamais, sa portée excédant la circonférence terrestre. Mathématiquement, en imposant à notre sujet une trajectoire circulaire, nos équations de mouvement sont grandement simplifiées. Nous avons ṙ = 0 = r et l accélération radiale a r s exprime selon : a r = v 2 r (I-4.8) pour n importe quel mouvement circulaire, où a r est l accélération radiale (m/s²), 2 Quelques notions plus solides de mécanique du solide permettront de montrer que ce modèle échoue lamentablement lorsque la portée du lancer dépasse la demi-circonférence terrestre. 11/12
12 v est la vitesse (tangentielle à la trajectoire strictement circulaire) (m/s), et r est le rayon de la trajectoire (m). Dans le cas où c est le poids de l objet qui provoque sa rotation, nous avons : a r = P m = v 2 r (I-4.9) pour un mouvement de chute libre circulaire, où P est le poids s appliquant sur l objet (N), et m sa masse (kg). Il s agit, bien sûr, d une orbite, et en particulier d une orbite circulaire. Nous aurons le loisir d étudier ces trajectoires plus avant au cours II : Trajectoire du satellite. Figure 1.8 : trajectoire de chute libre infinie : l orbite circulaire. 12/12
Cours IV Mise en orbite
Introduction au vol spatial Cours IV Mise en orbite If you don t know where you re going, you ll probably end up somewhere else. Yogi Berra, NY Yankees catcher v1.2.8 by-sa Olivier Cleynen Introduction
POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Audioprothésiste / stage i-prépa intensif -
POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Section Audioprothésiste / stage i-prépa intensif - 70 Chapitre 8 : Champ de gravitation - Satellites I. Loi de gravitation universelle : (
LES LOIS PHYSIQUES APPLIQUÉES AUX DEUX-ROUES : 1. LA FORCE DE GUIDAGE
LES LOIS PHYSIQUES APPLIQUÉES AUX DEUX-ROUES : 1. LA FORCE DE GUIDAGE 2. L EFFET GYROSCOPIQUE Les lois physiques qui régissent le mouvement des véhicules terrestres sont des lois universelles qui s appliquent
Chapitre 9 : Applications des lois de Newton et Kepler à l'étude du mouvement des planètes et des satellites
I- Les trois lois de Kepler : Chapitre 9 : Applications des lois de Newton et Kepler à l'étude du mouvement des planètes et des satellites Les lois de Kepler s'applique aussi bien pour une planète en mouvement
TS Physique Satellite à la recherche de sa planète Exercice résolu
P a g e 1 Phsique atellite à la recherche de sa planète Exercice résolu Enoncé Le centre spatial de Kourou a lancé le 1 décembre 005, avec une fusée Ariane 5, un satellite de météorologie de seconde génération
Chapitre 0 Introduction à la cinématique
Chapitre 0 Introduction à la cinématique Plan Vitesse, accélération Coordonnées polaires Exercices corrigés Vitesse, Accélération La cinématique est l étude du mouvement Elle suppose donc l existence à
Chapitre 5. Le ressort. F ext. F ressort
Chapitre 5 Le ressort Le ressort est un élément fondamental de plusieurs mécanismes. Il existe plusieurs types de ressorts (à boudin, à lame, spiral etc.) Que l on comprime ou étire un ressort, tel que
F411 - Courbes Paramétrées, Polaires
1/43 Courbes Paramétrées Courbes polaires Longueur d un arc, Courbure F411 - Courbes Paramétrées, Polaires Michel Fournié [email protected] http://www.math.univ-toulouse.fr/ fournie/ Année 2012/2013
Chapitre 2 : Caractéristiques du mouvement d un solide
Chapitre 2 : Caractéristiques du mouvement d un solide I Rappels : Référentiel : Le mouvement d un corps est décris par rapport à un corps de référence et dépend du choix de ce corps. Ce corps de référence
Chapitre 1 Cinématique du point matériel
Chapitre 1 Cinématique du point matériel 7 1.1. Introduction 1.1.1. Domaine d étude Le programme de mécanique de math sup se limite à l étude de la mécanique classique. Sont exclus : la relativité et la
TD de Physique n o 1 : Mécanique du point
E.N.S. de Cachan Département E.E.A. M FE 3 e année Phsique appliquée 011-01 TD de Phsique n o 1 : Mécanique du point Exercice n o 1 : Trajectoire d un ballon-sonde Un ballon-sonde M, lâché au niveau du
SEANCE 4 : MECANIQUE THEOREMES FONDAMENTAUX
SEANCE 4 : MECANIQUE THEOREMES FONDAMENTAUX 1. EXPERIENCE 1 : APPLICATION DE LA LOI FONDAMENTALE DE LA DYNAMIQUE a) On incline d un angle α la table à digitaliser (deuxième ou troisième cran de la table).
C est un mouvement plan dont la trajectoire est un cercle ou une portion de cercle. Le module du vecteur position OM est constant et il est égal au
1 2 C est un mouvement plan dont la trajectoire est un cercle ou une portion de cercle. Le module du vecteur position est constant et il est égal au rayon du cercle. = 3 A- ouvement circulaire non uniforme
La gravitation universelle
La gravitation universelle Pourquoi les planètes du système solaire restent-elles en orbite autour du Soleil? 1) Qu'est-ce que la gravitation universelle? activité : Attraction universelle La cohésion
Michel Henry Nicolas Delorme
Michel Henry Nicolas Delorme Mécanique du point Cours + Exos Michel Henry Maître de conférences à l IUFM des Pays de Loire (Le Mans) Agrégé de physique Nicolas Delorme Maître de conférences à l université
Les Conditions aux limites
Chapitre 5 Les Conditions aux limites Lorsque nous désirons appliquer les équations de base de l EM à des problèmes d exploration géophysique, il est essentiel, pour pouvoir résoudre les équations différentielles,
SYSTEME DE PARTICULES. DYNAMIQUE DU SOLIDE (suite) Table des matières
Physique Générale SYSTEME DE PARTICULES DYNAMIQUE DU SOLIDE (suite) TRAN Minh Tâm Table des matières Applications de la loi de Newton pour la rotation 93 Le gyroscope........................ 93 L orbite
Oscillations libres des systèmes à deux degrés de liberté
Chapitre 4 Oscillations libres des systèmes à deux degrés de liberté 4.1 Introduction Les systèmes qui nécessitent deux coordonnées indépendantes pour spécifier leurs positions sont appelés systèmes à
Repérage d un point - Vitesse et
PSI - écanique I - Repérage d un point - Vitesse et accélération page 1/6 Repérage d un point - Vitesse et accélération Table des matières 1 Espace et temps - Référentiel d observation 1 2 Coordonnées
TD 9 Problème à deux corps
PH1ME2-C Université Paris 7 - Denis Diderot 2012-2013 TD 9 Problème à deux corps 1. Systèmes de deux particules : centre de masse et particule relative. Application à l étude des étoiles doubles Une étoile
DURÉE DU JOUR EN FONCTION DE LA DATE ET DE LA LATITUDE
DURÉE DU JUR E FCTI DE LA DATE ET DE LA LATITUDE ous allons nous intéresser à la durée du jour, prise ici dans le sens de période d éclairement par le Soleil dans une journée de 4 h, en un lieu donné de
3 - Description et orbite d'un satellite d'observation
Introduction à la télédétection 3 - Description et orbite d'un satellite d'observation OLIVIER DE JOINVILLE Table des matières I - Description d'un satellite d'observation 5 A. Schéma d'un satellite...5
Physique: 1 er Bachelier en Medecine. 1er juin 2012. Duree de l'examen: 3 h. Partie 1: /56. Partie 2 : /20. Nom: N ō carte d étudiant:
Nom: Prénom: A N ō carte d étudiant: Physique: 1 er Bachelier en Medecine 1er juin 2012. Duree de l'examen: 3 h Avant de commencer a repondre aux questions, identiez-vous en haut de cette 1ere page, et
COTTAZ Céline DESVIGNES Emilie ANTHONIOZ-BLANC Clément VUILLERMET DIT DAVIGNON Nicolas. Quelle est la trajectoire de la Lune autour de la Terre?
COTTAZ Céline DESVIGNES Emilie ANTHONIOZ-BLANC Clément VUILLERMET DIT DAVIGNON Nicolas Quelle est la trajectoire de la Lune autour de la Terre? Terminale S1 Lycée Elie Cartan Olympiades de Physiques 2003-2004
TP 03 B : Mesure d une vitesse par effet Doppler
TP 03 B : Mesure d une vitesse par effet Doppler Compétences exigibles : - Mettre en œuvre une démarche expérimentale pour mesurer une vitesse en utilisant l effet Doppler. - Exploiter l expression du
Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, 672 59 10 11 m 3 kg 1 s 2
Introduction Page xxi (milieu de page) G = 6, 672 59 1 11 m 3 kg 1 s 2 Erratum de MÉCANIQUE, 6ème édition Page xxv (dernier tiers de page) le terme de Coriolis est supérieur à 1% du poids) Chapitre 1 Page
Fonctions de plusieurs variables
Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme
Cours de Mécanique du point matériel
Cours de Mécanique du point matériel SMPC1 Module 1 : Mécanique 1 Session : Automne 2014 Prof. M. EL BAZ Cours de Mécanique du Point matériel Chapitre 1 : Complément Mathématique SMPC1 Chapitre 1: Rappels
Mécanique. 1 Forces. 1.1 Rappel. 1.2 Mesurer des forces. 3BC - AL Mécanique 1
3BC - AL Mécanique 1 Mécanique 1 Forces 1.1 Rappel Pour décrire les effets d une force, nous devons préciser toutes ses propriétés : son point d application ; sa droite d action, c est-à-dire sa direction
Notion de fonction. Résolution graphique. Fonction affine.
TABLE DES MATIÈRES 1 Notion de fonction. Résolution graphique. Fonction affine. Paul Milan LMA Seconde le 12 décembre 2011 Table des matières 1 Fonction numérique 2 1.1 Introduction.................................
Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées.
Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées. 1 Ce sujet aborde le phénomène d instabilité dans des systèmes dynamiques
Chapitre 7 - Relativité du mouvement
Un bus roule lentement dans une ville. Alain (A) est assis dans le bus, Brigitte (B) marche dans l'allée vers l'arrière du bus pour faire des signes à Claude (C) qui est au bord de la route. Brigitte marche
Sur les vols en formation.
Sur les vols en formation. Grasse, 8 Février 2006 Plan de l exposé 1. Missions en cours et prévues 2. Le problème du mouvement relatif 2.1 Positionnement du problème 2.2 Les équations de Hill 2.2 Les changements
M6 MOMENT CINÉTIQUE D UN POINT MATÉRIEL
M6 MOMENT CINÉTIQUE D UN POINT MATÉRIEL OBJECTIFS Jusqu à présent, nous avons rencontré deux méthodes pour obtenir l équation du mouvement d un point matériel : - l utilisation du P.F.D. - et celle du
MOTO ELECTRIQUE. CPGE / Sciences Industrielles pour l Ingénieur TD06_08 Moto électrique DIAGRAMME DES INTER-ACTEURS UTILISATEUR ENVIRONNEMENT HUMAIN
MOTO ELECTRIQUE MISE EN SITUATION La moto électrique STRADA EVO 1 est fabriquée par une société SUISSE, située à LUGANO. Moyen de transport alternatif, peut-être la solution pour concilier contraintes
Cours Fonctions de deux variables
Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté
STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE
ÉCOLE D'INGÉNIEURS DE FRIBOURG (E.I.F.) SECTION DE MÉCANIQUE G.R. Nicolet, revu en 2006 STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE Eléments de calcul vectoriel Opérations avec les forces Equilibre du point
LA PHYSIQUE DES MATERIAUX. Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE
LA PHYSIQUE DES MATERIAUX Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE Pr. A. Belayachi Université Mohammed V Agdal Faculté des Sciences Rabat Département de Physique - L.P.M [email protected] 1 1.Le réseau
Travaux dirigés de mécanique du point
Travaux dirigés de mécanique du point Année 011-01 Arnaud LE PADELLEC Magali MOURGUES [email protected] [email protected] Travaux dirigés de mécanique du point 1/40 P r é s e n t a t
Unités, mesures et précision
Unités, mesures et précision Définition Une grandeur physique est un élément mesurable permettant de décrire sans ambiguïté une partie d un phénomène physique, chacune de ces grandeurs faisant l objet
SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION)
Terminale S CHIMIE TP n 2b (correction) 1 SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION) Objectifs : Déterminer l évolution de la vitesse de réaction par une méthode physique. Relier l absorbance
DM n o 8 TS1 2012 Physique 10 (satellites) + Chimie 12 (catalyse) Exercice 1 Lancement d un satellite météorologique
DM n o 8 TS1 2012 Physique 10 (satellites) + Chimie 12 (catalyse) Exercice 1 Lancement d un satellite météorologique Le centre spatial de Kourou a lancé le 21 décembre 200, avec une fusée Ariane, un satellite
METEOROLOGIE CAEA 1990
METEOROLOGIE CAEA 1990 1) Les météorologistes mesurent et prévoient le vent en attitude à des niveaux exprimés en pressions atmosphériques. Entre le niveau de la mer et 6000 m d'altitude, quels sont les
Nom : Groupe : Date : 1. Quels sont les deux types de dessins les plus utilisés en technologie?
Nom : Groupe : Date : Verdict Chapitre 11 1 La communication graphique Pages 336 et 337 1. Quels sont les deux types de dessins les plus utilisés en technologie? Les dessins de fabrication. Les schémas.
Le satellite Gaia en mission d exploration
Département fédéral de l économie, de la formation et de la recherche DEFR Secrétariat d Etat à la formation, à la recherche et à l innovation SEFRI Division Affaires spatiales Fiche thématique (16.12.2013)
L inégale répartition de l énergie solaire est à l origine des courants atmosphériques
L inégale répartition de l énergie solaire est à l origine des courants atmosphériques I/ Objectif : Dans la partie 2 du programme de seconde «enjeux planétaires contemporains : énergie et sol», sous partie
Introduction à la relativité générale
Introduction à la relativité générale Bartolomé Coll Systèmes de référence relativistes SYRTE - CNRS Observatoire de Paris Introduction à la Relativité Générale Préliminaires Caractère théorique (formation)
Circuits RL et RC. Chapitre 5. 5.1 Inductance
Chapitre 5 Circuits RL et RC Ce chapitre présente les deux autres éléments linéaires des circuits électriques : l inductance et la capacitance. On verra le comportement de ces deux éléments, et ensuite
Chapitre 1. L intérêt. 2. Concept d intérêt. 1. Mise en situation. Au terme de ce chapitre, vous serez en mesure de :
Chapitre 1 L intérêt Au terme de ce chapitre, vous serez en mesure de : 1. Comprendre la notion générale d intérêt. 2. Distinguer la capitalisation à intérêt simple et à intérêt composé. 3. Calculer la
PHYSIQUE Discipline fondamentale
Examen suisse de maturité Directives 2003-2006 DS.11 Physique DF PHYSIQUE Discipline fondamentale Par l'étude de la physique en discipline fondamentale, le candidat comprend des phénomènes naturels et
CHAPITRE. Le mouvement en deux dimensions CORRIGÉ DES EXERCICES
CHAPITRE Le mouvement en deux dimensions CORRIGÉ DES EXERCICES Exercices. Les vecteurs du mouvement SECTION. 5. Une montgolfière, initialement au repos, se déplace à vitesse constante. En 5 min, elle
LA PUISSANCE DES MOTEURS. Avez-vous déjà feuilleté le catalogue d un grand constructeur automobile?
LA PUISSANCE DES MOTEURS Avez-vous déjà feuilleté le catalogue d un grand constructeur automobile? Chaque modèle y est décliné en plusieurs versions, les différences portant essentiellement sur la puissance
TP 7 : oscillateur de torsion
TP 7 : oscillateur de torsion Objectif : étude des oscillations libres et forcées d un pendule de torsion 1 Principe général 1.1 Définition Un pendule de torsion est constitué par un fil large (métallique)
10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)
0 leçon 2 Leçon n 2 : Contact entre deu solides Frottement de glissement Eemples (PC ou er CU) Introduction Contact entre deu solides Liaisons de contact 2 Contact ponctuel 2 Frottement de glissement 2
Leçon N 4 : Statistiques à deux variables
Leçon N 4 : Statistiques à deux variables En premier lieu, il te faut relire les cours de première sur les statistiques à une variable, il y a tout un langage à se remémorer : étude d un échantillon d
1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble..
1 Définition GÉNÉRALITÉS Statique 1 2 Systèmes matériels et solides Le système matériel : Il peut être un ensemble.un sous-ensemble..une pièce mais aussi un liquide ou un gaz Le solide : Il est supposé
Quantité de mouvement et moment cinétique
6 Quantité de mouvement et moment cinétique v7 p = mv L = r p 1 Impulsion et quantité de mouvement Une force F agit sur un corps de masse m, pendant un temps Δt. La vitesse du corps varie de Δv = v f -
Modélisation et Simulation
Cours de modélisation et simulation p. 1/64 Modélisation et Simulation G. Bontempi Département d Informatique Boulevard de Triomphe - CP 212 http://www.ulb.ac.be/di Cours de modélisation et simulation
Voyez la réponse à cette question dans ce chapitre. www.hometownroofingcontractors.com/blog/9-reasons-diy-rednecks-should-never-fix-their-own-roof
Une échelle est appuyée sur un mur. S il n y a que la friction statique avec le sol, quel est l angle minimum possible entre le sol et l échelle pour que l échelle ne glisse pas et tombe au sol? www.hometownroofingcontractors.com/blog/9-reasons-diy-rednecks-should-never-fix-their-own-roof
Angles orientés et fonctions circulaires ( En première S )
Angles orientés et fonctions circulaires ( En première S ) Dernière mise à jour : Jeudi 01 Septembre 010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 006-007) Lycée Stendhal, Grenoble
Principe de symétrisation pour la construction d un test adaptatif
Principe de symétrisation pour la construction d un test adaptatif Cécile Durot 1 & Yves Rozenholc 2 1 UFR SEGMI, Université Paris Ouest Nanterre La Défense, France, [email protected] 2 Université
FORMATION DES PERSONNES-RESSOURCES EN SCIENCE ET TECHNOLOGIE LE CYCLE DU JOUR ET DE LA NUIT (CYCLE DIURNE)
FORMATION DES PERSONNES-RESSOURCES EN SCIENCE ET TECHNOLOGIE LE CYCLE DU JOUR ET DE LA NUIT (CYCLE DIURNE) Pierre Chastenay astronome Planétarium de Montréal Source : nia.ecsu.edu/onr/ocean/teampages/rs/daynight.jpg
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre
Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007
Vision industrielle et télédétection - Détection d ellipses Guillaume Martinez 17 décembre 2007 1 Table des matières 1 Le projet 3 1.1 Objectif................................ 3 1.2 Les choix techniques.........................
Cours 1. Bases physiques de l électronique
Cours 1. Bases physiques de l électronique Par Dimitri galayko Unité d enseignement Élec-info pour master ACSI à l UPMC Octobre-décembre 2005 1 Champ électrique et ses propriétés Ce premier cours introduit
Assemblée générale. Nations Unies A/AC.105/C.1/L.320
Nations Unies A/AC.105/C.1/L.320 Assemblée générale Distr. limitée 30 octobre 2012 Français Original: anglais et russe Comité des utilisations pacifiques de l espace extra-atmosphérique Sous-Comité scientifique
Mais où est donc passée la relativité générale? Version 3.0
Mais où est donc passée la relativité générale? Version 3.0 Pascal Picard 29 mars 2015 Je suis amateur de Mathématiques et de Physique Théorique, convaincu que ces sciences sont accessibles à tous, à condition
DYNAMIQUE DE FORMATION DES ÉTOILES
A 99 PHYS. II ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES, ÉCOLES NATIONALES SUPÉRIEURES DE L'AÉRONAUTIQUE ET DE L'ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE SAINT-ÉTIENNE,
Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme
Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet
Chapitre 15 - Champs et forces
Choix pédagogiques Chapitre 15 - Champs et forces Manuel pages 252 à 273 Après avoir étudié les interactions entre deux corps en s appuyant sur les lois de Coulomb et de Newton, c est un nouveau cadre
LES ESCALIERS. Les mots de l escalier
Les mots de l escalier L escalier :ouvrage constitué d une suite régulière de plans horizontaux (marches et paliers) permettant, dans une construction, de passer à pied d un étage à un autre. L emmarchement
1 Problème 1 : L avion solaire autonome (durée 1h)
Problèmes IPhO 2012 1 NOM : PRENOM : LYCEE : 1 Problème 1 : L avion solaire autonome (durée 1h) Nous souhaitons dans ce problème aborder quelques aspects de la conception d un avion solaire autonome. Les
TP Détection d intrusion Sommaire
TP Détection d intrusion Sommaire Détection d intrusion : fiche professeur... 2 Capteur à infra-rouge et chaîne de mesure... 4 Correction... 14 1 Détection d intrusion : fiche professeur L'activité proposée
SCIENCES INDUSTRIELLES POUR L INGÉNIEUR. Partie I - Analyse système
SCIENCES INDUSTRIELLES POUR L INGÉNIEUR COMPORTEMENT DYNAMIQUE D UN VEHICULE AUTO-BALANCÉ DE TYPE SEGWAY Partie I - Analyse système Poignée directionnelle Barre d appui Plate-forme Photographies 1 Le support
Le Soleil. Structure, données astronomiques, insolation.
Le Soleil Structure, données astronomiques, insolation. Le Soleil, une formidable centrale à Fusion Nucléaire Le Soleil a pris naissance au sein d un nuage d hydrogène de composition relative en moles
Résolution d équations non linéaires
Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique
Mécanique. Chapitre 4. Mécanique en référentiel non galiléen
Mécanique Chapitre 4 Mécanique en référentiel non galiléen I Référentiel en translation Mécanique en référentiel non galiléen Jusqu à présent, nous avons fait de la mécanique du point dans un référentiel
Celestia. 1. Introduction à Celestia (2/7) 1. Introduction à Celestia (1/7) Université du Temps Libre - 08 avril 2008
GMPI*EZVI0EFSVEXSMVIH%WXVSTL]WMUYIHI&SVHIEY\ 1. Introduction à Celestia Celestia 1.1 Généralités 1.2 Ecran d Ouverture 2. Commandes Principales du Menu 3. Exemples d Applications 3.1 Effet de l atmosphère
Chafa Azzedine - Faculté de Physique U.S.T.H.B 1
Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Définition: La cinématique est une branche de la mécanique qui étudie les mouements des corps dans l espace en fonction du temps indépendamment des causes
DISQUE DUR. Figure 1 Disque dur ouvert
DISQUE DUR Le sujet est composé de 8 pages et d une feuille format A3 de dessins de détails, la réponse à toutes les questions sera rédigée sur les feuilles de réponses jointes au sujet. Toutes les questions
Puissances d un nombre relatif
Puissances d un nombre relatif Activités 1. Puissances d un entier relatif 1. Diffusion d information (Activité avec un tableur) Stéphane vient d apprendre à 10h, la sortie d une nouvelle console de jeu.
Chapitre 1: Facteurs d'échelle
Chapitre 1: Facteurs d'échelle Des considérations générales sur la taille des objets ou des êtres vivants et leur influence sur différents paramètres, permettent d'établir simplement quelques lois ou tendances,
La boule de fort. Olympiades de Physique. Année 2010-2011. Simon Thomas. Thomas Roussel. Julien Clabecq. Travail de recherche réalisé par :
Olympiades de Physique Année 2010-2011 La boule de fort Travail de recherche réalisé par : Julien Clabecq Thomas Roussel Simon Thomas Manuel Coffin Nous nous sommes intéressés à un sport plutôt méconnu,
PROGRAMME D HABILETÉS EN FAUTEUIL ROULANT (WSP-F)
PROGRAMME D HABILETÉS EN FAUTEUIL ROULANT (WSP-F) LIGNES DIRECTRICES POUR LE PARCOURS À OBSTACLES VERSION 4.1 CANADIENNE-FRANÇAISE Les activités d entraînement et d évaluation du WSP-F 4.1 peuvent se dérouler
Ondes gravitationnelles de basses fréquences et relativité
Ondes gravitationnelles de basses fréquences et relativité numérique Jérôme Novak LUTH : Laboratoire de l Univers et de ses THéories CNRS / Université Paris 7 / Observatoire de Paris F-92195 Meudon Cedex,
GMEC1311 Dessin d ingénierie. Chapitre 1: Introduction
GMEC1311 Dessin d ingénierie Chapitre 1: Introduction Contenu du chapitre Introduction au dessin technique Normes Vues Traits Échelle Encadrement 2 Introduction Les dessins ou graphiques sont utilisés
Economie du satellite: Conception de Satellite, Fabrication de Satellite, Lancement, Assurance, Performance en orbite, Stations de surveillance
Cours jour 2 Economie du satellite: Conception de Satellite, Fabrication de Satellite, Lancement, Assurance, Performance en orbite, Stations de surveillance Acquisition de satellite, Bail, Joint-Ventures,
POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Orthoptiste / stage i-prépa intensif -
POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Section Orthoptiste / stage i-prépa intensif - 1 Suite énoncé des exos du Chapitre 14 : Noyaux-masse-énergie I. Fission nucléaire induite (provoquée)
Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre
IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables
Initiation à la Mécanique des Fluides. Mr. Zoubir HAMIDI
Initiation à la Mécanique des Fluides Mr. Zoubir HAMIDI Chapitre I : Introduction à la mécanique des fluides 1 Introduction La mécanique des fluides(mdf) a pour objet l étude du comportement des fluides
a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b
I Définition d une fonction affine Faire l activité 1 «une nouvelle fonction» 1. définition générale a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe
1 Mise en application
Université Paris 7 - Denis Diderot 2013-2014 TD : Corrigé TD1 - partie 2 1 Mise en application Exercice 1 corrigé Exercice 2 corrigé - Vibration d une goutte La fréquence de vibration d une goutte d eau
TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options
Université de Lorraine Modélisation Stochastique Master 2 IMOI 2014-2015 TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options 1 Les options Le but de ce
Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme
Fonctions linéaires et affines 3eme 1 Fonctions linéaires 1.1 Vocabulaire Définition 1 Soit a un nombre quelconque «fixe». Une fonction linéaire associe à un nombre x quelconque le nombre a x. a s appelle
Chapitre 5: Oscillations d un pendule élastique horizontal
1 re B et C 5 Oscillations d'un pendule élastique horizontal 40 Chapitre 5: Oscillations d un pendule élastique horizontal 1. Définitions a) Oscillateur écanique * Un systèe écanique qui effectue un ouveent
Calcul intégral élémentaire en plusieurs variables
Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement
Concours EPITA 2009 Epreuve de Sciences Industrielles pour l ingénieur La suspension anti-plongée de la motocyclette BMW K1200S
Concours EPIT 2009 Epreuve de Sciences Industrielles pour l ingénieur La suspension anti-plongée de la motocyclette MW K1200S Durée : 2h. Calculatrices autorisées. Présentation du problème Le problème
SCIENCES INDUSTRIELLES (S.I.)
SESSION 2014 PSISI07 EPREUVE SPECIFIQUE - FILIERE PSI " SCIENCES INDUSTRIELLES (S.I.) Durée : 4 heures " N.B. : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision
TUTORIAL 1 ETUDE D UN MODELE SIMPLIFIE DE PORTIQUE PLAN ARTICULE
TUTORIAL 1 ETUDE D UN MODELE SIMPLIFIE DE PORTIQUE PLAN ARTICULE L'objectif de ce tutorial est de décrire les différentes étapes dans CASTOR Concept / FEM permettant d'effectuer l'analyse statique d'une
La fonction d onde et l équation de Schrödinger
Chapitre 1 La fonction d onde et l équation de Schrödinger 1.1 Introduction En physique classique, une particule est décrite par sa position r(t). L évolution de sa position (la trajectoire de la particule)
