Solveur linéaire sur GPU
|
|
|
- Vivien Moreau
- il y a 10 ans
- Total affichages :
Transcription
1 Thomas JOST 1 Sylvain CONTASSOT-VIVIER 1,2 Stéphane VIALLE 1,3 1 Équipe AlGorille, LORIA 2 Université Henri Poincaré Nancy 1 3 Équipe IMS Supélec (Metz)
2 1 Introduction 2 Contraintes et algorithmes Structure de données Méthodes itératives Améliorations possibles 3 Performances Tests en simple précision Tests en double précision 4 Conclusion
3 1 Introduction 2 Contraintes et algorithmes Structure de données Méthodes itératives Améliorations possibles 3 Performances Tests en simple précision Tests en double précision 4 Conclusion
4 Introduction Cadre général Transport 3D d espèces chimiques dans un cours d eau Étude d algorithmes synchrones et asynchrones Cluster de GPUs Étape centrale : solveur linéaire Un système linéaire différent à résoudre à chaque itération Système de la forme Ax = b Système creux, structuré
5 1 Introduction 2 Contraintes et algorithmes Structure de données Méthodes itératives Améliorations possibles 3 Performances Tests en simple précision Tests en double précision 4 Conclusion
6 Nécessité d une nouvelle implémentation Pas de solveur existant adapté Il existe quelques projets : MAGMA, cudaztec, GPUmatrix, CNC... Aucune des solutions existantes ne convient parfaitement...il faut en écrire une nouvelle Contraintes pour le choix de la méthode Méthodes directes : précises, mais lentes peu intéressant Méthodes itératives : moins précises, mais rapides, surtout sur des matrices creuses Nombres flottants en simple précision, implémentation non standard erreurs d arrondis Problème creux : il faut une structure de données adaptée
7 Structure de données Structure de données Matrice creuse structurée Système de taille n avec plusieurs diagonales non vides Chaque diagonale est identifiée par un nombre d : tous les éléments a ij de la diagonale vérifient j i = d (modulo n).
8 Structure de données Structure de données Représentation en mémoire Tableau n d où chaque colonne est une diagonale de la matrice précédente ; Liste de d entiers : correspondance diagonale colonne. Schéma de stockage proche du «DIA» de LAPACK, mais mieux adapté aux contraintes mémoire des GPU
9 Méthodes itératives Méthodes itératives Idée générale Calculer une suite ( x k) k N qui converge vers x Points délicats Vitesse de convergence (nombre d itérations et durée de chaque itération) mieux vaut quelque chose de rapide Occupation mémoire éviter les matrices intermédiaires Parallélisation soit des kernels simples, soit des opérations CUBLAS Simplicitié temps de debug potentiellement importants sur GPU, donc les méthodes plus simples peuvent être plus intéressantes
10 Méthodes itératives Algorithme de Jacobi Principe Décomposer A en D (diagonale), U (triangulaire supérieure) et L (triangulaire inférieure) : A = D + L + U x k+1 = D 1 [ b (L + U)x k] Composante par composante : ( x k+1 i = 1 b i ) a ij x k j a ii j i Converge si A est symétrique définie positive
11 Méthodes itératives Algorithme de Gauss-Seidel Principe Décomposer A en D (diagonale), U (triangulaire supérieure) et L (triangulaire inférieure) : A = D L U (D L)x k+1 = Ux k + b Composante par composante : ( x k+1 i = 1 b i a ii i 1 j=1 a ij x k+1 j n j=i+1 Converge si A est symétrique définie positive a ij x k j )
12 Méthodes itératives Algorithmes de Jacobi et de Gauss-Seidel Implémentation sur CPU : Gauss-Seidel Implémentation directe avec une boucle for ( x k+1 i = 1 b i a ii i 1 j=1 a ij x k+1 j n j=i+1 a ij x k j ) Implémentation sur GPU : Jacobi Un thread par composante ( x k+1 i = 1 b i ) a ij x k j a ii j i
13 Méthodes itératives Algorithme du gradient biconjugué Principe Dérive de la méthode du gradient conjugué Construction d une suite de directions conjuguées Descente suivant ces directions Converge même pour des systèmes non symétriques...mais peu de résultats théoriques Numériquement instable
14 Méthodes itératives Algorithme du gradient biconjugué Difficultés Utilise plusieurs vecteurs intermédiaires À chaque itération : produit par A et par sa transposée heureusement, la structure de données s y prête bien! Algorithme plus complexe une simple boucle for ne suffit pas...
15 Méthodes itératives Algorithme du gradient biconjugué Implémentation sur GPU Utilisation de CUBLAS pour les opérations sur les vecteurs (norme, produit scalaire, SAXPY) 2 kernels spécifiques Textures pour les accès mémoire...et beaucoup de debug!
16 Améliorations possibles Amélioration de la précision Émulation de double précision Utiliser deux float pour émuler un double sur GPU Bibliothèque DSFUN90 en Fortran quelqu un en a fait un portage CUDA! Calcul avec des float2 largement plus lent
17 Améliorations possibles Amélioration de la précision Éviter les erreurs d arrondi Lors des divisions (dans Jacobi / Gauss-Seidel) : Termes diagonaux n interviennent qu au dénominateur Calcul des inverses sur CPU, multiplication par les inverses sur GPU Somme «déséquilibrée» algorithme de sommation de Kahan Code machine (PTX) : éviter les instructions MAD fonction _fmul_rn()...
18 1 Introduction 2 Contraintes et algorithmes Structure de données Méthodes itératives Améliorations possibles 3 Performances Tests en simple précision Tests en double précision 4 Conclusion
19 Errata Partie modifiée! Les résultats présentés le 4 juin étaient erronés du fait d un bug qui n a été découvert que quelques jours plus tard. Cette partie a donc été mise à jour avec la version corrigée : courbes corrigées, avec une précision largement meilleure ; inclusion de tests sur des matrices réelles ; inclusion de tests sur des cartes supportant le calcul en double précision ; ajout de l algorithme du Gradient Biconjugué Stabilisé (BiCG-Stab).
20 Performances des différents algorithmes Données mesurées Temps temps d exécution total de l algorithme, y compris les transferts Précision b Ax (max. en valeur absolue du vecteur d erreur) Données de test Système construit par le programme reproductible Tailles variant entre n = 100 et n = Matrices réelles provenant de la base de matrices creuses de l Université de Floride ( research/sparse/matrices/index.html)
21 Tests en simple précision Temps Gauss Seidel CPU Jacobi GPU BiCG CPU BiCG GPU BiCG Stab CPU BiCG Stab GPU Temps de convergence (ms) Taille du problème
22 Tests en simple précision Précision 10 5 Gauss Seidel CPU Jacobi GPU BiCG CPU BiCG GPU BiCG Stab CPU BiCG Stab GPU Erreur Taille du problème
23 Tests en simple précision Matrices réelles 1E+03 1E+02 1E+01 1E+00 1E-01 Erreur 1E-02 1E-03 CPU GS GPU Jacobi CPU BiCG GPU BiCG CPU BiCG-Stab GPU BiCG-Stab 1E-04 1E-05 1E-06 1E-07 dw4096.bin ex1.bin mcca.bin minsurfo.bin obstclae.bin wathen100.bin
24 Tests en simple précision Conclusion Conclusion sur cet exemple GPU largement plus rapide que CPU...mais moins précis BiCG converge mieux que Jacobi/Gauss-Seidel, mais avec une précision moins bonne BiCG-Stab converge bien, mais avec une précision encore moins bonne le plus intéressant : BiCG sur GPU
25 Tests en double précision Temps Gauss Seidel CPU Jacobi GPU BiCG CPU BiCG GPU BiCG Stab CPU BiCG Stab GPU Temps de convergence (ms) Taille du problème
26 Tests en double précision Précision Gauss Seidel CPU Jacobi GPU BiCG CPU BiCG GPU BiCG Stab CPU BiCG Stab GPU 10 9 Erreur Taille du problème
27 Tests en double précision Matrices réelles 1E+06 1E+03 1E+00 Erreur 1E-03 1E-06 CPU GS GPU Jacobi CPU BiCG GPU BiCG CPU BiCG-Stab GPU BiCG-Stab 1E-09 1E-12 1E-15 dw4096.bin ex1.bin mcca.bin minsurfo.bin obstclae.bin wathen100.bin
28 Tests en double précision Conclusion Conclusion sur cet exemple GPU largement plus rapide que CPU GPU très largement moins précis que CPU, et précision beaucoup plus variable Pas de changement notable sur la convergence Dans le pire des cas, résultats équivalents à ceux obtenus en float BiCG sur GPU reste un bon compromis
29 1 Introduction 2 Contraintes et algorithmes Structure de données Méthodes itératives Améliorations possibles 3 Performances Tests en simple précision Tests en double précision 4 Conclusion
30 Conclusion Solveurs sur GPU Exploiter la structure des matrices creuses est primordial Rapides, mais imprécis Pas adaptés à tous les problèmes Calculer une solution initiale pour un solveur plus précis sur CPU? Idées à tester Utiliser un préconditionneur pour améliorer la précision et la convergence Utiliser des cartes plus récentes qui supportent le type double
31 Conclusion Code source des solveurs Sera bientôt publié (licence GPL) Intégration à CNC si on a le temps et le courage
32 Conclusion Des questions?
33 Conclusion Des questions? Merci pour votre attention!
34 Textures Textures Mémoire de texture Cache local (quelques ko par multiprocesseur) Une lecture au plus 1 cache miss, sinon lecture depuis le cache Optimisé pour des accès à des adresses proches au sein d un warp Lecture seule Pas de vérification de cohérence avec la mémoire globale au sein d un appel à un kernel Concrètement : permet de limiter le nombre de transactions DRAM lors d accès mémoire non-coalesced
Résolution de systèmes linéaires par des méthodes directes
Résolution de systèmes linéaires par des méthodes directes J. Erhel Janvier 2014 1 Inverse d une matrice carrée et systèmes linéaires Ce paragraphe a pour objet les matrices carrées et les systèmes linéaires.
Cours d analyse numérique SMI-S4
ours d analyse numérique SMI-S4 Introduction L objet de l analyse numérique est de concevoir et d étudier des méthodes de résolution de certains problèmes mathématiques, en général issus de problèmes réels,
Une bibliothèque de templates pour CUDA
Une bibliothèque de templates pour CUDA Sylvain Collange, Marc Daumas et David Defour Montpellier, 16 octobre 2008 Types de parallèlisme de données Données indépendantes n threads pour n jeux de données
Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.
Promotion X 004 COURS D ANALYSE DES STRUCTURES MÉCANIQUES PAR LA MÉTHODE DES ELEMENTS FINIS (MEC 568) contrôle non classant (7 mars 007, heures) Documents autorisés : polycopié ; documents et notes de
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante
Limitations of the Playstation 3 for High Performance Cluster Computing
Introduction Plan Limitations of the Playstation 3 for High Performance Cluster Computing July 2007 Introduction Plan Introduction Intérêts de la PS3 : rapide et puissante bon marché L utiliser pour faire
1 Introduction et modèle mathématique
Optimisation parallèle et mathématiques financières Optimisation parallèle et mathématiques financières Pierre Spiteri 1 IRIT ENSEEIHT, UMR CNRS 5505 2 rue Charles Camichel, B.P. 7122 F-31 071 Toulouse,
Introduction à MATLAB R
Introduction à MATLAB R Romain Tavenard 10 septembre 2009 MATLAB R est un environnement de calcul numérique propriétaire orienté vers le calcul matriciel. Il se compose d un langage de programmation, d
La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique
La programmation linéaire : une introduction Qu est-ce qu un programme linéaire? Qu est-ce qu un programme linéaire? Exemples : allocation de ressources problème de recouvrement Hypothèses de la programmation
Calculer avec Sage. Revision : 417 du 1 er juillet 2010
Calculer avec Sage Alexandre Casamayou Guillaume Connan Thierry Dumont Laurent Fousse François Maltey Matthias Meulien Marc Mezzarobba Clément Pernet Nicolas Thiéry Paul Zimmermann Revision : 417 du 1
Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.
1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le
Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/
Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation
Cours d Analyse. Fonctions de plusieurs variables
Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........
La classification automatique de données quantitatives
La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations
Calcul différentiel sur R n Première partie
Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité
Happy birthday ZSet High performance computing dans ZSet
Happy birthday ZSet High performance computing dans ZSet F. Feyel & P. Gosselet Architectures SMP NUMA memory memory memory Distribué memory memory 2 memory memory Hybride memory memory memory memory memory
Programmation linéaire
1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit
Résolution d équations non linéaires
Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique
3 Approximation de solutions d équations
3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle
Segmentation d'images à l'aide d'agents sociaux : applications GPU
Segmentation d'images à l'aide d'agents sociaux : applications GPU Richard MOUSSA Laboratoire Bordelais de Recherche en Informatique (LaBRI) - UMR 5800 Université de Bordeaux - France Laboratoire de recherche
de calibration Master 2: Calibration de modèles: présentation et simulation d
Master 2: Calibration de modèles: présentation et simulation de quelques problèmes de calibration Plan de la présentation 1. Présentation de quelques modèles à calibrer 1a. Reconstruction d une courbe
Optimisation, traitement d image et éclipse de Soleil
Kléber, PCSI1&3 014-015 I. Introduction 1/8 Optimisation, traitement d image et éclipse de Soleil Partie I Introduction Le 0 mars 015 a eu lieu en France une éclipse partielle de Soleil qu il était particulièrement
Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche
Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche Bachir Bekka Février 2007 Le théorème de Perron-Frobenius a d importantes applications en probabilités (chaines
Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.
Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).
Asynchronisme : Cadres continu et discret
N d ordre : 151 Année 2006 HABILITATION À DIRIGER DES RECHERCHES UNIVERSITÉ DE FRANCHE-COMTÉ Spécialité Informatique présentée par Sylvain CONTASSOT-VIVIER Docteur en Informatique Sujet Asynchronisme :
Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer
Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy
Rappels sur les suites - Algorithme
DERNIÈRE IMPRESSION LE 14 septembre 2015 à 12:36 Rappels sur les suites - Algorithme Table des matières 1 Suite : généralités 2 1.1 Déition................................. 2 1.2 Exemples de suites............................
Chapitre 5 : Flot maximal dans un graphe
Graphes et RO TELECOM Nancy A Chapitre 5 : Flot maximal dans un graphe J.-F. Scheid 1 Plan du chapitre I. Définitions 1 Graphe Graphe valué 3 Représentation d un graphe (matrice d incidence, matrice d
Cours 02 : Problème général de la programmation linéaire
Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =
RO04/TI07 - Optimisation non-linéaire
RO04/TI07 - Optimisation non-linéaire Stéphane Mottelet Université de Technologie de Compiègne Printemps 2003 I Motivations et notions fondamentales 4 I1 Motivations 5 I2 Formes quadratiques 13 I3 Rappels
Fonctions de plusieurs variables
Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme
Méthodes numériques appliquées à la conception par éléments finis
Méthodes numériques appliquées à la conception par éléments finis David Dureisseix 28/09/2008 TABLE DES MATIÈRES INTRODUCTION 1 1 RÉSOLUTION DES SYSTÈMES LINÉAIRES 5 1.1 Conditionnement.............................................
Cours Informatique Master STEP
Cours Informatique Master STEP Bases de la programmation: Compilateurs/logiciels Algorithmique et structure d'un programme Programmation en langage structuré (Fortran 90) Variables, expressions, instructions
. Plan du cours. . Architecture: Fermi (2010-12), Kepler (12-?)
Plan du cours Vision mate riel: architecture cartes graphiques NVIDIA INF 560 Calcul Paralle le et Distribue Cours 3 Vision logiciel: l abstraction logique de l architecture propose e par le langage CUDA
Programmation C. Apprendre à développer des programmes simples dans le langage C
Programmation C Apprendre à développer des programmes simples dans le langage C Notes de cours sont disponibles sur http://astro.u-strasbg.fr/scyon/stusm (attention les majuscules sont importantes) Modalités
CCP PSI - 2010 Mathématiques 1 : un corrigé
CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P
Programmation linéaire et Optimisation. Didier Smets
Programmation linéaire et Optimisation Didier Smets Chapitre 1 Un problème d optimisation linéaire en dimension 2 On considère le cas d un fabricant d automobiles qui propose deux modèles à la vente, des
Algorithmes pour la planification de mouvements en robotique non-holonome
Algorithmes pour la planification de mouvements en robotique non-holonome Frédéric Jean Unité de Mathématiques Appliquées ENSTA Le 02 février 2006 Outline 1 2 3 Modélisation Géométrique d un Robot Robot
Introduction à CUDA. [email protected]
36 Introduction à CUDA [email protected] 38 Comment programmer les GPU? Notion de kernel exemple (n produits scalaires): T ci =ai b ( ai, b : vecteurs 3D, ci for(int i=0;i
Théories de champ moyen et convection à grande échelle
Chapitre Théories de champ moyen et convection à grande échelle 51 Introduction Au cours de ce travail, nous avons à plusieurs reprises été confrontés au problème de la compréhension et de la modélisation
Théorie et codage de l information
Théorie et codage de l information Les codes linéaires - Chapitre 6 - Principe Définition d un code linéaire Soient p un nombre premier et s est un entier positif. Il existe un unique corps de taille q
Retour d expérience RATP. Intégrer le test de performance au cœur du processus de développement agile. Challenges, techniques, résultats.
Retour d expérience RATP Intégrer le test de performance au cœur du processus de développement agile. Challenges, techniques, résultats. Les intervenants Alexis Bourgeois Chef de projet MOE (front web)
Rapport de stage Master 2
Rapport de stage Master 2 Informatique Haute Performance et Simulation, 2 ème année Ecole Centrale Paris Accélération des méthodes statistiques sur GPU Auteur : CHAI Anchen. Responsables: Joel Falcou et
Architecture des Systèmes d Information Architecture des Systèmes d Information
Plan... Tableaux et tris I3 - Algorithmique et programmation 1 Rappels Nicol Delestre 2 Tableaux à n dimensions 3 Initiation aux tris Tableaux - v2.0.1 1 / 27 Tableaux - v2.0.1 2 / 27 Rappels : tableau
Première partie. Introduction à la méthodes des différences finies
Première partie Introduction à la méthodes des différences finies 5 7 Introduction Nous allons présenter dans cettte partie les idées de base de la méthode des différences finies qui est sans doute la
La fonction exponentielle
DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction
Exercices - Polynômes : corrigé. Opérations sur les polynômes
Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et
Sujet 1 : Diagnostique du Syndrome de l apnée du sommeil par des techniques d analyse discriminante.
Sujet 1 : Diagnostique du Syndrome de l apnée du sommeil par des techniques d analyse discriminante. Objectifs et formulation du sujet Le syndrome de l apnée du sommeil (SAS) est un problème de santé publique
Baccalauréat ES Pondichéry 7 avril 2014 Corrigé
Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient
Optimisation Discrète
Prof F Eisenbrand EPFL - DISOPT Optimisation Discrète Adrian Bock Semestre de printemps 2011 Série 7 7 avril 2011 Exercice 1 i Considérer le programme linéaire max{c T x : Ax b} avec c R n, A R m n et
Introduction. I Étude rapide du réseau - Apprentissage. II Application à la reconnaissance des notes.
Introduction L'objectif de mon TIPE est la reconnaissance de sons ou de notes de musique à l'aide d'un réseau de neurones. Ce réseau doit être capable d'apprendre à distinguer les exemples présentés puis
Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.
Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. L usage d une calculatrice est autorisé Durée : 3heures Deux annexes sont à rendre avec la copie. Exercice 1 5 points 1_ Soit f la
Processus d Informatisation
Processus d Informatisation Cheminement de la naissance d un projet jusqu à son terme, deux grandes étapes : Recherche ou étude de faisabilité (en amont) L utilisateur a une idée (plus ou moins) floue
Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015
Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k
03/04/2007. Tâche 1 Tâche 2 Tâche 3. Système Unix. Time sharing
3/4/27 Programmation Avancée Multimédia Multithreading Benoît Piranda Équipe SISAR Université de Marne La Vallée Besoin Programmes à traitements simultanés Réseau Réseau Afficher une animation en temps
Chapitre 2. Matrices
Département de mathématiques et informatique L1S1, module A ou B Chapitre 2 Matrices Emmanuel Royer emmanuelroyer@mathuniv-bpclermontfr Ce texte mis gratuitement à votre disposition a été rédigé grâce
MATLAB : COMMANDES DE BASE. Note : lorsqu applicable, l équivalent en langage C est indiqué entre les délimiteurs /* */.
Page 1 de 9 MATLAB : COMMANDES DE BASE Note : lorsqu applicable, l équivalent en langage C est indiqué entre les délimiteurs /* */. Aide help, help nom_de_commande Fenêtre de travail (Command Window) Ligne
Architecture des ordinateurs
Décoder la relation entre l architecture et les applications Violaine Louvet, Institut Camille Jordan CNRS & Université Lyon 1 Ecole «Découverte du Calcul» 2013 1 / 61 Simulation numérique... Physique
Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA
75. Un plombier connaît la disposition de trois tuyaux sous des dalles ( voir figure ci dessous ) et il lui suffit de découvrir une partie de chacun d eux pour pouvoir y poser les robinets. Il cherche
T. Gasc 1,2,3, F. De Vuyst 1, R. Motte 3, M. Peybernes 4, R. Poncet 5
Modélisation de la performance et optimisation d un algorithme hydrodynamique de type Lagrange-Projection sur processeurs multi-cœurs T. Gasc 1,2,3, F. De Vuyst 1, R. Motte 3, M. Peybernes 4, R. Poncet
Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.
Eo7 Calculs de déterminants Fiche corrigée par Arnaud Bodin Eercice Calculer les déterminants des matrices suivantes : Correction Vidéo ( ) 0 6 7 3 4 5 8 4 5 6 0 3 4 5 5 6 7 0 3 5 4 3 0 3 0 0 3 0 0 0 3
1 Recherche en table par balayage
1 Recherche en table par balayage 1.1 Problème de la recherche en table Une table désigne une liste ou un tableau d éléments. Le problème de la recherche en table est celui de la recherche d un élément
IV- Equations, inéquations dans R, Systèmes d équations
IV- Equations, inéquations dans R, Systèmes d équations 1- Equation à une inconnue Une équation est une égalité contenant un nombre inconnu noté en général x et qui est appelé l inconnue. Résoudre l équation
Examen optimisation Centrale Marseille (2008) et SupGalilee (2008)
Examen optimisation Centrale Marseille (28) et SupGalilee (28) Olivier Latte, Jean-Michel Innocent, Isabelle Terrasse, Emmanuel Audusse, Francois Cuvelier duree 4 h Tout resultat enonce dans le texte peut
LES MÉTHODES DE POINT INTÉRIEUR 1
Chapitre XIII LES MÉTHODES DE POINT INTÉRIEUR 1 XIII.1 Introduction Nous débutons par un rappel de la formulation standard d un problème d optimisation 2 linéaire et donnons un bref aperçu des différences
1/24. I passer d un problème exprimé en français à la réalisation d un. I expressions arithmétiques. I structures de contrôle (tests, boucles)
1/4 Objectif de ce cours /4 Objectifs de ce cours Introduction au langage C - Cours Girardot/Roelens Septembre 013 Du problème au programme I passer d un problème exprimé en français à la réalisation d
Grandes lignes ASTRÉE. Logiciels critiques. Outils de certification classiques. Inspection manuelle. Definition. Test
Grandes lignes Analyseur Statique de logiciels Temps RÉel Embarqués École Polytechnique École Normale Supérieure Mercredi 18 juillet 2005 1 Présentation d 2 Cadre théorique de l interprétation abstraite
Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé
Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e
I. Polynômes de Tchebychev
Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire
Master IAD Module PS. Reconnaissance de la parole (suite) Alignement temporel et Programmation dynamique. Gaël RICHARD Février 2008
Master IAD Module PS Reconnaissance de la parole (suite) Alignement temporel et Programmation dynamique Gaël RICHARD Février 2008 1 Reconnaissance de la parole Introduction Approches pour la reconnaissance
Multiprogrammation parallèle générique des méthodes de décomposition de domaine
Multiprogrammation parallèle générique des méthodes de décomposition de domaine Andréa Schwertner-Charão To cite this version: Andréa Schwertner-Charão. Multiprogrammation parallèle générique des méthodes
Performances et optimisations
Performances et optimisations Outils pour le calcul scientifique à haute performance École doctorale sciences pour l ingénieur juin 2001 Philippe MARQUET [email protected] Laboratoire d informatique fondamentale
Optimisation des fonctions de plusieurs variables
Optimisation des fonctions de plusieurs variables Hervé Hocquard Université de Bordeaux, France 8 avril 2013 Extrema locaux et globaux Définition On étudie le comportement d une fonction de plusieurs variables
Vous êtes bien à la bonne présentation, c est juste que je trouvais que le titre de cette présentation étais un peu long,
Vous êtes bien à la bonne présentation, c est juste que je trouvais que le titre de cette présentation étais un peu long, en fait ça me faisait penser au nom d un certain projet gouvernemental je me suis
INITIATION AU LANGAGE C SUR PIC DE MICROSHIP
COURS PROGRAMMATION INITIATION AU LANGAGE C SUR MICROCONTROLEUR PIC page 1 / 7 INITIATION AU LANGAGE C SUR PIC DE MICROSHIP I. Historique du langage C 1972 : naissance du C dans les laboratoires BELL par
UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux.
UEO11 COURS/TD 1 Contenu du semestre Cours et TDs sont intégrés L objectif de ce cours équivalent a 6h de cours, 10h de TD et 8h de TP est le suivant : - initiation à l algorithmique - notions de bases
Chp. 4. Minimisation d une fonction d une variable
Chp. 4. Minimisation d une fonction d une variable Avertissement! Dans tout ce chapître, I désigne un intervalle de IR. 4.1 Fonctions convexes d une variable Définition 9 Une fonction ϕ, partout définie
Texte Agrégation limitée par diffusion interne
Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse
Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007
Vision industrielle et télédétection - Détection d ellipses Guillaume Martinez 17 décembre 2007 1 Table des matières 1 Le projet 3 1.1 Objectif................................ 3 1.2 Les choix techniques.........................
NOTICE DOUBLE DIPLÔME
NOTICE DOUBLE DIPLÔME MINES ParisTech / HEC MINES ParisTech/ AgroParisTech Diplômes obtenus : Diplôme d ingénieur de l Ecole des Mines de Paris Diplôme de HEC Paris Ou Diplôme d ingénieur de l Ecole des
Figure 3.1- Lancement du Gambit
3.1. Introduction Le logiciel Gambit est un mailleur 2D/3D; pré-processeur qui permet de mailler des domaines de géométrie d un problème de CFD (Computational Fluid Dynamics).Il génère des fichiers*.msh
Continuité et dérivabilité d une fonction
DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité
Licence ST Université Claude Bernard Lyon I LIF1 : Algorithmique et Programmation C Bases du langage C 1 Conclusion de la dernière fois Introduction de l algorithmique générale pour permettre de traiter
Informatique Générale
Informatique Générale Guillaume Hutzler Laboratoire IBISC (Informatique Biologie Intégrative et Systèmes Complexes) [email protected] Cours Dokeos 625 http://www.ens.univ-evry.fr/modx/dokeos.html
MATHÉMATIQUES EN PREMIER CYCLE PRÉSENTATION DU PROGRAMME
Notre cadre de réflexion MATHÉMATIQUES EN PREMIER CYCLE PRÉSENTATION DU PROGRAMME La proposition de programme qui suit est bien sûr issue d une demande du Premier Cycle : demande de rénovation des contenus
Contexte. Pour cela, elles doivent être très compliquées, c est-à-dire elles doivent être très différentes des fonctions simples,
Non-linéarité Contexte Pour permettre aux algorithmes de cryptographie d être sûrs, les fonctions booléennes qu ils utilisent ne doivent pas être inversées facilement. Pour cela, elles doivent être très
Exercice : la frontière des portefeuilles optimaux sans actif certain
Exercice : la frontière des portefeuilles optimaux sans actif certain Philippe Bernard Ingénierie Economique & Financière Université Paris-Dauphine Février 0 On considère un univers de titres constitué
4.2 Unités d enseignement du M1
88 CHAPITRE 4. DESCRIPTION DES UNITÉS D ENSEIGNEMENT 4.2 Unités d enseignement du M1 Tous les cours sont de 6 ECTS. Modélisation, optimisation et complexité des algorithmes (code RCP106) Objectif : Présenter
EXERCICE 4 (7 points ) (Commun à tous les candidats)
EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat
Jean-Philippe Préaux http://www.i2m.univ-amu.fr/~preaux
Colonies de fourmis Comment procèdent les colonies de fourmi pour déterminer un chemin presque géodésique de la fourmilière à un stock de nourriture? Les premières fourmis se déplacent au hasard. Les fourmis
Contrôle Non Destructif : Implantation d'algorithmes sur GPU et multi-coeurs. Gilles Rougeron CEA/LIST Département Imagerie Simulation et Contrôle
Contrôle Non Destructif : Implantation d'algorithmes sur GPU et multi-coeurs Gilles Rougeron CEA/LIST Département Imagerie Simulation et Contrôle 1 CEA R & D for Nuclear Energy 5 000 people Nuclear systems
Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé
Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue
Fonctions de plusieurs variables
Maths MP Exercices Fonctions de plusieurs variables Les indications ne sont ici que pour être consultées après le T (pour les exercices non traités). Avant et pendant le T, tenez bon et n allez pas les
TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION
TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION Bruno Saussereau Laboratoire de Mathématiques de Besançon Université de Franche-Comté Travail en commun
Rencontre sur la thématique du Calcul Haute Performance - 13 juin 2012. Better Match, Faster Innovation
Better Match, Faster Innovation Rencontre sur la thématique du Calcul Haute Performance - 13 juin 2012 Meeting on the theme of High Performance Computing TABLE DES MATIÈRES Qu est ce qu un imatch? STI
Programmes des classes préparatoires aux Grandes Ecoles
Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme
Saisie des chauffe-eau thermodynamiques à compression électrique
Fiche d application : Saisie des chauffe-eau thermodynamiques à compression électrique Date Modification Version 01 décembre 2013 Précisions sur les CET grand volume et sur les CET sur air extrait 2.0
1 de 46. Algorithmique. Trouver et Trier. Florent Hivert. Mél : [email protected] Page personnelle : http://www.lri.fr/ hivert
1 de 46 Algorithmique Trouver et Trier Florent Hivert Mél : [email protected] Page personnelle : http://www.lri.fr/ hivert 2 de 46 Algorithmes et structures de données La plupart des bons algorithmes
