Cartes auto-organisatrices
|
|
|
- Fabien Forget
- il y a 10 ans
- Total affichages :
Transcription
1 Cartes auto-organisatrices Nicolas P. Rougier Master 2 - Sciences Cognitives Université de Bordeaux
2 Quantification vectorielle Soit un ensemble de données dans un espace quelconque Comment regrouper les données qui sont similaires? Combien y a t-il de groupes? Quel sont les meilleurs représentants de chaque groupe? Peut-on reconnaître les groupes proches? Exemple Ensemble de points Mauvaise quantification Bonne quantification
3 Quantification vectorielle Définition Soit un ensemble de données E de taille et de dimension quelconque. Une quantification vectorielle de E se définit par une fonction f et un ensemble Q E telle que x E, f(x) Q. Exemple On considère des données réelles à une seule dimension (E = R) et on veut les quantifier dans un ensemble Q: Q = N f(x) = int(x) 1.2 1, 3.9 3,... Infinité de représentants Q = { 1, +1} f(x) = sign(x) , 3.9 1,... Deux représentants Problème général Peut on automatiser la procédure pour des données quelconques? (trouver Q et f)
4 Quantification vectorielle Algorithmes standards Regroupement dynamique (Y. Linde, A. Buzo & R.M. Gray, 1980) Moindres carrés (S.P. Lloyd, 1982) Growing Neural Gas (Fritzke, 1995) Cartes auto-organisatrices (T. Kohonen, 1982) Utilisations standards Compression de données Classifications de données Catégorisation de données
5 Le cortex visuel Rétinotopie Les aires visuelles sont organisées (via l apprentissage) de telle façon que deux neurones physiquement proches dans le cortex visuel traitent des entrées physiquement proches dans la rétine. On parle d organisatiuon rétinotopique. Suite à ces observations, Teuvo Kohonen a cherché à rendre compte de l organisation spatiale du cortex.
6 Principe de fonctionnement Soit une carte de n neurones entièrement connectés (chaque neurone est relié à tous les autres) On ajoute une topologie à la carte (il y a une notion de distance entre chaque neurone) Chaque neurone est relié à l ensemble des entrées (le vecteur de poids est le prototype du neurone) A chaque nouvelle entrée, le neurone ayant le prototype le plus proche est déclaré vainqueur. Les prototypes du vainqueur et de ses voisins sont changés afin de se rapprocher de l entrée présenté.
7 Architecture Soit une carte de n neurones entièrement connectés. chaque neurone est relié à tous les autres.
8 Topologie On ajoute une topologie à la carte il y a une notion de distance entre chaque neurone Coordonnées relatives au neurone (0,0) Distances relatives au neurone (0,0) -2,2-1,2 0,2 1,2 2, ,1-1,1 0,1 1,1 2, ,0-1,0 0,0. 1,0 2, ,-1-1,-1 0,-1 1,-1 2, ,-2-1,-2 0,-2 1,-2 2,
9 Entrées Chaque neurone est relié à l ensemble des entrées le vecteur de poids correspondant est le prototype du neurone. x 1. x 0
10 Algorithme Recherche du vainqueur Soit une donnée x = {x 1, x 2,...x n }, on cherche le neurone i vainqueur tel que la distance entre x et w ivainquer soit minimale. C est à dire: i vainqueur = argmin i (d(x, w i )) Apprentissage A chaque exemple présenté, le vainqueur ainsi que ses voisins les plus proches vont modifier leur vecteur de poids selon la formule: w i (t + 1) = w i (t) + µf(w i (t) x) avec f qui est la fonction de voisinage et µ le pas d apprentissage qui décroit au cours du temps.
11 Fonction de voisinage 1.0 taux d'apprentissage distance
12 Exemples
13 Exemples
14 Difficultés La topologie du réseau peut ne pas correspondre à la topologie des données et cela peut poser des problèmes lors de l apprentissage. La carte peut ne pas se déployer correctement en début d apprentissage et on obtient des neouds Le réseau est figé après apprentissage puisque le pas d apprentissage est nul. Il faut connaître par avance le temps d apprentissage, c est à dire le nombre d exaples que l on présente au réseau.
15 Références Livres et cours Self-Organizing Maps, Third Edition Teuvo Kohonen, Some Competitive Learning Methods Bernd Fritzke, Neural Computation and Self-Organizing Maps - An Introduction Helge Ritter, Thomas Martinetz & Klaus Schulten, Démos et Vidéos DemoGNG at Dynamic Self Organization at
16 Exercice 1 Compression d'une image On souhaite réduire le nombre de couleurs d une image à l aide d une carte de Kohonen. Soit une image constituée de 600x800 pixels décrits dans le codage RGB. Le codage RGB propose de coder sur un octet (i.e. 8 bits) chaque composante de couleur (rouge, vert, bleu). 1. Quel est le nombre total de couleurs que l on peut virtuellement coder? 2. On souhaite réduire le nombre de couleurs différentes à 256 couleurs pour diminuer la taille de stockage de l image. Quelle sera la taille de l image finale? 3. Quelle architecture proposez-vous pour réduire automatiquement le nombre de couleurs à l aide d une carte auto-organisatrice de Kohonen? 4. Tester votre architecture
17 Exercice 2 Nuage de points On souhaite regrouper des données similaires à partir d un jeu de données de dimensions Quelle architecture proposez-vous? 2. Après apprentissage, que représente les poids de chaque neurone? 3. Si les données ne sont pas homogènes, quelle influence cela a t-il sur l oargnisation finale? 4. Tester votre architecture
Optimisation de la compression fractale D images basée sur les réseaux de neurones
Optimisation de la compression fractale D images basée sur les réseaux de neurones D r BOUKELIF Aoued Communication Networks,Architectures and Mutimedia laboratory University of S.B.A [email protected]
VISUALISATION DES DISTANCES ENTRE LES CLASSES DE LA CARTE DE KOHONEN POUR LE DEVELOPPEMENT D'UN OUTIL D'ANALYSE ET DE REPRESENTATION DES DONNEES
VISUALISATION DES DISTANCES ENTRE LES CLASSES DE LA CARTE DE KOHONEN POUR LE DEVELOPPEMENT D'UN OUTIL D'ANALYSE ET DE REPRESENTATION DES DONNEES Patrick Rousset 1,2 et Christiane Guinot 3 1 CEREQ, Service
TD : Codage des images
TD : Codage des images Les navigateurs Web (Netscape, IE, Mozilla ) prennent en charge les contenus textuels (au format HTML) ainsi que les images fixes (GIF, JPG, PNG) ou animée (GIF animée). Comment
Coup de Projecteur sur les Réseaux de Neurones
Coup de Projecteur sur les Réseaux de Neurones Les réseaux de neurones peuvent être utilisés pour des problèmes de prévision ou de classification. La représentation la plus populaire est le réseau multicouche
Introduction au Data-Mining
Introduction au Data-Mining Alain Rakotomamonjy - Gilles Gasso. INSA Rouen -Département ASI Laboratoire PSI Introduction au Data-Mining p. 1/25 Data-Mining : Kèkecé? Traduction : Fouille de données. Terme
Introduction au Data-Mining
Introduction au Data-Mining Gilles Gasso, Stéphane Canu INSA Rouen -Département ASI Laboratoire LITIS 8 septembre 205. Ce cours est librement inspiré du cours DM de Alain Rakotomamonjy Gilles Gasso, Stéphane
TS 35 Numériser. Activité introductive - Exercice et démarche expérimentale en fin d activité Notions et contenus du programme de Terminale S
FICHE Fiche à destination des enseignants TS 35 Numériser Type d'activité Activité introductive - Exercice et démarche expérimentale en fin d activité Notions et contenus du programme de Terminale S Compétences
L utilisation d un réseau de neurones pour optimiser la gestion d un firewall
L utilisation d un réseau de neurones pour optimiser la gestion d un firewall Réza Assadi et Karim Khattar École Polytechnique de Montréal Le 1 mai 2002 Résumé Les réseaux de neurones sont utilisés dans
Chapitre 18 : Transmettre et stocker de l information
Chapitre 18 : Transmettre et stocker de l information Connaissances et compétences : - Identifier les éléments d une chaîne de transmission d informations. - Recueillir et exploiter des informations concernant
Géométrie discrète Chapitre V
Géométrie discrète Chapitre V Introduction au traitement d'images Géométrie euclidienne : espace continu Géométrie discrète (GD) : espace discrétisé notamment en grille de pixels GD définition des objets
Master IMA - UMPC Paris 6 RDMM - Année 2009-2010 Fiche de TP
Master IMA - UMPC Paris 6 RDMM - Année 2009-200 Fiche de TP Préliminaires. Récupérez l archive du logiciel de TP à partir du lien suivant : http://www.ensta.fr/~manzaner/cours/ima/tp2009.tar 2. Développez
JPEG, PNG, PDF, CMJN, HTML, Préparez-vous à communiquer!
JPEG, PNG, PDF, CMJN, HTML, Préparez-vous à communiquer! 1 / Contexte L ordinateur La loi du nombre La numérisation = codage d une information en chiffres binaire : 0 1 («bit») 8 bits = 1 octet 1ko = 1024
Fonctions de plusieurs variables
Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme
Chapitre 13 Numérisation de l information
DERNIÈRE IMPRESSION LE 2 septembre 2013 à 17:33 Chapitre 13 Numérisation de l information Table des matières 1 Transmission des informations 2 2 La numérisation 2 2.1 L échantillonage..............................
TRAITEMENT DES DONNEES MANQUANTES AU MOYEN DE L ALGORITHME DE KOHONEN
TRAITEMENT DES DONNEES MANQUANTES AU MOYEN DE L ALGORITHME DE KOHONEN Marie Cottrell, Smaïl Ibbou, Patrick Letrémy SAMOS-MATISSE UMR 8595 90, rue de Tolbiac 75634 Paris Cedex 13 Résumé : Nous montrons
Traitement numérique de l'image. Raphaël Isdant - 2009
Traitement numérique de l'image 1/ L'IMAGE NUMÉRIQUE : COMPOSITION ET CARACTÉRISTIQUES 1.1 - Le pixel: Une image numérique est constituée d'un ensemble de points appelés pixels (abréviation de PICture
Chapitre 3. Les distributions à deux variables
Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles
Comme chaque ligne de cache a 1024 bits. Le nombre de lignes de cache contenu dans chaque ensemble est:
Travaux Pratiques 3. IFT 1002/IFT 1005. Structure Interne des Ordinateurs. Département d'informatique et de génie logiciel. Université Laval. Hiver 2012. Prof : Bui Minh Duc. Tous les exercices sont indépendants.
Les algorithmes de fouille de données
Février 2005 Les algorithmes de fouille de données DATAMINING Techniques appliquées à la vente, aux services client, interdictions. Cycle C Informatique Remerciements Je remercie les personnes, les universités
TP SIN Traitement d image
TP SIN Traitement d image Pré requis (l élève doit savoir): - Utiliser un ordinateur Objectif terminale : L élève doit être capable de reconnaître un format d image et d expliquer les différents types
L apprentissage automatique
L apprentissage automatique L apprentissage automatique L'apprentissage automatique fait référence au développement, à l analyse et à l implémentation de méthodes qui permettent à une machine d évoluer
I. Polynômes de Tchebychev
Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire
Transmission d informations sur le réseau électrique
Transmission d informations sur le réseau électrique Introduction Remarques Toutes les questions en italique devront être préparées par écrit avant la séance du TP. Les préparations seront ramassées en
Hiver 2013 IMN 259. Introduction à l analyse d images. Par Pierre-Marc Jodoin
Hiver 2013 Analyse d images IMN 259 Introduction à l analyse d images Par Pierre-Marc Jodoin Où se situe l analyse d images? Traitement d images Imagerie Image Analyse d images/ Vision par ordinateur Infographie
LES DIFFÉRENTS FORMATS AUDIO NUMÉRIQUES
LES DIFFÉRENTS FORMATS AUDIO NUMÉRIQUES Compétences mises en jeu durant l'activité : Compétences générales : S'impliquer, être autonome. Compétence(s) spécifique(s) : Reconnaître des signaux de nature
Structure du format BMP, sa lecture, sa construction et son écriture
Structure du format BMP, sa lecture, sa construction et son écriture Claude Parisel Mars 2003 Table des matières : 1. Le choix du format 2. Commentaires sur les autres formats 3. Format BMP pour noir&blanc,
Représentation des Nombres
Chapitre 5 Représentation des Nombres 5. Representation des entiers 5.. Principe des représentations en base b Base L entier écrit 344 correspond a 3 mille + 4 cent + dix + 4. Plus généralement a n a n...
Classification Automatique de messages : une approche hybride
RECIAL 2002, Nancy, 24-27 juin 2002 Classification Automatique de messages : une approche hybride O. Nouali (1) Laboratoire des Logiciels de base, CE.R.I.S., Rue des 3 frères Aïssiou, Ben Aknoun, Alger,
Mesure agnostique de la qualité des images.
Mesure agnostique de la qualité des images. Application en biométrie Christophe Charrier Université de Caen Basse-Normandie GREYC, UMR CNRS 6072 Caen, France 8 avril, 2013 C. Charrier NR-IQA 1 / 34 Sommaire
Plan d études. Traitement visuel 2D. Techniques d intégration multimédia 582-105-HU. http://pedago.cegepoutaouais.qc.ca/media/ma legault/2d/ 1-2-2
Plan d études Techniques d intégration multimédia Traitement visuel 2D 582-105-HU 1-2-2 Enseignant : Mathieu Legault Courriel : [email protected] Téléphone : 770-4012 # 2480 Bureau : 2.535
Architecture des ordinateurs
Architecture des ordinateurs Cours 4 5 novembre 2012 Archi 1/22 Micro-architecture Archi 2/22 Intro Comment assembler les différents circuits vus dans les cours précédents pour fabriquer un processeur?
Formats d images. 1 Introduction
Formats d images 1 Introduction Lorsque nous utilisons un ordinateur ou un smartphone l écran constitue un élément principal de l interaction avec la machine. Les images sont donc au cœur de l utilisation
Projet Matlab : un logiciel de cryptage
Projet Matlab : un logiciel de cryptage La stéganographie (du grec steganos : couvert et graphein : écriture) consiste à dissimuler une information au sein d'une autre à caractère anodin, de sorte que
Traitement bas-niveau
Plan Introduction L approche contour (frontière) Introduction Objectifs Les traitements ont pour but d extraire l information utile et pertinente contenue dans l image en regard de l application considérée.
Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57
Analyse de la vidéo Chapitre 4.1 - La modélisation pour le suivi d objet 10 mars 2015 Chapitre 4.1 - La modélisation d objet 1 / 57 La représentation d objets Plan de la présentation 1 La représentation
Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT
Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Ces exercices portent sur les items 2, 3 et 5 du programme d informatique des classes préparatoires,
Fête de la science Initiation au traitement des images
Fête de la science Initiation au traitement des images Détection automatique de plaques minéralogiques à partir d'un téléphone portable et atelier propose de créer un programme informatique pour un téléphone
UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux.
UEO11 COURS/TD 1 Contenu du semestre Cours et TDs sont intégrés L objectif de ce cours équivalent a 6h de cours, 10h de TD et 8h de TP est le suivant : - initiation à l algorithmique - notions de bases
Algorithme. Table des matières
1 Algorithme Table des matières 1 Codage 2 1.1 Système binaire.............................. 2 1.2 La numérotation de position en base décimale............ 2 1.3 La numérotation de position en base binaire..............
Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015
Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k
INFO 2 : Traitement des images
INFO 2 : Traitement des images Objectifs : Comprendre la différence entre image vectorielle et bipmap. Comprendre les caractéristiques d'une image : résolution, définition, nombre de couleurs, poids Etre
Projet Matlab/Octave : segmentation d'un ballon de couleur dans une image couleur et insertion d'un logo
Projet Matlab/Octave : segmentation d'un ballon de couleur dans une image couleur et insertion d'un logo Dans ce projet, nous allons réaliser le code qui permet d'insérer sur une image, un logo sur un
Chap17 - CORRECTİON DES EXERCİCES
Chap17 - CORRECTİON DES EXERCİCES n 3 p528 Le signal a est numérique : il n y a que deux valeurs possibles pour la tension. Le signal b n est pas numérique : il y a alternance entre des signaux divers
Chapitre 1 Régime transitoire dans les systèmes physiques
Chapitre 1 Régime transitoire dans les systèmes physiques Savoir-faire théoriques (T) : Écrire l équation différentielle associée à un système physique ; Faire apparaître la constante de temps ; Tracer
Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre
IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables
Baccalauréat ES Amérique du Nord 4 juin 2008
Baccalauréat ES Amérique du Nord 4 juin 2008 EXERCICE 1 Commun à tous les candidats f est une fonction définie sur ] 2 ; + [ par : 4 points f (x)=3+ 1 x+ 2. On note f sa fonction dérivée et (C ) la représentation
SudoClick Reconnaissance de grilles de sudoku pour téléphones portables
SudoClick Reconnaissance de grilles de sudoku pour téléphones portables Patrick Anagnostaras 1 24 mai 2008 Department of Informatics - Master Project Report Département d Informatique - Departement für
nom : Collège Ste Clotilde
UNE CONFIGURATION INFORMATIQUE Objectif : Identifier les éléments principaux d une configuration L ordinateur enregistre des données qu il traite pour produire un résultat Sifflements 20 Notice 12 attache
Les algorithmes de base du graphisme
Les algorithmes de base du graphisme Table des matières 1 Traçage 2 1.1 Segments de droites......................... 2 1.1.1 Algorithmes simples.................... 3 1.1.2 Algorithmes de Bresenham (1965).............
Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer
Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy
Les images et les animations sur le web. Guérineau Chloé BTS2 Année 2001/2012
Les images et les animations sur le web Guérineau Chloé BTS2 Année 2001/2012 Sommaire I) Les images sur le web 1) Qu est ce qu une image? Les images numériques, destinées à être visualisées sur les écrans
INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE
INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE Le schéma synoptique ci-dessous décrit les différentes étapes du traitement numérique
Décompresser, créer une archive au format «ZIP»
Décompresser, créer une archive au format «ZIP» Qu'est-ce qu'une archive? Une archive est tout simplement une collection de fichiers stockée dans un fichier unique. Rien de plus, rien de moins. Il existe
Quantification Scalaire et Prédictive
Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction
Master IAD Module PS. Reconnaissance de la parole (suite) Alignement temporel et Programmation dynamique. Gaël RICHARD Février 2008
Master IAD Module PS Reconnaissance de la parole (suite) Alignement temporel et Programmation dynamique Gaël RICHARD Février 2008 1 Reconnaissance de la parole Introduction Approches pour la reconnaissance
Cours de Mécanique du point matériel
Cours de Mécanique du point matériel SMPC1 Module 1 : Mécanique 1 Session : Automne 2014 Prof. M. EL BAZ Cours de Mécanique du Point matériel Chapitre 1 : Complément Mathématique SMPC1 Chapitre 1: Rappels
La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1
La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois
MAP 553 Apprentissage statistique
MAP 553 Apprentissage statistique Université Paris Sud et Ecole Polytechnique http://www.cmap.polytechnique.fr/~giraud/map553/map553.html PC1 1/39 Apprentissage? 2/39 Apprentissage? L apprentissage au
LES CARTES À POINTS : POUR UNE MEILLEURE PERCEPTION
LES CARTES À POINTS : POUR UNE MEILLEURE PERCEPTION DES NOMBRES par Jean-Luc BREGEON professeur formateur à l IUFM d Auvergne LE PROBLÈME DE LA REPRÉSENTATION DES NOMBRES On ne conçoit pas un premier enseignement
Etudier l influence de différents paramètres sur un phénomène physique Communiquer et argumenter en utilisant un vocabulaire scientifique adapté
Compétences travaillées : Mettre en œuvre un protocole expérimental Etudier l influence de différents paramètres sur un phénomène physique Communiquer et argumenter en utilisant un vocabulaire scientifique
Laboratoire 4 Développement d un système intelligent
DÉPARTEMENT DE GÉNIE LOGICIEL ET DES TI LOG770 - SYSTÈMES INTELLIGENTS ÉTÉ 2012 Laboratoire 4 Développement d un système intelligent 1 Introduction Ce quatrième et dernier laboratoire porte sur le développement
Architectures informatiques dans les nuages
Architectures informatiques dans les nuages Cloud Computing : ressources informatiques «as a service» François Goldgewicht Consultant, directeur technique CCT CNES 18 mars 2010 Avant-propos Le Cloud Computing,
Parallélisme et Répartition
Parallélisme et Répartition Master Info Françoise Baude Université de Nice Sophia-Antipolis UFR Sciences Département Informatique [email protected] web du cours : deptinfo.unice.fr/~baude Septembre 2009 Chapitre
1.Introduction - Modèle en couches - OSI TCP/IP
1.Introduction - Modèle en couches - OSI TCP/IP 1.1 Introduction 1.2 Modèle en couches 1.3 Le modèle OSI 1.4 L architecture TCP/IP 1.1 Introduction Réseau Télécom - Téléinformatique? Réseau : Ensemble
Cours de numérisation sur Epson Perfection
Cours de numérisation sur Epson Perfection 1- Vérifiez la propreté de la vitre, placez l original sur celle-ci. À savoir, on peut numériser des transparents avec ce scanner ; il a un capteur CCD dans le
Modèles à Événements Discrets. Réseaux de Petri Stochastiques
Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés
Leçon N 4 : Statistiques à deux variables
Leçon N 4 : Statistiques à deux variables En premier lieu, il te faut relire les cours de première sur les statistiques à une variable, il y a tout un langage à se remémorer : étude d un échantillon d
Ecrire pour le Web: ce que nous apprend la modélisation de la reconnaissance orthographique des mots
Ecrire pour le Web: ce que nous apprend la modélisation de la reconnaissance orthographique des mots Stéphane Dufau 1, Claude Touzet 2 et Jonathan Grainger 1 (1) Laboratoire de Psychologie Cognitive UMR6146
LIDAR LAUSANNE 2012. Nouvelles données altimétriques sur l agglomération lausannoise par technologie laser aéroporté et ses produits dérivés
LIDAR LAUSANNE 2012 Nouvelles données altimétriques sur l agglomération lausannoise par technologie laser aéroporté et ses produits dérivés LIDAR 2012, nouveaux modèles altimétriques 1 Affaire 94022 /
Programmation linéaire
1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit
LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»
LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers
Organisé par StatSoft France et animé par Dr Diego Kuonen, expert en techniques de data mining.
2 jours : Mardi 15 et mercredi 16 novembre 2005 de 9 heures 30 à 17 heures 30 Organisé par StatSoft France et animé par Dr Diego Kuonen, expert en techniques de data mining. Madame, Monsieur, On parle
Apprentissage statistique dans les graphes et les réseaux sociaux
Apprentissage statistique dans les graphes et les réseaux sociaux Patrick Gallinari Collaboration : L. Denoyer, S. Peters Université Pierre et Marie Curie AAFD 2010 1 Plan Motivations et Problématique
La visio-conférence holographique : Pourquoi? Comment?
La visio-conférence holographique : Pourquoi? Comment? Francis Felix Labo LSIS / Arts & Métiers Paritech (ENSAM) 2 Cours des Arts et Métiers 13100 Aix-en-Provence Thierry Henocque AIP-Primeca Dauphiné
Exercices Corrigés Premières notions sur les espaces vectoriels
Exercices Corrigés Premières notions sur les espaces vectoriels Exercice 1 On considére le sous-espace vectoriel F de R formé des solutions du système suivant : x1 x 2 x 3 + 2x = 0 E 1 x 1 + 2x 2 + x 3
L écosystème Hadoop Nicolas Thiébaud [email protected]. Tuesday, July 2, 13
L écosystème Hadoop Nicolas Thiébaud [email protected] HUG France 250 membres sur la mailing liste 30 présentations 9 meetups organisés, de 20 à 100 invités Présence de Cloudera, MapR, Hortonworks,
Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007
Vision industrielle et télédétection - Détection d ellipses Guillaume Martinez 17 décembre 2007 1 Table des matières 1 Le projet 3 1.1 Objectif................................ 3 1.2 Les choix techniques.........................
Une approche de co-classification automatique à base des cartes topologiques
Une approche de co-classification automatique à base des cartes topologiques Kais Allab, Khalid Benabdeslem, Alexandre Aussem To cite this version: Kais Allab, Khalid Benabdeslem, Alexandre Aussem. Une
Chapitre 22 Optimisation pour diffusion à l'écran, pour le web
1 1 9 9 7 7 Optimisation pour diffusion à l'écran, pour le web Diffusion pour le web........................ 31 Les paramètres avant l exportation................. 31 Optimisation pour le web......................
Vers une Optimisation de l Algorithme AntTreeStoch
Revue des Sciences et de la Technologie - RST- Volume 3 N 1 / janvier 2012 Vers une Optimisation de l Algorithme AntTreeStoch O. KADRI, H. MOUSS, A. ABDELHADI, R. MAHDAOUI Laboratoire d Automatique et
Sillage Météo. Notion de sillage
Sillage Météo Les représentations météorologiques sous forme d animation satellites image par image sont intéressantes. Il est dommage que les données ainsi visualisées ne soient pas utilisées pour une
Logiciel de Base. I. Représentation des nombres
Logiciel de Base (A1-06/07) Léon Mugwaneza ESIL/Dépt. Informatique (bureau A118) [email protected] I. Représentation des nombres Codage et représentation de l'information Information externe formats
Le poids et la taille des fichiers
Le poids et la taille des fichiers Au tout départ des 0 et des 1 En français et en anglais on appelle cela un bit 8 bit donne un octet (ou byte en anglais) Exemple d octet : 11111111 10111010 00001000
Communications immersives : Enjeux et perspectives
Journée Futur et Ruptures Communications immersives : Enjeux et perspectives Béatrice Pesquet-Popescu Télécom ParisTech, Département TSI 5 mars 2015 Institut Mines-Télécom Tendances actuelles Plus, plus,
Le génie logiciel. maintenance de logiciels.
Le génie logiciel Définition de l IEEE (IEEE 1990): L application d une approche systématique, disciplinée et quantifiable pour le développement, l opération et la maintenance de logiciels. Introduction
Technologies en rafale Un atelier de type GGT à la RN
Technologies en rafale Un atelier de type GGT à la RN Par : Paul Boucher Marie Gauthier Claude Hegyes Société GRICS Société GRICS Plan de la présentation Internet Explorer 9 Beta Microsoft Office 2010
INF6304 Interfaces Intelligentes
INF6304 Interfaces Intelligentes filtres collaboratifs 1/42 INF6304 Interfaces Intelligentes Systèmes de recommandations, Approches filtres collaboratifs Michel C. Desmarais Génie informatique et génie
Initiation à linfographie
Ce support de cours de l Agence universitaire de la Francophonie est distribué sous licence GNU FDL. Permission vous est donnée de copier, distribuer et/ou modifier ce document selon les termes de la Licence
a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b
I Définition d une fonction affine Faire l activité 1 «une nouvelle fonction» 1. définition générale a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe
Correction de l examen de la première session
de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi
FORMATS DE FICHIERS. Quels sont les différents types d informations numériques dans un document multimédia?
FORMATS DE FICHIERS Choisir et justifier un format de fichier pour réaliser un document multimédia 1 ) Le problème d Amélie Amélie et Léa ont publié leur premier article sur leur propre blog. Amélie constate
Pourquoi l apprentissage?
Pourquoi l apprentissage? Les SE sont basés sur la possibilité d extraire la connaissance d un expert sous forme de règles. Dépend fortement de la capacité à extraire et formaliser ces connaissances. Apprentissage
Rencontres Recherche Industrie IRIT - 26 Septembre 2007- Michel Kamel
Le processus de gestion de sécurité de l information dans les Organisations Virtuelles Michel KAMEL Rencontres Recherche Industrie IRIT - 26 Septembre 2007- Michel Kamel 1 Problématique Environnement collaboratif
Reconstruction de bâtiments en 3D à partir de nuages de points LIDAR
Reconstruction de bâtiments en 3D à partir de nuages de points LIDAR Mickaël Bergem 25 juin 2014 Maillages et applications 1 Table des matières Introduction 3 1 La modélisation numérique de milieux urbains
NOTIONS DE RESEAUX INFORMATIQUES
NOTIONS DE RESEAUX INFORMATIQUES GENERALITES Définition d'un réseau Un réseau informatique est un ensemble d'équipements reliés entre eux afin de partager des données, des ressources et d'échanger des
LES NOUVEAUTES DE COST AND PROFITABILITY MANAGEMENT 8.1
LES NOUVEAUTES DE COST AND PROFITABILITY MANAGEMENT 8.1 SAS Cost and Profitability Management, également appelé CPM (ou C&P), est le nouveau nom de la solution SAS Activity-Based Management. Cette version
intelligence artificielle et cognitique"
Dialogue on Education, 11h-11h10 Course overview on "Automatisation avancée, intelligence artificielle et cognitique" Prof. Dr. Jean-Daniel Dessimoz, MBA, HES-SO / HEIG-VD 11:00-11:10, 18 November 2014
Contexte. Pour cela, elles doivent être très compliquées, c est-à-dire elles doivent être très différentes des fonctions simples,
Non-linéarité Contexte Pour permettre aux algorithmes de cryptographie d être sûrs, les fonctions booléennes qu ils utilisent ne doivent pas être inversées facilement. Pour cela, elles doivent être très
t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :
Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant
