Chapitre 4 - Probabilités

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Chapitre 4 - Probabilités"

Transcription

1 Un peu d'histoire Les archéologues ont montré que les jeux de hasard étaient pratiqués dans de nombreuses sociétés antiques. Parmi les ancêtres des jeux de hasard, les jeux de dés occupent une place très importante. C'est en cherchant à résoudre ces problèmes posés par les jeux de hasard que les mathématiciens donnent naissance aux probabilités. Le problème du duc de Toscane, par exemple, posé au XVI ème siècle, n'a été résolu que des dizaines d'année plus tard par Galilée ( ). Le problème initial le plus fameux est celui du chevalier de Méré : lorsqu'une partie d'un jeu de hasard doit être arrêtée avant la victoire de l'un des joueurs, comment répartir entre ceux-ci les sommes d'argent misées? Aujourd'hui, les probabilités interviennent dans presque tous les secteurs : économie, gestion, assurances, génétique, psychologie, médecine... I Rappels de Terminale 1. Vocabulaire des ensembles Une expérience aléatoire est une expérience dont le résultat dépend du hasard. Exemple : Le lancer d'un dé. Chaque résultat possible et prévisible d une expérience aléatoire est appelé éventualité liée à l expérience aléatoire. Exemple : {2} ; {5} sont deux éventualités possibles de l'expérience aléatoire précédente. L ensemble formé par les éventualités est appelé univers, il est très souvent noté Ω. Exemple : Ω = {1 ; 2 ; 3 ; 4 ; 5 ; 6}. Langage probabiliste Définition Illustration A est un événement A est une partie de Ω A Ω A est l'événement contraire de A A est composé de toutes les éventualités qui ne sont pas dans A A Ω L'événement A B A B est composé des éventualités qui sont soit dans A soit dans B B A Ω L'événement A B A B est composé des éventualités qui sont dans A et aussi dans B B A Ω - 1 -

2 2. Probabilité Qu'est-ce qu'une probabilité et comment la calcule-t-on? Il a fallu longtemps pour arriver à une définition satisfaisante de la probabilité. Celle en vigueur actuellement a été publiée en 1933 et est due au russe Kolmogorov. Cette définition explicite le lien entre la fréquence d un événement et sa probabilité. Elle s exprime de façon tout à fait rigoureuse (bien sûr), et en français vulgarisé elle dit à peu près ceci : Plus le nombre d'expérience augmente, et plus il est probable que la fréquence de l'événement A sera proche de la probabilité de A. Par exemple, pour déterminer la probabilité d'obtenir 6 lors du lancer d'un dé équilibré, on simule un grand nombre de lancers à l'aide d'un tableur : n lancer Résultat lancer effectif cumulé fréquence cumulée , , , , , , , , , , , , , , , , , , ,15 1,2 1 0,8 0,6 0,4 0,

3 Définition : Une probabilité P sur un univers fini est une application qui, à chaque événement élémentaire, associe un nombre réel P compris entre 0 et 1 tel que : La probabilité d'un événement est la somme des probabilités des événements élémentaires qui le composent. La probabilité de l'univers est égale à 1. Quelques résultats : Pour tout événement A, P(A) = 1 P(A) Pour tout événements A et B, P( A B ) = P(A) + P(B) P( A B ) Cas particulier important : l'équiprobabilité Définition : On dit qu'il y a équiprobabilité lorsque tous les événements élémentaires ont la même probabilité. Dans ce cas, on a : nombre de casfavorables nombresd 'éléments de A P A = = nombresde cas possibles nombresd 'éléments dans Ω. II Probabilités conditionnelles Exemple Voici les résultats d'un sondage effectué auprès de 1000 personnes, à propos d'internet : 40% des personnes interrogées déclarent être intéressées par Internet; 35% des personnes interrogées ont moins de 25 ans, et parmi celles-ci, 80% déclarent être intéressées par Internet; 30% des personnes interrogées ont plus de 50 ans et parmi celles-ci, 85% ne sont pas intéressées par Internet. 1. Compléter le tableau suivant : Intéressées par Internet Non intéressées par Internet Total Moins de 25 ans Entre 25 et 50 ans Plus de 50 ans Total 2. On choisit au hasard une personne parmi les interrogées. On suppose que toutes les personnes ont la même probabilité d'être choisies. Dans la suite, si E est un événement, on note p(e) sa probabilité. On considère les événements : A : «la personne interrogée est intéressée par Internet» B : «la personne interrogée a moins de 25 ans» a. Calculer, en les justifiant, les probabilités p(a) et p(b). b. Définir par une phrase l'événement A B, puis calculer p A B. En déduire p A B

4 3. On sait maintenant que la personne interrogée est intéressée par Internet. Quelle est la probabilité qu'elle ait moins de 50 ans? 4. Quelle est la probabilité qu'une personne ayant entre 25 et 50 ans soit intéressée par internet? Définition : Soit P une probabilité sur Ω et soit A un événement de probabilité non nulle. La probabilité sachant que A est réalisé est l'application P A qui, à tout événement B, associe le nombre P A B = P A B P A Propriétés : P A, la probabilité sachant que A est réalisé, est une probabilité sur Ω. Soient A et B deux événements de probabilités non nulles : P A B = P B A = Formule des probabilités totales : Soit A et B deux événements de Ω et P une probabilité de Ω. Exemple Dans un atelier, deux machines M 1 et M 2 découpent des pièces métalliques identiques. M 1 fournit 60% de la production (parmi lesquelles 6, 3% sont défectueuses), le reste étant fourni par M 2 (dont 4% de la production est défectueuse). La production du jour est constituée des pièces produites par les deux machines, et on en tire en fin de soirée une pièce au hasard (tous les prélèvements sont supposés équiprobables). 1. Utilisation des formules des probabilités conditionnelles. a. Quelle est la probabilité de prélever une pièce défectueuse, sachant qu elle est produite par M 1? b. Quelle est la probabilité de prélever une pièce défectueuse, sachant qu elle est produite par M 2? c. Quelle est la probabilité de prélever une pièce défectueuse? - 4 -

5 2. Utilisation d un tableau. On suppose maintenant que la production est composée de pièces. Reproduire et compléter le tableau suivant qui décrit la production du jour : Nombre de pièces défectueuses Nombre de pièces conformes Total Nombre de pièces produites par M 1 Nombre de pièces produites par M 2 Total a. Quelle est la probabilité de prélever une pièce défectueuse, sachant qu elle est produite par M 1? b. Quelle est la probabilité de prélever une pièce défectueuse, sachant qu elle est produite par M 2? c. Quelle est la probabilité de prélever une pièce défectueuse? 3. Utilisation d un arbre des probabilités conditionnelles a. Dresser un arbre des probabilités conditionnelles relatif à la situation proposée. b. Quelle est la probabilité de prélever une pièce défectueuse, sachant qu elle est produite par M 1? c. Quelle est la probabilité de prélever une pièce défectueuse, sachant qu elle est produite par M 2? d. Quelle est la probabilité de prélever une pièce défectueuse? - 5 -

6 III Événements indépendants Définition : Les événements A et B sont indépendants si, et seulement si, P A B =P A P B Définition 2 : Dans le cas où A et B ont des probabilités non nulles, A et B sont indépendants si, et seulement si, P A B =P B ou P B A =P A Cela signifie que la réalisation d'un des deux événements n'a pas d'influence sur celle de l'autre. Exercice : Une entreprise fabrique un certain modèle de système d'alarme pour des maisons individuelles. Ce système d'alarme est susceptible de présenter deux défauts, et deux seulement, notés d 1 et d 2. Dans un lot de ce modèle de système d'alarme, on prélève un système au hasard. On considère les événements suivants : E 1 : «le système prélevé présente le défaut d 1» E 2 : «le système prélevé présente le défaut. d 2» On suppose que les deux événements E 1 et E 2 sont indépendants, que P( E 1 )= 0,02 et P( E 2 ) = 0, Calculer la probabilité qu'un système prélevé au hasard dans le lot présente le défaut d 1 et le défaut d Un système est dit défectueux s'il présente au moins l'un des deux défauts. Démontrer que la probabilité qu'un système prélevé au hasard dans ce lot soit défectueux est 0, Calculer la probabilité qu'un système prélevé au hasard dans ce lot ne soit pas défectueux? - 6 -

7 IV Dénombrement Comment doit-on savoir si l'on doit utiliser des arrangements ou des combinaisons? On considère que les éléments ne peuvent pas être répétés et on se base sur un seul critère : L' ordre des éléments est-il à prendre en compte? On tient compte de l'ordre On utilise des arrangements. On ne tient pas compte de l'ordre On utilise des combinaisons. Exemple 1: Dans une course de 100m, il y a huit partants numérotés de 1 à 8. Sur le podium, il y aura 3 médaillés (or argent bronze). Combien y a-t-il de podiums possible? On ne peut pas obtenir plusieurs fois le même numéro sur le podium, les éléments sont donc bien distincts. L'ordre d'apparition des différents numéro sur le podium a-t-il une importance? OUI, le podium signifie que le coureur n 6 a la médaille d'or tandis que signifie que c'est le coureur 4 qui est en or. Les deux podiums sont différents, l'ordre est déterminant. On utilise des arrangements Définition : On appelle arrangement et on note A n p le nombre de façon d'ordonner p objets choisis parmi n. Dans notre cas, il y a donc A 8 3 =8 7 6=336 8 choix possibles pour la première marche du podium, 7 pour la deuxième et enfin 6 pour la dernière. Remarque : Si n = p, A n n A n n = est une permutation de n éléments. Exemple 2: Au loto, on tire, au hasard, 6 boules parmi 49. Combien y a-t-il de tirages possibles? (on ne tient pas compte du numéro complémentaire) On ne peut pas obtenir plusieurs fois le même numéro lors d'un tirage, les éléments sont donc distincts. L'ordre d'apparition des numéros a-t-il de l'importance? NON, on considère les 6 numéros globalement, l'ordre n'a pas d'importance. On utilise des combinaisons Définition : On appelle combinaison et on note n p tenir compte de l'ordre. le nombre de façon de choisir p objets parmi n sans Dans notre cas, il y a donc 49 6 = tirages possibles. Si on coche une grille au loto, on a donc une chance sur d'avoir les 6 numéros

8 Avec la calculatrice Texas Instrument Casio - 8 -

9 Quand on utilise plusieurs combinaisons, faut-il additionner ou multiplier? Cela dépend! Concrètement : Si les différentes étapes sont reliées par un «et», on multiplie. Si les différents cas sont reliés par un «ou», on additionne. Exemple 3: Dans un jeu de 32 cartes, on choisit 5 cartes au hasard (ces 5 cartes s'appellent une 'main'). 1. Combien de mains contiennent exactement 2 dames et un roi? 2. Combien de mains contiennent au moins 3 rois? Exemple 4 : On remplit une grille de loto (cela signifie que l'on a coché 6 numéros parmi 49). Calculer la probabilité d'avoir exactement 3 numéros gagnants

10 Comment calculer avec les coefficients n p? Pour tout entier naturel n non nul, on rappelle que n! est le produit de tous les entiers compris entre 1 et n. Par exemple, 5! = Cas particuliers : 2! = 1! = 0! = Définition : Le nombre de façons de choisir p objets parmi n est n p = n! p! n p!. Cas particuliers : n 0 = n 1 = n n = Propriété : Pour tout n, p entiers naturels tels que p n n n p. Exercice : Démontrer que n 1 p 1 = n p 1 n p. n p =

11 Le triangle de Pascal Le triangle arithmétique était connu et utilisé bien avant l'époque de Pascal. C'est à ce dernier cependant que revient le mérite d'en avoir analysé les structures et les propriétés afin de les utiliser avec ingéniosité dans différents domaines des mathématiques. Il est construit de la façon suivante : On place 1 au sommet de la pyramide, puis 1 et 1 en dessous, de part et d'autre. Les extrémités des lignes sont toujours des 1, et les autres nombres sont la somme des deux nombres directement au-dessus. Propriété : On retrouve les valeurs des coefficients n p

CHAPITRE 6 Les Probabilités

CHAPITRE 6 Les Probabilités A) Définitions et généralités 1) Définitions de base a) Expérience aléatoire CHAPITRE 6 Les Probabilités Une expérience aléatoire (du latin "alea", qui signifie dé) est une expérience dont le résultat

Plus en détail

Exercice 1 Dans un sac on place 3 boules rouges, 5 vertes et 7 jaunes. On tire successivement 2 boules du sac avec remise de la boule après le

Exercice 1 Dans un sac on place 3 boules rouges, 5 vertes et 7 jaunes. On tire successivement 2 boules du sac avec remise de la boule après le Exercice 1 Dans un sac on place 3 boules rouges, 5 vertes et 7 jaunes. On tire successivement 2 boules du sac avec remise de la boule après le premier tirage. 1) Déterminer le nombre de tirages possibles.

Plus en détail

PROBABILITES (généralités)

PROBABILITES (généralités) PROBABILITES (généralités) I) VÉRIFIER LES ACQUIS Exercices d'introduction : Ex 1 : (probabilité) On lance un dé truqué de telle manière que les nombres pairs est une probabilité triple de celle des nombres

Plus en détail

Sommaire. Prérequis. Probabilités conditionnelles

Sommaire. Prérequis. Probabilités conditionnelles Probabilités conditionnelles Stéphane PASQUET, 22 mars 2015 C Sommaire Probabilités conditionnelles.................................. 2 Probabilité d une intersection................................. 2

Plus en détail

Probabilités. Exemple d application 1 : On effectue un lancé de dé à six faces, numérotées de 1 à 6. On définie les quatre événements suivants :

Probabilités. Exemple d application 1 : On effectue un lancé de dé à six faces, numérotées de 1 à 6. On définie les quatre événements suivants : I- Définitions et propriétés Probabilités Exemple d application 1 : On effectue un lancé de dé à six faces, numérotées de 1 à 6. On définie les quatre événements suivants : E 1 : Avoir un chiffre pair

Plus en détail

Première STG Chapitre 14 : probabilités. Page n

Première STG Chapitre 14 : probabilités. Page n Première STG Chapitre 14 : probabilités. Page n 1 Le mot hasard vient de l'arabe al zhar qui désigne un dé à jouer. Les jeux de hasard sont connus depuis la plus haute antiquité. Déjà les Romains et les

Plus en détail

CORRECTION EXERCICE DENOMBREMENT

CORRECTION EXERCICE DENOMBREMENT CORRECTION EXERCICE DENOMBREMENT EXERCICE 1 1. b) 2. b) 3. a) et b) 4. a) et b) 5. c) 6. a) et b) et c) EXERCICE 2 1. card(a) = 5, card(b) = 5, card( (A B) = 2, card(a B) = 8, card(e) = 11. 2. L'égalité

Plus en détail

PROBABILITÉS I) VOCABULAIRE

PROBABILITÉS I) VOCABULAIRE PROBABILITÉS I) VOCABULAIRE Une expérience aléatoire est une expérience dont le résultat ou l'issue dépend du hasard. L'ensemble des issues possibles est appelé univers de l'expérience aléatoire et est

Plus en détail

Seconde Probabilités Année scolaire 2013/2014. Une introduction aux probabilités a été faite en classe de troisième.

Seconde Probabilités Année scolaire 2013/2014. Une introduction aux probabilités a été faite en classe de troisième. Seconde Probabilités Année scolaire 2013/2014 Une introduction aux probabilités a été faite en classe de troisième. I) Définitions : 1) Expérience aléatoire : Il s'agit d'une expérience dont le résultat

Plus en détail

CHAPITRE 8 : Probabilités (1)

CHAPITRE 8 : Probabilités (1) CHAPITRE 8 : Probabilités (1) I. Généralités (rappels) 1. Vocabulaire Définitions : On appelle expérience aléatoire une expérience dont le résultat dépend du hasard. L'ensemble des résultats (ou issues)

Plus en détail

Probabilités. I Probabilités élementaires. Définition. Définition. Exemple. Exemple. Remarque. Exercice 01

Probabilités. I Probabilités élementaires. Définition. Définition. Exemple. Exemple. Remarque. Exercice 01 Probabilités I Probabilités élementaires Une urne contient trois boules : une bleue, une rouge, une verte. On tire une boule de l'urne et on note sa couleur. L'ensemble des résultats possibles (éventualités)

Plus en détail

Terminale STG Chapitre 8 : probabilités. Page n

Terminale STG Chapitre 8 : probabilités. Page n Terminale STG Chapitre 8 : probabilités. Page n 1 Les jeux de hasard sont connus depuis l'antiquité. C'est leur étude qui a conduit Pierre de Fermat ( 1601-1665 ) et Blaise Pascal ( 1623-1662 ) à s'intéresser

Plus en détail

Thème : Probabilités. Test d'entrée

Thème : Probabilités. Test d'entrée Thème : Probabilités Fiche d'exposé 1)Plan de la séquence I. Test d'entrée Avant d entamer le travail sur les probabilités, il semble pertinent de proposer aux élèves un test d'entrée pour établir un état

Plus en détail

Seconde 2 DS3 probabilités Sujet

Seconde 2 DS3 probabilités Sujet Seconde 2 DS3 probabilités Sujet 1 201-2015 Exercice 1: ( points) Dans une classe de 30 élèves, 20 étudient l anglais et 15 l espagnol. 8 étudient les deux langues. Pour un élève donné, on note A l événement

Plus en détail

Seconde Chapitre 5 «Probabilités» Page 1

Seconde Chapitre 5 «Probabilités» Page 1 Seconde Chapitre 5 «Probabilités» Page 1 I) Expériences aléatoires et probabilités 1) Expériences aléatoires Une expérience est dite aléatoire lorsque le hasard rend le résultat incertain. On appelle issue

Plus en détail

PROBABILITES : CONDITIONNEMENT ET INDEPENDANCE

PROBABILITES : CONDITIONNEMENT ET INDEPENDANCE PROBABILITES : CONDITIONNEMENT ET INDEPENDANCE Historique : En 1654 le chevalier de Méré pose le problème suivant au mathématicien et philosophe Pascal : «Deux joueurs ont commencé un jeu en plusieurs

Plus en détail

Probabilités. () Probabilités 1 / 46

Probabilités. () Probabilités 1 / 46 Probabilités () Probabilités 1 / 46 1 Dénombrement 2 Probabilités sur un univers fini 3 Variable aléatoire réelle sur un univers fini 4 Variable aléatoire continue () Probabilités 2 / 46 Plan 1 Dénombrement

Plus en détail

PROBABILITÉS. II Rappels : Calcul de probabilités 4

PROBABILITÉS. II Rappels : Calcul de probabilités 4 PROBABILITÉS Table des matières I Rappels : Vocabulaire des événements 2 I. Vocabulaire.............................................. 2 I.2 Intersection et réunion d événements................................

Plus en détail

Probabilités. Chapitre Vocabulaire des ensembles. Sommaire

Probabilités. Chapitre Vocabulaire des ensembles. Sommaire Chapitre 7 Probabilités Sommaire 7.1 Vocabulaire des ensembles.............................................. 93 7.2 Expériences aléatoires................................................. 94 7.2.1 Issues,

Plus en détail

Dans un lycée qui ne reçoit pas d interne, la répartition de 895 élèves se fait de la manière suivante :

Dans un lycée qui ne reçoit pas d interne, la répartition de 895 élèves se fait de la manière suivante : TES Correction des exercices Probabilités (5). Dans cette série d exercices on a parfois noté P(A B) la probabilité conditionnelle de A sachant B. La notation P B (A) est donc parfois remplacée par la

Plus en détail

Probabilités. Denis Vekemans

Probabilités. Denis Vekemans Probabilités Denis Vekemans 1 Vocabulaire Une expérience aléatoire vérifie trois conditions : elle est reproductible dans les mêmes conditions ; on connaît tous ces résultats possibles ; on ne sait pas

Plus en détail

( ) = 1 P A ( B). ( ) = 0. En effet on a A B =.

( ) = 1 P A ( B). ( ) = 0. En effet on a A B =. L'univers Ω désigne un ensemble fini et P une loi de probabilité sur Ω. AER 1 p 328 I. Probabilités conditionnelles 1. Conditionnement par un événement Définition Soit A et deux événements de Ω, tels que

Plus en détail

PROBABILITÉS. I Langage des événements :

PROBABILITÉS. I Langage des événements : PROAILITÉS Activité de recherche : Arnaque à la foire? Un forain organise des jeux basés sur le tirage simultané de trois boules, dans une urne qui contient cinq boules numérotées 0; 1; 2; 3 et 5. Le joueur

Plus en détail

Cours 4 ème Sci et inf

Cours 4 ème Sci et inf Mathématiques aux élèves Probabilité sur un ensemble fini Site web : http://www.matheleve.net/ Email :contact @matheleve.com Cours ème Sci et inf I) Rappel ctivité Première situation : ) Quels sont les

Plus en détail

Exercices sur les probabilités

Exercices sur les probabilités Exercices sur les probabilités Exercice N 1 : Mots croisés. Horizontal : 1) Se dit d'une situation quand les n événements élémentaires d une expérience aléatoire ont la même probabilité d être réalisés.

Plus en détail

Exemples : 1) Lancer un dé 3) Choisir au hasard une carte 2) Lancer une pièce 4) Choisir un élève au hasard

Exemples : 1) Lancer un dé 3) Choisir au hasard une carte 2) Lancer une pièce 4) Choisir un élève au hasard FICHE METHODE sur les PROBABILITES I) A quoi servent les probabilités a). On lance une pièce de un euro! Quelle est la probabilité de faire Pile? = 0,5 = 50% 2 2. On jette un dé à 8 faces numérotées de

Plus en détail

Table des matières. 1 re partie : Calcul des probabilités, variables aléatoires, lois usuelles... 7

Table des matières. 1 re partie : Calcul des probabilités, variables aléatoires, lois usuelles... 7 Table des matières 1 re partie : Calcul des probabilités, variables aléatoires, lois usuelles... 7 Chapitre I : Généralités sur le calcul des probabilités... 9 Section I : Introduction à la notion de probabilité...

Plus en détail

de la variable aléatoire X est l'événement noté ( X = x i ).

de la variable aléatoire X est l'événement noté ( X = x i ). I. Variable aléatoire : Loi de probabilité et espérance 1. Variable aléatoire discrète On considère l'ensemble des issues d'une expérience aléatoire. Définir une variable aléatoire X sur cet ensemble,

Plus en détail

Probabilité. On lance un dé à 6 faces, quelles sont les valeurs possibles que l on peut obtenir?

Probabilité. On lance un dé à 6 faces, quelles sont les valeurs possibles que l on peut obtenir? Probabilité I) Vocabulaire : On réalise une expérience aléatoire qui consiste à lancer deux fois de suite une pièce de monnaie. Combien de fois pensez-vous obtenir «FACE»? 0 fois 1 fois 2 fois Je ne sais

Plus en détail

Introduction aux Probabilités

Introduction aux Probabilités Introduction aux Probabilités La théorie des probabilités consiste à mathématiser le hasard, c'est à dire les phénomènes aléatoires et donner un sens précis aux phrases du type: "A pile ou face, j'ai une

Plus en détail

FICHE METHODE PROBABILITES CONDITIONNELLES I) A quoi servent les probabilités Conditionnelles

FICHE METHODE PROBABILITES CONDITIONNELLES I) A quoi servent les probabilités Conditionnelles FICHE METHODE PROBABILITES CONDITIONNELLES I) A quoi servent les probabilités Conditionnelles a) Exemples :. On jette un dé à faces numérotées de à et on obtient un score pair! Quelle est la probabilité

Plus en détail

Exercices supplémentaires : Probabilités

Exercices supplémentaires : Probabilités Exercices supplémentaires : Probabilités Partie A : Probabilités simples et variables aléatoires On lance trois dés : un rouge, un bleu et un vert. On écrit un nombre de trois chiffres : le chiffre des

Plus en détail

Probabilités en seconde

Probabilités en seconde Probabilités en seconde Équipe Académique Mathématiques - 2011 Les probabilités au collège 1.4. Notion de probabilité [Thèmes de convergence] Comprendre et utiliser des notions élémentaires de probabilité.

Plus en détail

STATISTIQUES ET PROBABILITÉS - CHAPITRE N9

STATISTIQUES ET PROBABILITÉS - CHAPITRE N9 Une entreprise emploie sept femmes et douze hommes. Leurs salaires nets mensuels sont (en ) : Salaires des femmes : 00 ; 0 ; 0 ; ; 0 ; 8 ; 0. Salaires des hommes : 0 ; 00 ; 8 ; ; 00 ; 00 ; ; 8 ; ; 0 ;

Plus en détail

PROBABILITÉS CONDITIONNELLES

PROBABILITÉS CONDITIONNELLES PROBABILITÉS CONDITIONNELLES I. Probabilités conditionnelles... 2 II. Arbre de probabilités... 3 II.1 Arbre commençant par deux branches 3 II.2 Arbre commençant par plusieurs branches 3 III. Indépendance

Plus en détail

Expérience aléatoire - modélisation - langage des probabilités

Expérience aléatoire - modélisation - langage des probabilités I Expérience aléatoire - modélisation - langage des probabilités Une expérience aléatoire est une expérience liée au hasard. Les mathématiques interviennent pour apporter un modèle qui comporte un univers

Plus en détail

Chapitre 7 : Exercices Terminale S, 2014, Lycée Lapérouse

Chapitre 7 : Exercices Terminale S, 2014, Lycée Lapérouse Chapitre 7 : Exercices Terminale S, 2014, Lycée Lapérouse Exercice 1. On lance un dé équilibré à 20 faces numérotées de 1 à 20. On observe le numéro de la face obtenue. 1. Décrire l univers Ω. 1 2. On

Plus en détail

PROBABILITE 4 ème Sc Techniques. a) Définir l univers Ω et calculer son cardinal

PROBABILITE 4 ème Sc Techniques. a) Définir l univers Ω et calculer son cardinal PROBABILITE 4 ème Sc Techniques Exercice On considère une urne contenant 0 jetons identiques : 6 jetons noirs numérotés :,,,,, 4 jetons blancs numérotés :,,, ) On tire simultanément et au hasard jetons

Plus en détail

Probabilités conditionnelles et variables aléatoires

Probabilités conditionnelles et variables aléatoires Probabilités conditionnelles et variables aléatoires Métropole juin 2012 Pour embaucher ses cadres une entreprise fait appel à un cabinet de recrutement. La procédure retenue est la suivante. Le cabinet

Plus en détail

Chapitre 4 - Probabilités conditionnelles

Chapitre 4 - Probabilités conditionnelles Chapitre 4 - Probabilités conditionnelles Dans tout le chapitre, E désigne l ensemble des issues d une expérience aléatoire. I Probabilité conditionnelle TD1 : Réussite au bac Le proviseur d un lycée fait

Plus en détail

EXERCICE 2 EXERCICES DE DENOMBREMENT EXERCICE1. 1. Le nombre 0! : a) est égal à 0 )b est égal à 1 c) n'a pas été défini

EXERCICE 2 EXERCICES DE DENOMBREMENT EXERCICE1. 1. Le nombre 0! : a) est égal à 0 )b est égal à 1 c) n'a pas été défini EXERCICES DE DENOMBREMENT EXERCICE1 Dans chaque cas une des réponses au moins est exacte. 1. Le nombre 0! : a) est égal à 0 )b est égal à 1 c) n'a pas été défini 2. Le nombre de listes à k éléments distincts

Plus en détail

Annexe C. Analyse Combinatoire. C.1 Principe Fondamental de dénombrement

Annexe C. Analyse Combinatoire. C.1 Principe Fondamental de dénombrement Annexe C Analyse Combinatoire C.1 Principe Fondamental de dénombrement Ce principe, principe multiplicatif, est essentiel dans la suite, grossièrement, il dit que si une expérience peut produire m résultats

Plus en détail

4.1 Distribution de fréquences. Loi de probabilité

4.1 Distribution de fréquences. Loi de probabilité Chapitre 4 Probabilités conditionnelles 4.1 Distribution de fréquences. Loi de probabilité 4.1.1 Introduction. Premières définitions Vocabulaire L objet d une étude d un phénomène aléatoire est appelé

Plus en détail

Thème 8 : Probabilités

Thème 8 : Probabilités SAVOIR-FAIRE ÉLÉMENTAIRES EN MATHEMATIQUES pour aborder la classe de première Lycée Bascan : toutes séries Thème 8 : Probabilités Exercice (résolu) On tire au hasard une carte dans un jeu de 3 cartes.

Plus en détail

Dénombrement et probabilités

Dénombrement et probabilités 1. Listes d'éléments d'un ensemble fini... p2 4. Applications aux probabilités... p8 2. Combinaisons... p5 3. Formule du binôme... p6 Copyright meilleurenmaths.com. Tous droits réservés 1. Liste d'éléments

Plus en détail

Leçon 2 Les probabilités

Leçon 2 Les probabilités Leçon Les probabilités Le champ d application des probabilités est très large. Sciences et économie les utilisent beaucoup. En 1 re ES, il s agit de prendre contact avec le vocabulaire et les techniques

Plus en détail

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3.

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3. Exercice n 1 : Une urne contient au départ 0 boules blanches et 10 boules noires indiscernables au toucher. On tire au hasard une boule de l urne : Si la boule est blanche, on la remet dans l urne et on

Plus en détail

Exercice de Probabilités. Série 1 Dénombrements

Exercice de Probabilités. Série 1 Dénombrements Exercice de Probabilités Série 1 Dénombrements CPP 2 ème Année Promo 11 (2004/2005) Probabilités : Série 1 CPP 2 ème Année (2004/2005) 1 Exercice 1 On dispose de quatre boules diérentes : une rouge, une

Plus en détail

Chapitre V : Probabilité : conditionnement et indépendance

Chapitre V : Probabilité : conditionnement et indépendance Chapitre V : Probabilité : conditionnement et indépendance A- Variables aléatoires et lois de probabilités I Loi d une variable aléatoire 1) Définition d une variable aléatoire Exemple : Un jeu de hasard

Plus en détail

NOM : PROBABILITES 1ère S

NOM : PROBABILITES 1ère S Exercice 1 Dans un univers Ω, on donne deux événements A et B incompatibles tels que : p(a) = 0, 2 et p(b) = 0, 7. Calculer p(a B), p(a B), p(a) et p(b). D. LE FUR 1/ 50 Exercice 2 Un dé à 6 faces est

Plus en détail

LOI BINOMIALE. Méthode : Représenter la répétition d'expériences identiques et indépendantes dans un arbre Vidéo https://youtu.

LOI BINOMIALE. Méthode : Représenter la répétition d'expériences identiques et indépendantes dans un arbre Vidéo https://youtu. 1 LOI BINOMIALE I. Répétition d'expériences identiques et indépendantes Exemples : 1) On lance un dé plusieurs fois de suite et on note à chaque fois le résultat. On répète ainsi la même expérience (lancer

Plus en détail

EXERCICES SUR LES PROBABILITÉS

EXERCICES SUR LES PROBABILITÉS EXERCICES SUR LES PROBABILITÉS Exercice 1 On lance un dé parfait et on considère les événements suivants : A = "le nombre obtenu est divisible par 2" B = "le nombre obtenu est divisible par 3" Les événements

Plus en détail

LES PROBABILITÉS. Ch 9

LES PROBABILITÉS. Ch 9 Ch 9 LES PROBABILITÉS Sommaire 0- Objectifs 1- Expérience aléatoire 2- Modèles et probabilités 3- Expérience aléatoire à deux épreuves 4- Simulation d'une expérience aléatoire 0- Objectifs Comprendre et

Plus en détail

Probabilités. Denis Vekemans

Probabilités. Denis Vekemans Probabilités Denis Vekemans Vocabulaire Une expérience aléatoire vérifie trois conditions : elle est reproductible dans les mêmes conditions ; on en connaît tous les résultats possibles ; on ne sait pas

Plus en détail

Sujets. Formulaire. mars Nouvelle-Calédonie. mai Amérique du nord. juin Antilles-Guyane. novembre Nouvelle-Calédonie

Sujets. Formulaire. mars Nouvelle-Calédonie. mai Amérique du nord. juin Antilles-Guyane. novembre Nouvelle-Calédonie PROAILITÉS Sujets mars 2012 mai 2012 juin 2012 novembre 2012 Nouvelle-Calédonie Amérique du nord Antilles-Guyane Nouvelle-Calédonie Formulaire PROAILITÉS 1 Nouvelle-Calédonie mars 2012. EXERCICE 2 On dispose

Plus en détail

Exercices : Probabilités

Exercices : Probabilités Activité 1 : Exercices : Probabilités Problème de Monty Hall Sur le plateau d un jeu télévisé, il y a trois portes dont une cache une voiture et les deux autres une chèvre. Il s agit de choisir une des

Plus en détail

Probabilité, variable aléatoire. Loi binomiale

Probabilité, variable aléatoire. Loi binomiale DERNIÈRE IMPRESSION LE 9 juin 05 à 9:0 Probabilité, variable aléatoire. Loi binomiale Table des matières Loi de probabilité. Conditions préalables............................ Définitions..................................

Plus en détail

Notions de probabilités discrètes finies

Notions de probabilités discrètes finies Notions de probabilités discrètes finies 1) Définitions... 2 Une expérience est dite aléatoire discrète finie si :...2 Événement...2 Réunion d événements :...2 Intersection d événements...2 Événements

Plus en détail

MESURES ET ANALYSES STATISTIQUES DE DONNÉES Probabilités

MESURES ET ANALYSES STATISTIQUES DE DONNÉES Probabilités MESURES ET ANALYSES STATISTIQUES DE DONNÉES Probabilités Master Génie des Systèmes Industriels, mentions ACCIE et RIM Université du Littoral - Côte d Opale, La Citadelle Laurent SMOCH (smoch@lmpa.univ-littoral.fr)

Plus en détail

TS COURS: PROBABILITES 1 Octobre f euille1 LE POINT SUR LES PROBABILITES ={P,F}.

TS COURS: PROBABILITES 1 Octobre f euille1 LE POINT SUR LES PROBABILITES ={P,F}. TS 00-00 COURS: PROBABILITES Octobre f euille LE POINT SUR LES PROBABILITES I VOCABULAIRE Expérience aléatoire: On appelle expérience aléatoire toute expérience donton connaît les conditions de réalisations

Plus en détail

T ale S Exercices type bac de Probabilités. Mars 12. Exercice n 1 : Exercice n 2 : p (B ).

T ale S Exercices type bac de Probabilités. Mars 12. Exercice n 1 : Exercice n 2 : p (B ). Exercice n 1 : Une urne contient au départ 30 boules blanches et 10 boules noires indiscernables au toucher. On tire au hasard une boule de l urne : Si la boule est blanche, on la remet dans l urne et

Plus en détail

Probabilités Problème

Probabilités Problème Probabilités Problème Sont particulièrement abordés dans cette fiche : Exercice 1 : espérance mathématique, variable aléatoire, loi de probabilité, calculs de probabilités, variance, écart-type Le problème

Plus en détail

Sommaire. Théorie de l information Cours 1 - Evénements et probabilités dans un espace probabilisé discret. Expérience aléatoire et épreuve.

Sommaire. Théorie de l information Cours 1 - Evénements et probabilités dans un espace probabilisé discret. Expérience aléatoire et épreuve. Sommaire Théorie de l information Cours 1 - Evénements et probabilités dans un espace probabilisé discret Laurent Oudre laurent.oudre@univ-paris13.fr Université Paris 13, Institut Galilée Master Ingénierie

Plus en détail

Probabilités. On lance une pièce de monnaie. On recommence l'expérience. Voici les résultats obtenus par des élèves de 3A, 3B et 3D :

Probabilités. On lance une pièce de monnaie. On recommence l'expérience. Voici les résultats obtenus par des élèves de 3A, 3B et 3D : Probabilités Exemple des pièces On lance une pièce de monnaie. On recommence l'expérience. Voici les résultats obtenus par des élèves de 3A, 3B et 3D : Nombre de piles 3807 faces 3752 Définitions On appelle

Plus en détail

Probabilités. I Statistique : tableaux à double entrée - arbre pondéré

Probabilités. I Statistique : tableaux à double entrée - arbre pondéré Probabilités I Statistique : tableaux à double entrée - arbre pondéré Ex 1. On donne la répartition des individus constituant un échantillon d une population suivant deux critères qualitatifs : le sexe

Plus en détail

Chapitre III : Probabilités discrètes

Chapitre III : Probabilités discrètes Chapitre III : Probabilités discrètes Extrait du programme : I. Rappels a. Définitions Prop 1 : Une probabilité est toujours comprise entre 0 et 1. Prop 2 Si A est l événement certain, p(a) = 1. Si A est

Plus en détail

Eléments de probabilités

Eléments de probabilités .. Eléments de probabilités Michaël Genin Université de Lille 2 EA 2694 - Santé Publique : Epidémiologie et Qualité des soins michael.genin@univ-lille2.fr Plan. 1 Introduction. 2 Expérience aléatoire.

Plus en détail

I. Vocabulaire des probabilités.(rappels)

I. Vocabulaire des probabilités.(rappels) Probabilités conditionnelles I. Vocabulaire des probabilités.(rappels) ) Expérience aléatoire. Eventualité On lance un dé ou une pièce de monnaie, on tire une carte dans un jeu Seul le hasard intervient.

Plus en détail

Probabilités conditionnelles et indépendance

Probabilités conditionnelles et indépendance Probabilités conditionnelles et indépendance I) Conditionnement par un événement 1) Probabilité de B sachant A a) Définition On considère un univers U d une expérience aléatoire et P une loi de probabilité

Plus en détail

Le principe multiplicatif (notion 2)

Le principe multiplicatif (notion 2) L indépendance (notion 1) (source : académie d Aix-Marseille) Le programme est très clair à ce sujet : «La notion de probabilité conditionnelle est hors programme» Mais pour aborder la loi binomiale, il

Plus en détail

3 ème Cours : Statistiques et probabilité

3 ème Cours : Statistiques et probabilité I Statistiques a) Médiane d une série statistique On appelle médiane d une série statistique ordonnée une valeur du caractère qui partage la série en deux groupes de même effectif tels que : un groupe

Plus en détail

Domaines d'utilité: Objectifs:

Domaines d'utilité: Objectifs: NOM:... PRENOM:... Date:... Classe:... Section:... Domaines d'utilité: - Construction d'arbre de probabilité pour une variable aléatoire discrète. - pproche des dénombrements (combinaison, arrangement,

Plus en détail

Chapitre M5 Statistique et probabilités 6 PROBABILITES 3

Chapitre M5 Statistique et probabilités 6 PROBABILITES 3 TBP Chapitre M5(SP6) Page 1/9 Chapitre M5 Statistique et probabilités 6 PROBABILITES 3 Capacités Passer du langage probabiliste d un événement au langage courant et réciproquement Calculer la probabilité

Plus en détail

Activité d'introduction des notions. Tireur d'élite?

Activité d'introduction des notions. Tireur d'élite? Activité d'introduction des notions. Tireur d'élite? 2) On suppose maintenant qu'il fait six tirs et on note Y le nombre de succès obtenus. (Y {0 ; 1 ;... ; 6}) Activité d'introduction des notions. Tireur

Plus en détail

Exercice 1. Introduction et vocabulaire. On lance un dé non truqué dont les faces sont numérotées de 1 à 6 On considère le nombre obtenu.

Exercice 1. Introduction et vocabulaire. On lance un dé non truqué dont les faces sont numérotées de 1 à 6 On considère le nombre obtenu. Exercice 1. Introduction et vocabulaire. On lance un dé non truqué dont les faces sont numérotées de 1 à 6 On considère le nombre obtenu. Vocabulaire Signification Illustration avec notre exemple Univers

Plus en détail

MVA003. Combinatoire, probabilités ordre, calcul booléen. séance n 7. séance n 7

MVA003. Combinatoire, probabilités ordre, calcul booléen. séance n 7. séance n 7 MVA003 Combinatoire, probabilités ordre, calcul booléen séance n 7 séance n 7 1 MVA003 Chapitre 8 Probabilités combinatoires 1. Épreuves et événements 2. Fréquences et probabilités 3. Lois de probabilité

Plus en détail

PROBABILITÉS. II Rappels : Calcul de probabilités 4

PROBABILITÉS. II Rappels : Calcul de probabilités 4 PROBABILITÉS Table des matières I Rappels : Vocabulaire des événements 2 I. Vocabulaire.............................................. 2 I.2 Intersection et réunion d événements................................

Plus en détail

Chapitre 6 Les probabilités

Chapitre 6 Les probabilités Chapitre 6 Les probabilités A) Rappels de première 1) Vocabulaire a) Expérience aléatoire : C'est une expérience dont le résultat (alea = dé en latin) dépend du hasard. b) Univers : C'est l'ensemble des

Plus en détail

1 ère S Exercices sur les probabilités

1 ère S Exercices sur les probabilités ère S Exercices sur les probabilités On donne dans le tableau ci-dessous les probabilités d apparition de chacune des s d un dé truqué. Face N 4 6 Probabilité d apparition 0, 0, 0, 0, 0, 0, Ce tableau

Plus en détail

BACCALAURÉAT GÉNÉRAL. Session 2015 MATHÉMATIQUES. - Série ES - ENSEIGNEMENT DE SPÉCIALITÉ. Durée de l'épreuve : 3 heures Coefficient : 7

BACCALAURÉAT GÉNÉRAL. Session 2015 MATHÉMATIQUES. - Série ES - ENSEIGNEMENT DE SPÉCIALITÉ. Durée de l'épreuve : 3 heures Coefficient : 7 BACCALAURÉAT GÉNÉRAL Session 2015 MATHÉMATIQUES - Série ES - ENSEIGNEMENT DE SPÉCIALITÉ Durée de l'épreuve : 3 heures Coefficient : 7 Les calculatrices électroniques de poche sont autorisées, conformément

Plus en détail

PROBABILITÉS. D après un texte

PROBABILITÉS. D après un texte PROBABILITÉS I Traduction des données en termes de probabilités D après un texte Exercice : On sait que 5% des individus d une population lycéenne pratiquent le cyclisme, que % pratiquent le tennis et

Plus en détail

DÉNOMBREMENT ET PROBABILITÉS

DÉNOMBREMENT ET PROBABILITÉS DÉNOMBREMENT ET PROBABILITÉS H. Hocquard HSE 2016-2017 Hervé Hocquard DÉNOMBREMENT ET PROBABILITÉS 1/36 Probabilités vs Statistiques Exemple introductif Un joueur parie sur le lancer d un dé, s il a raison

Plus en détail

Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini.

Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini. Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini. 1 Introduction Des actions comme lancer un dé, tirer une carte d un jeu, observer la durée de vie d une ampoule électrique, etc...sont

Plus en détail

1 Probabilités-Rappel

1 Probabilités-Rappel Chapitre Probabilités sur un ensemble fini - Probabilités conditionnelles 1 Probabilités-Rappel On lance un dé non truqué à six faces numérotées de 1 à 6 et on note le nombre figurant sur la face supérieure

Plus en détail

Ce polycopié résume les bases essentielles pour aborder le programme de terminale.

Ce polycopié résume les bases essentielles pour aborder le programme de terminale. PROBABILITE ere S Ce polycopié résume les bases essentielles pour aborder le programme de terminale..simulation d'une expérience aléatoire : Lorsque le résultat d'une expérience est imprévisible, c'est

Plus en détail

1. On désigne par A et B deux évènements indépendants d un univers muni d une loi de probabilité p.

1. On désigne par A et B deux évènements indépendants d un univers muni d une loi de probabilité p. 2011 Pondichéry ex 3 (5 pts) Un jeu consiste à lancer des fléchettes sur une cible. La cible est partagée en quatre secteurs, comme indiqué sur la figure ci-dessous. On suppose que les lancers sont indépendants

Plus en détail

Q.C.M. : dénombrements et probabilités

Q.C.M. : dénombrements et probabilités Q..M. : dénombrements et probabilités Dans le cadre du travail entrepris par Py-Math dans le bulletin n 6 sur les Q..M., nous avons sollicité l aide d un spécialiste de l évaluation. M. Antoine Bodin est

Plus en détail

Analyse Combinatoire Probabilité Site MathsTICE de Adama Traoré Lycée Technique Bamako

Analyse Combinatoire Probabilité Site MathsTICE de Adama Traoré Lycée Technique Bamako Analyse Combinatoire Probabilité Site MathsTICE de Adama Traoré Lycée Technique Bamako Exercice 1 Les élèves d une classe sont choisis au hasard l un après l autre pour subir un examen. Calculer la probabilité

Plus en détail

Exercices de probabilités

Exercices de probabilités Exercices de probabilités Exercice 1 On écrit sur les faces d un dé cubique les lettres du mot oiseau. On lance le dé et on regarde la lettre inscrite sur sa face supérieure. 1. Donner l ensemble des issues

Plus en détail

Exercice 1 : En vue d étudier ses préférences alimentaires, le chien Motus a le choix chaque soir entre un et un seul des deux menus suivants : - des

Exercice 1 : En vue d étudier ses préférences alimentaires, le chien Motus a le choix chaque soir entre un et un seul des deux menus suivants : - des Exercice : En vue d étudier ses préférences alimentaires, le chien Motus a le choix chaque soir entre un et un seul des deux menus suivants : - des croquettes ; - une soupe avec de la viande et des pâtes

Plus en détail

Probabilité, variable aléatoire. Loi binomiale

Probabilité, variable aléatoire. Loi binomiale Exercices dernière impression le 6 juin 2016 à 10:07 Probabilité, variable aléatoire. Loi binomiale Loi de probabilité Exercice 1 Dans une urne, il y a 3 boules vertes (V), 3 bleues (B) et 4 jaunes (J).

Plus en détail

2016/2017 Première Année Médecine. Probabilités. Chapitre I. Analyse combinatoire. Stylo, livre, bureau, cahier. Liste formé de (k) éléments

2016/2017 Première Année Médecine. Probabilités. Chapitre I. Analyse combinatoire. Stylo, livre, bureau, cahier. Liste formé de (k) éléments 2016/2017 Première Année Médecine Département de Médecine Faculté de Constantine Probabilités Chapitre I. Analyse combinatoire Former des listes des éléments de (k) éléments à partir de (n) éléments suivant

Plus en détail

STATISTIQUE. somme des produits des nombres de la serie par leur coefficients effectif total de la série

STATISTIQUE. somme des produits des nombres de la serie par leur coefficients effectif total de la série STATISTIQUE ) - Vocabulaire La statistique étudie certaines caractéristiques ou variables d'un ensemble fini appelé population. Les éléments de cette population étudiée sont des individus. 2 ) Moyenne

Plus en détail

TS 2016 Cours Complété Ch8. Probabilité Conditionnelle

TS 2016 Cours Complété Ch8. Probabilité Conditionnelle 1. Un exemple de construction d arbre pondéré : On étudie une certaine allergie et son lien éventuel avec un antécédent familial (parent ou grand parent souffrant de la même allergie). On prélève au hasard

Plus en détail

Métropole-La Réunion-juin-2015.

Métropole-La Réunion-juin-2015. Métropole-La Réunion-juin-25. Exercice 5 points. On considère l'équation (E) à résoudre dans Z : 7 x 5 y= a. Vérifier que le couple (;) est solution de (E). b. Montrer que le couple (x ; y) est solution

Plus en détail

Dénombrement. I Utilisation de diagrammes, de tableaux, d'arbres. Exemple. Exercice 01

Dénombrement. I Utilisation de diagrammes, de tableaux, d'arbres. Exemple. Exercice 01 Dénombrement I Utilisation de diagrammes, de tableaux, d'arbres Un centre de loisirs accueille 100 enfants Deux sports sont proposés : le football et le tennis A la question : Aimez-vous le football? 60

Plus en détail

Leçon 5 Les probabilités

Leçon 5 Les probabilités Leçon 5 Les probabilités Les champs d application des probabilités sont très larges. Sciences et économie les utilisent beaucoup et l étude des jeux comme l exemple de la leçon précédente le montre bien.

Plus en détail

Extraits de sujets d'examens

Extraits de sujets d'examens NOM:... PRENOM:... Date:... Classe:... Section:... Extraits de sujets d'examens Thème: Probabilités Table des matières EXERCICE 2012_Gr_C: (Extrait du sujet Groupement C Session 2012)...2 EXERCICE 2007_Gr_C:

Plus en détail

Probabilités. Chacun des résultats possibles d une expérience est une issue de l expérience.

Probabilités. Chacun des résultats possibles d une expérience est une issue de l expérience. Probabilités I) Vocabulaire et probabilités 1) Issues Chacun des résultats possibles d une expérience est une issue de l expérience. 2) Evènements Un évènement est une condition qui peut être, ou ne pas

Plus en détail

Chapitre VIII : Variable aléatoire et loi de probabilité Extrait du programme :

Chapitre VIII : Variable aléatoire et loi de probabilité Extrait du programme : Chapitre VIII : Variable aléatoire et loi de probabilité Extrait du programme : I. Vocabulaire et propriétés des probabilités 1. Vocabulaire sur les événements Vocabulaire Définition Exemples Expérience

Plus en détail