Apprentissage d automates sur les protéines
|
|
|
- Lucie Jacques
- il y a 10 ans
- Total affichages :
Transcription
1 Apprentissage d automates sur les protéines Approche par fusion de fragments significativement similaires (Jobim 04) François Coste, Goulven Kerbellec, Boris Idmont, Daniel Fredouille Christian Delamarche ACI Genoto3D, 22 juin 2004 Caractérisation d une famille de protéines Exple : Protéines «en doigt de zinc» Z...YLGPLNCKSCWQKFDSFSKCHDHYLCRHCLNLLL... ZFH2...ILMCFICKLSFGNVKSFSLHANTEHRLNL... ZNF236...HKCEICLLSFPKESQFQRHMRDHE... C-x(2,4)-C-x(3)-[LIVMFYWC]-x(8)-H-x(3,5)-H x x x x x x x x x x x C H x \ / x x Zn x x / \ x C H x x x x x x x x x x
2 Motif C2H2 pour la famille Zinc finger C-x(2,4)-C-x(3)-[LIVMFYWC]-x(8)-H-x(3,5)-H 416 séquences Zinc finger motif C2H2 contenu dans : 372 Zinc finger 34 protéines non Zinc finger 6 protéines candidates Zinc finger Caractérisation de séquences Motifs (A. Brazma) : Classe A B C D E F G H I Exemple t-c-t-t-g-a D-R-C-C-x(2)-H-D-x-C G-G-G-T-F-D-[ILV]-[ST]-[ILV] V-x-P-x(2)-[RQ]-x(4)-G-x(2)-L-[LM] G-C-x(1,3)-C-P-x(8,10)-C-C C-x(2,4)-C-x(3)-[ILVFYC]-x(8)-H-x(3,5)-H (Prosite, Pratt) G-G-G-T-F-D-*- D-R-C-C-P G-G-G-T-F-[DE]-*- D-R-C-[PAR]-C G-G-G-x(2,5)-T-F-[DE]-*-D-x(0,1)-C-[PAR]-C - Caractères anonymes fixe ou variable x(2), x(2,4) - Regroupement de caractères [ILV] - Association de pattern P1-*-P2
3 Caractérisation de séquences Motifs : Classe A B C D E F G H I J K M N Exemple t-c-t-t-g-a D-R-C-C-x(2)-H-D-x-C G-G-G-T-F-D-[ILV]-[ST]-[ILV] V-x-P-x(2)-[RQ]-x(4)-G-x(2)-L-[LM] G-C-x(1,3)-C-P-x(8,10)-C-C C-x(2,4)-C-x(3)-[ILVFYC]-x(8)-H-x(3,5)-H (Prosite, Pratt) G-G-G-T-F-D-*- D-R-C-C-P G-G-G-T-F-[DE]-*- D-R-C-[PAR]-C G-G-G-x(2,5)-T-F-[DE]-*-D-x(0,1)-C-[PAR]-C Expression régulière/grammaire régulière/automate Grammaire algébrique Grammaire contextuelle Grammaire à structure de phrase Prosite ~ position : «local» x(2,5) pas M1-*-M2 Prosite vs Régulier Pas de corrélation possible [AC]-[AC] si A alors ensuite C sinon?
4 Découverte de motifs : méthode PROSITE Découverte de motifs : méthodes automatiques 1) Pratt (I. Jonassen 1996) 2) Splash (A. Califano 2000), Teiresias (Rigoutsos 1998) 3) Gibbs Motif Sampler (C. Lawrence 1993) 4) Meme et MetaMeme (T. Bailey 1995)
5 Inférence Grammaticale Apprentissage automatique de modèles «grammaticaux» à partir de séquences Apprenabilité R CF RECS RE Languages Automaton Grammar Recognition Dependency Biology Recursively Enumerable Turing Machine Unrestricted Baa A Undecidable Arbitrary Unknown Context- Sensitive Linear-Bounded Context- Sensitive At aa NP-Complete Crossing Pseudoknots, etc. Context-Free Pushdown (stack) Context-Free S gsc Polynomial Nested Orthodox 2 o Structure Regular Finite-State Machine Regular A ca Linear Strictly Local Central Dogma
6 Les Automates F M A P I K Un automates est défini par : un ensemble d états un ensemble de transitions des états initiaux des états finaux un alphabet auquel appartient chaque transition «Structure d un HMM» Algorithmes par fusions d états
7 Algorithmes par fusions d états Heuristique EDSM Abbadingo 1998, Automates déterministes Fusion pour déterminisation a a a MCA(S+,S-)-> PTA(S+,S-) Heuristique choix de (p,q) : EDSM [Price, Lang] Score de fusion de (p,q) = #{état final} Fusions les plus sûres d abord Ressemblance des 2 sous-arbres (attestée par les états finaux)
8 EDSM sur les protéines Ça marche pas Séquences longues, taille alphabet Notion d état final? Déterminisme? Garder idées d évidence et de ressemblance Enlever état final et déterminisme Approche par fusion de fragments significativement similaires Fragments significativement similaires Conservation par sélection naturelle Zones «importantes» Paires de fragments significativement similaires DIALIGN2 Ensemble de paires de fragments similaires (Blossum) avec indice de la significativité de la similarité Fusion de paires de fragments L N P A I C N P T V T F L N P [A,T] [I,V] C T F
9 Approche par fusion de fragments Échantillon d apprentissage Liste de paires de fragments Liste triée MCA FUSIONS Automate Procedure fma(s,ω) S : échantillon d apprentissage ω : seuil de similarité 1. A MCA(S) 2. F fragments_significatifs(s,ω) 3. F trier(f) 4. pour tout p=<f1,f2> dans F faire 5. si fusion_fragment_acceptable(a,f1,f2) 6. alors A fusion_fragment(a,f1,f2) 7. fsi 8. fpour 9. retourne A
10 Ordonnancement des paires de fragments Préservation des fragments Ordre important Réordonnancement des paires de fragments : Significativité (score Dialign) S+ Support S+ (dans les autres séquences de la paire de fragments) pf = <f1,f2> est supportée par f si w(f,f1) + w(f,f2) w(f1,f2) Indice d implication I.C. Lerman S+,S- (non présence dans des contre-exemples) Entropie S1,S2 Généralisation 1. Suppression des états non caractéristiques 2. Détection des propriétés physico-chimiques et extension
11 Etape de généralisation 1 Fusion sur elles-mêmes des parties non caractéristiques («gaps») Etape de généralisation 2 Fragments similaires ~ localisation d une sélection / fonction Positionne en vis à vis des aa Propriétés physico-chimiques en jeu? Généralisation à groupe de Taylor (ou autres ) I,V C I,Q,W,P aliphatique non informatif I,L,V C x
12 1ères expérimentations sur les MIPS 36 AQP 16 Glpf (Moins de 90% de similarité) 41 séquences non MIPS (obtenue par blast) Apprentissages «leave one out» Pour plusieurs nombres de fragments fixés pour comparer heuristiques 1ères expérimentations sur les MIPS
13 1ères expérimentations sur les MIPS Influence tri Apprentissage AQP, automate taille 80 Similarité AQP GLPF Blast non MIP Nombre d'erreurs nécessaires pour parser les séquences
14 Influence tri Apprentissage AQP, automate taille 80 Support AQP GLPF Bl ast non MIP Nombre d'erreurs nécessaires pour parser les séquences Influence tri Apprentissage AQP, automate taille 80 Indice d'implication AQP GLPF Bl ast non MIP Nombre d'erreurs nécessaires pour parser les séquences
15 Approche par fusion de fragments similaires Apprentissage d automates Sans alignement multiple Approche souple (paires de fragments) Différents scores pour caractérisation, caractérisation avec contre-exemples, discrimination Taille de l automate variable du motif discriminant «à la Prosite» au «consensus» Identification et localisation de propriétés physico-chimiques Aspects structuraux? Aspects structuraux?
16 Aspects structuraux? A développer Apprentissage d automates «pertinents» à systématiser à vérifier sur d autres familles de protéines Influence paramètres à étudier : nombre de fragments %séquences pour généralisation gap (sous-familles?) choix des groupes physico-chimiques pertinents Taille optimale automate : MDL? Approches discrimination (score «entropie»)? Quand généraliser à un groupe de Taylor (estimer le bon «remplissage» d un groupe)? Intégrer les covariations d acides aminés? Algorithmique Probabilités
Identification de nouveaux membres dans des familles d'interleukines
Identification de nouveaux membres dans des familles d'interleukines Nicolas Beaume Jérôme Mickolajczak Gérard Ramstein Yannick Jacques 1ère partie : Définition de la problématique Les familles de gènes
La gestion de données dans le cadre d une application de recherche d alignement de séquence : BLAST.
La gestion de données dans le cadre d une application de recherche d alignement de séquence : BLAST. Gaël Le Mahec - p. 1/12 L algorithme BLAST. Basic Local Alignment Search Tool est un algorithme de recherche
Relation entre deux variables : estimation de la corrélation linéaire
CHAPITRE 3 Relation entre deux variables : estimation de la corrélation linéaire Parmi les analyses statistiques descriptives, l une d entre elles est particulièrement utilisée pour mettre en évidence
MABioVis. Bio-informatique et la
MABioVis Modèles et Algorithmes pour la Bio-informatique et la Visualisation Visite ENS Cachan 5 janvier 2011 MABioVis G GUY MELANÇON (PR UFR Maths Info / EPI GRAVITE) (là, maintenant) - MABioVis DAVID
Objectifs du cours d aujourd hui. Informatique II : Cours d introduction à l informatique et à la programmation objet. Complexité d un problème (2)
Objectifs du cours d aujourd hui Informatique II : Cours d introduction à l informatique et à la programmation objet Complexité des problèmes Introduire la notion de complexité d un problème Présenter
La reconnaissance moléculaire: la base du design rationnel Modélisation moléculaire: Introduction Hiver 2006
La reconnaissance moléculaire: la base du design rationnel En 1890 Emil Fisher a proposé le modèle "serrure et clé" pour expliquer la façon de fonctionner des systèmes biologiques. Un substrat rentre et
Objectifs. Clustering. Principe. Applications. Applications. Cartes de crédits. Remarques. Biologie, Génomique
Objectifs Clustering On ne sait pas ce qu on veut trouver : on laisse l algorithme nous proposer un modèle. On pense qu il existe des similarités entre les exemples. Qui se ressemble s assemble p. /55
Transducteurs d arbres et (peut-être un peu) apprentissage
Transducteurs d arbres et (peut-être un peu) apprentissage A. Lemay 2006 Taxonomie des transducteurs d arbres Syntax Directed translation (Irons 60) Attributed Tree Transducers (Knuth 68, Fülop 81) Rational
6. Hachage. Accès aux données d'une table avec un temps constant Utilisation d'une fonction pour le calcul d'adresses
6. Hachage Accès aux données d'une table avec un temps constant Utilisation d'une fonction pour le calcul d'adresses PLAN Définition Fonctions de Hachage Méthodes de résolution de collisions Estimation
Intégration de la dimension sémantique dans les réseaux sociaux
Intégration de la dimension sémantique dans les réseaux sociaux Application : systèmes de recommandation Maria Malek LARIS-EISTI [email protected] 1 Contexte : Recommandation dans les réseaux sociaux
Semestre 2 Spécialité «Analyse in silico des complexes macromolécules biologiques-médicaments»
Master In silico Drug Design Semestre 2 Spécialité «Analyse in silico des complexes macromolécules biologiques-médicaments» 30NU01IS INITIATION A LA PROGRAMMATION (6 ECTS) Responsables : D. MESTIVIER,
Déroulement d un projet en DATA MINING, préparation et analyse des données. Walid AYADI
1 Déroulement d un projet en DATA MINING, préparation et analyse des données Walid AYADI 2 Les étapes d un projet Choix du sujet - Définition des objectifs Inventaire des données existantes Collecte, nettoyage
Apprentissage statistique dans les graphes et les réseaux sociaux
Apprentissage statistique dans les graphes et les réseaux sociaux Patrick Gallinari Collaboration : L. Denoyer, S. Peters Université Pierre et Marie Curie AAFD 2010 1 Plan Motivations et Problématique
Tableau 1 : Structure du tableau des données individuelles. INDIV B i1 1 i2 2 i3 2 i4 1 i5 2 i6 2 i7 1 i8 1
UN GROUPE D INDIVIDUS Un groupe d individus décrit par une variable qualitative binaire DÉCRIT PAR UNE VARIABLE QUALITATIVE BINAIRE ANALYSER UN SOUS-GROUPE COMPARER UN SOUS-GROUPE À UNE RÉFÉRENCE Mots-clés
K. Ammar, F. Bachoc, JM. Martinez. Séminaire ARISTOTE - 23 octobre 2014 - Palaiseau
Apport des modèles de krigeage à la simulation numérique K Ammar, F Bachoc, JM Martinez CEA-Saclay, DEN, DM2S, F-91191 Gif-sur-Yvette, France Séminaire ARISTOTE - 23 octobre 2014 - Palaiseau Apport des
Les BRMS Business Rules Management System. Groupe GENITECH
Les BRMS Business Rules Management System 1 Présentations Emmanuel Bonnet ebonnet (at) genigraph.fr Responsable Dpt Conseil Consultant, Expert BRMS Formateur IBM/Ilog JRules / JBoss Rules Génigraph SSII
Big Data et Graphes : Quelques pistes de recherche
Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci http://liris.cnrs.fr/hamamache.kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de
Approche par groupe de gènes pour les données longitudinales d expression génique avec une application dans un essai vaccinal contre le VIH
Approche par groupe de gènes pour les données longitudinales d expression génique avec une application dans un essai vaccinal contre le VIH Boris Hejblum 1,2,3 & Rodolphe Thiébaut 1,2,3 1 Inserm, U897
Chap 4: Analyse syntaxique. Prof. M.D. RAHMANI Compilation SMI- S5 2013/14 1
Chap 4: Analyse syntaxique 1 III- L'analyse syntaxique: 1- Le rôle d'un analyseur syntaxique 2- Grammaires non contextuelles 3- Ecriture d'une grammaire 4- Les méthodes d'analyse 5- L'analyse LL(1) 6-
Techniques du Data Mining pour la prédiction de faillite des entreprises et la gestion du risque de crédit
Techniques du Data Mining pour la prédiction de faillite des entreprises et la gestion du risque de crédit Adil Belhouari HEC - Montréal - Journées de l Optimisation 2005-09 Mai 2005 PLAN DE LA PRÉSENTATION
Tableau de bord. Tableau de bord. Statistiques des contenus de votre site (nb de pages, articles, commentaires...)
Tutoriel WORDPRESS Tableau de bord 3 Tableau de bord Statistiques des contenus de votre site (nb de pages, articles, commentaires...) Press-Minute est un outils de publication rapide ou de préparation
CHAPITRE VI ALEAS. 6.1.Généralités.
CHAPITRE VI ALEAS 6.1.Généralités. Lors de la synthèse des systèmes logique (combinatoires ou séquentiels), nous avons supposé, implicitement, qu une même variable secondaire avait toujours la même valeur
Gestion d événements et modulation dynamique de choix sous Sphinx par calcul de contraintes en temps réel.
Gestion d événements et modulation dynamique de choix sous Sphinx par calcul de contraintes en temps réel. Entreprise ou organisme : ICN Business School Activité de l'entreprise ou de l'organisme : Par
Resolution limit in community detection
Introduction Plan 2006 Introduction Plan Introduction Introduction Plan Introduction Point de départ : un graphe et des sous-graphes. But : quantifier le fait que les sous-graphes choisis sont des modules.
IMMUNOLOGIE. La spécificité des immunoglobulines et des récepteurs T. Informations scientifiques
IMMUNOLOGIE La spécificité des immunoglobulines et des récepteurs T Informations scientifiques L infection par le VIH entraîne des réactions immunitaires de l organisme qui se traduisent par la production
La classification automatique de données quantitatives
La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations
Modélisation du comportement habituel de la personne en smarthome
Modélisation du comportement habituel de la personne en smarthome Arnaud Paris, Selma Arbaoui, Nathalie Cislo, Adnen El-Amraoui, Nacim Ramdani Université d Orléans, INSA-CVL, Laboratoire PRISME 26 mai
Pourquoi l apprentissage?
Pourquoi l apprentissage? Les SE sont basés sur la possibilité d extraire la connaissance d un expert sous forme de règles. Dépend fortement de la capacité à extraire et formaliser ces connaissances. Apprentissage
Exploitation et analyse des données appliquées aux techniques d enquête par sondage. Introduction.
Exploitation et analyse des données appliquées aux techniques d enquête par sondage. Introduction. Etudes et traitements statistiques des données : le cas illustratif de la démarche par sondage INTRODUCTION
Méthodes de Simulation
Méthodes de Simulation JEAN-YVES TOURNERET Institut de recherche en informatique de Toulouse (IRIT) ENSEEIHT, Toulouse, France Peyresq06 p. 1/41 Remerciements Christian Robert : pour ses excellents transparents
Cours d Analyse. Fonctions de plusieurs variables
Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........
Validation probabiliste d un Système de Prévision d Ensemble
Validation probabiliste d un Système de Prévision d Ensemble Guillem Candille, janvier 2006 Système de Prévision d Ensemble (EPS) (ECMWF Newsletter 90, 2001) Plan 1 Critères de validation probabiliste
Master IAD Module PS. Reconnaissance de la parole (suite) Alignement temporel et Programmation dynamique. Gaël RICHARD Février 2008
Master IAD Module PS Reconnaissance de la parole (suite) Alignement temporel et Programmation dynamique Gaël RICHARD Février 2008 1 Reconnaissance de la parole Introduction Approches pour la reconnaissance
INF6304 Interfaces Intelligentes
INF6304 Interfaces Intelligentes filtres collaboratifs 1/42 INF6304 Interfaces Intelligentes Systèmes de recommandations, Approches filtres collaboratifs Michel C. Desmarais Génie informatique et génie
Apprentissage Automatique
Apprentissage Automatique Introduction-I [email protected] www.lia.univ-avignon.fr Définition? (Wikipedia) L'apprentissage automatique (machine-learning en anglais) est un des champs
Plus courts chemins, programmation dynamique
1 Plus courts chemins, programmation dynamique 1. Plus courts chemins à partir d un sommet 2. Plus courts chemins entre tous les sommets 3. Semi-anneau 4. Programmation dynamique 5. Applications à la bio-informatique
Calculabilité Cours 3 : Problèmes non-calculables. http://www.irisa.fr/lande/pichardie/l3/log/
Calculabilité Cours 3 : Problèmes non-calculables http://www.irisa.fr/lande/pichardie/l3/log/ Problèmes et classes de décidabilité Problèmes et classes de décidabilité Nous nous intéressons aux problèmes
Les Autorisations de Mise sur le Marché (AMM) délivrées au titre du Règlement (UE) n 528/2012 (dit BPR)
Les mardis de la DGPR 17/09/2013 Les Autorisations de Mise sur le Marché (AMM) délivrées au titre du Règlement (UE) n 528/2012 (dit BPR) Direction générale de la prévention des risques Service de la prévention
Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1
Exemples de problèmes et d applications INF6953 Exemples de problèmes Sommaire Quelques domaines d application Quelques problèmes réels Allocation de fréquences dans les réseaux radio-mobiles Affectation
LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»
LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers
François Émond psychologue 2003 Centre François-Michelle. Liste des 24 catégories de connaissances et compétences à développer
Programme par Cœur François Émond psychologue 2003 Centre François-Michelle Trousse de consolidation des connaissances et compétences scolaires Attention, mémoire, raisonnement, stratégies, habiletés linguistiques
Chapitre 7. Récurrences
Chapitre 7 Récurrences 333 Plan 1. Introduction 2. Applications 3. Classification des récurrences 4. Résolution de récurrences 5. Résumé et comparaisons Lectures conseillées : I MCS, chapitre 20. I Rosen,
Introduction au Data-Mining
Introduction au Data-Mining Alain Rakotomamonjy - Gilles Gasso. INSA Rouen -Département ASI Laboratoire PSI Introduction au Data-Mining p. 1/25 Data-Mining : Kèkecé? Traduction : Fouille de données. Terme
Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar [email protected]
Intelligence Artificielle et Systèmes Multi-Agents Badr Benmammar [email protected] Plan La première partie : L intelligence artificielle (IA) Définition de l intelligence artificielle (IA) Domaines
Nouvelles propositions pour la résolution exacte du problème de sac à dos bi-objectif unidimensionnel en variables binaires
Nouvelles propositions pour la résolution exacte du problème de sac à dos bi-objectif unidimensionnel en variables binaires Julien Jorge, Xavier Gandibleux Laboratoire d Informatique de Nantes Atlantique
# let rec concat l1 l2 = match l1 with [] -> l2 x::l 1 -> x::(concat l 1 l2);; val concat : a list -> a list -> a list = <fun>
94 Programmation en OCaml 5.4.8. Concaténation de deux listes Définissons maintenant la fonction concat qui met bout à bout deux listes. Ainsi, si l1 et l2 sont deux listes quelconques, concat l1 l2 constitue
Manuel PRO G DIS / AHI
Manuel PRO G DIS / AHI 30/01/2013 Manuel général Sommaire Lancement de Pro G Dis... 4 Ouverture de l application... 4 Gestion des Mots de Passe... 5 Système par Niveau :... 5 Modification des Password
Perl Orienté Objet BioPerl There is more than one way to do it
Perl Orienté Objet BioPerl There is more than one way to do it Bérénice Batut, [email protected] DUT Génie Biologique Option Bioinformatique Année 2014-2015 Perl Orienté Objet - BioPerl Rappels
Big data et sciences du Vivant L'exemple du séquençage haut débit
Big data et sciences du Vivant L'exemple du séquençage haut débit C. Gaspin, C. Hoede, C. Klopp, D. Laborie, J. Mariette, C. Noirot, MS. Trotard [email protected] INRA - MIAT - Plate-forme
Cours de Master Recherche
Cours de Master Recherche Spécialité CODE : Résolution de problèmes combinatoires Christine Solnon LIRIS, UMR 5205 CNRS / Université Lyon 1 2007 Rappel du plan du cours 16 heures de cours 1 - Introduction
GUIDE Excel (version débutante) Version 2013
Table des matières GUIDE Excel (version débutante) Version 2013 1. Créer un nouveau document Excel... 3 2. Modifier un document Excel... 3 3. La fenêtre Excel... 4 4. Les rubans... 4 5. Saisir du texte
Introduction au datamining
Introduction au datamining Patrick Naïm janvier 2005 Définition Définition Historique Mot utilisé au départ par les statisticiens Le mot indiquait une utilisation intensive des données conduisant à des
LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN
LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN Les contenues de ce document sont la propriété exclusive de la société REVER. Ils ne sont transmis qu à titre d information et ne peuvent en aucun cas
Conception. Génie Logiciel. Renaud Marlet. LaBRI / INRIA http://www.labri.fr/~marlet. (d'après A.-M. Hugues) màj 17/04/2007
1 Génie Logiciel (d'après A.-M. Hugues) Conception Renaud Marlet LaBRI / INRIA http://www.labri.fr/~marlet màj 17/04/2007 2 Position dans le cycle de vie Contexte : étant donnée une spécification (ce que
Il permet d introduire une première réflexion sur le monde de l entreprise, et en particulier de la PME.
Réfléchir sur les qualités d un chef d entreprise permet au jeune d entrer en douceur dans le monde du travail et de désacraliser le métier de patron. Objectifs : Permettre au jeune de : Prendre connaissance
Introduction à l approche bootstrap
Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?
Reconnaissance de visages 2.5D par fusion des indices de texture et de profondeur ICI 12/12/12
Reconnaissance de visages 2.5D par fusion des indices de texture et de profondeur ICI 12/12/12 2 Discrimination Invariance Expressions faciales Age Pose Eclairage 11/12/2012 3 Personne Inconnue Identité
TP Bases de données réparties
page 1 TP Bases de données réparties requêtes réparties Version corrigée Auteur : Hubert Naacke, révision 5 mars 2003 Mots-clés: bases de données réparties, fragmentation, schéma de placement, lien, jointure
Introduction au Data-Mining
Introduction au Data-Mining Gilles Gasso, Stéphane Canu INSA Rouen -Département ASI Laboratoire LITIS 8 septembre 205. Ce cours est librement inspiré du cours DM de Alain Rakotomamonjy Gilles Gasso, Stéphane
4.2 Unités d enseignement du M1
88 CHAPITRE 4. DESCRIPTION DES UNITÉS D ENSEIGNEMENT 4.2 Unités d enseignement du M1 Tous les cours sont de 6 ECTS. Modélisation, optimisation et complexité des algorithmes (code RCP106) Objectif : Présenter
FORMATION CONTINUE SUR L UTILISATION D EXCEL DANS L ENSEIGNEMENT Expérience de l E.N.S de Tétouan (Maroc)
87 FORMATION CONTINUE SUR L UTILISATION D EXCEL DANS L ENSEIGNEMENT Expérience de l E.N.S de Tétouan (Maroc) Dans le cadre de la réforme pédagogique et de l intérêt que porte le Ministère de l Éducation
Les arbres binaires de recherche
Institut Galilée Année 2010-2011 Algorithmique et arbres L2 TD 6 Les arbres binaires de recherche Type en C des arbres binaires (également utilisé pour les ABR) : typedef struct noeud_s { struct noeud_s
Le Data Mining au service du Scoring ou notation statistique des emprunteurs!
France Le Data Mining au service du Scoring ou notation statistique des emprunteurs! Comme le rappelle la CNIL dans sa délibération n 88-083 du 5 Juillet 1988 portant adoption d une recommandation relative
ELEMENTS DE BUREAUTIQUE
MINISTERE DE LA COMMUNAUTE FRANCAISE ADMINISTRATION GENERALE DE L ENSEIGNEMENTET DE LA RECHERCHE SCIENTIFIQUE ENSEIGNEMENT DE PROMOTION SOCIALE DE REGIME 1 DOSSIER PEDAGOGIQUE UNITE DE FORMATION ELEMENTS
Annexe 6. Notions d ordonnancement.
Annexe 6. Notions d ordonnancement. APP3 Optimisation Combinatoire: problèmes sur-contraints et ordonnancement. Mines-Nantes, option GIPAD, 2011-2012. [email protected] Résumé Ce document
a) La technique de l analyse discriminante linéaire : une brève présentation. 3 étapes de la méthode doivent être distinguées :
a) La technique de l analyse discriminante linéaire : une brève présentation. Nous nous limiterons ici à l'analyse discriminante linéaire et à deux groupes : - linéaire, la variante utilisée par ALTMAN
1 de 46. Algorithmique. Trouver et Trier. Florent Hivert. Mél : [email protected] Page personnelle : http://www.lri.fr/ hivert
1 de 46 Algorithmique Trouver et Trier Florent Hivert Mél : [email protected] Page personnelle : http://www.lri.fr/ hivert 2 de 46 Algorithmes et structures de données La plupart des bons algorithmes
ANNÉE D INITIATION AU LEADERSHIP À L INTENTION DES AUTOCHTONES (AILA) RENSEIGNEMENTS ET QUESTIONNAIRE À L INTENTION DES POSTULANTS PARTIE I
RENSEIGNEMENTS ET QUESTIONNAIRE À L INTENTION DES POSTULANTS RENSEIGNEMENTS ET INSTRUCTIONS GÉNÉRALES PARTIE I 1. Ce document se divise en trois parties. La Partie I (pages I-1/2 à I-2/2) présente des
Application 1- VBA : Test de comportements d'investissements
Application 1- VBA : Test de comportements d'investissements Notions mobilisées Chapitres 1 à 5 du cours - Exemple de récupération de cours en ligne 1ère approche des objets (feuilles et classeurs). Corps
(51) Int Cl.: H04L 29/06 (2006.01) G06F 21/55 (2013.01)
(19) TEPZZ 8 8 4_A_T (11) EP 2 838 241 A1 (12) DEMANDE DE BREVET EUROPEEN (43) Date de publication: 18.02.1 Bulletin 1/08 (1) Int Cl.: H04L 29/06 (06.01) G06F 21/ (13.01) (21) Numéro de dépôt: 141781.4
Introduction aux Statistiques et à l utilisation du logiciel R
Introduction aux Statistiques et à l utilisation du logiciel R Christophe Lalanne Christophe Pallier 1 Introduction 2 Comparaisons de deux moyennes 2.1 Objet de l étude On a mesuré le temps de sommeil
Informatique Théorique : Théorie des Langages, Analyse Lexicale, Analyse Syntaxique Jean-Pierre Jouannaud Professeur
Université Paris-Sud Licence d Informatique Informatique Théorique : Théorie des Langages, Analyse Lexicale, Analyse Syntaxique Jean-Pierre Jouannaud Professeur Adresse de l auteur : LIX École Polytechnique
Ordonnancement. N: nains de jardin. X: peinture extérieure. E: électricité T: toit. M: murs. F: fondations CHAPTER 1
CHAPTER 1 Ordonnancement 1.1. Étude de cas Ordonnancement de tâches avec contraintes de précédences 1.1.1. Exemple : construction d'une maison. Exercice. On veut construire une maison, ce qui consiste
Compléments de documentation Scilab : affichage de texte et formatage de nombres
Université des Sciences et Technologies de Lille U.F.R. de Mathématiques Pures et Appliquées Agrégation externe Année 2002-2003 Compléments de documentation Scilab : affichage de texte et formatage de
TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p.
STATISTIQUE THÉORIQUE ET APPLIQUÉE Tome 2 Inférence statistique à une et à deux dimensions Pierre Dagnelie TABLE DES MATIÈRES Bruxelles, De Boeck, 2011, 736 p. ISBN 978-2-8041-6336-5 De Boeck Services,
Spécificités, Applications et Outils
Spécificités, Applications et Outils Ricco Rakotomalala Université Lumière Lyon 2 Laboratoire ERIC Laboratoire ERIC 1 Ricco Rakotomalala [email protected] http://chirouble.univ-lyon2.fr/~ricco/data-mining
ONe Key ID Compte InfoCentre pour les entreprises Compte auprès du ministère de l Environnement (MEO)
Pour avoir accès au Registre environnemental des activités et des secteurs (REAS), vous aurez besoin des éléments suivants : ONe Key ID Compte InfoCentre pour les entreprises Compte auprès du ministère
COURS EN LIGNE DU CCHST Manuel du facilitateur/de l administrateur
COURS EN LIGNE DU CCHST Manuel du facilitateur/de l administrateur Préparé par En partenariat avec CCHST Centre canadien d'hygiène et de sécurité au travail VUBIZ Fournisseur de services de formation Dernière
PLAN DE COURS. GPA750 Ordonnancement des systèmes de production aéronautique
Département de génie de la production automatisée Programme de baccalauréat Professeur Pontien Mbaraga, Ph.D. Session/année Automne 2004 Groupe(s) 01 PLAN DE COURS GPA750 Ordonnancement des systèmes de
Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé
Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e
Intelligence Artificielle Planification
Intelligence Artificielle Planification Bruno Bouzy http://web.mi.parisdescartes.fr/~bouzy [email protected] Licence 3 Informatique UFR Mathématiques et Informatique Université Paris Descartes
Définition et diffusion de signatures sémantiques dans les systèmes pair-à-pair
Définition et diffusion de signatures sémantiques dans les systèmes pair-à-pair Raja Chiky, Bruno Defude, Georges Hébrail GET-ENST Paris Laboratoire LTCI - UMR 5141 CNRS Département Informatique et Réseaux
Évaluation d une architecture de stockage RDF distribuée
Évaluation d une architecture de stockage RDF distribuée Maeva Antoine 1, Françoise Baude 1, Fabrice Huet 1 1 INRIA MÉDITERRANÉE (ÉQUIPE OASIS), UNIVERSITÉ NICE SOPHIA-ANTIPOLIS, I3S CNRS pré[email protected]
Impact d une restructuration sur l adhésion aux institutions de retraite complémentaire
Mois AAAA Mois AAAA sur l adhésion aux institutions En bref Mise à jour décembre 2008 Cette fiche a un caractère informatif et permettra de mieux cerner les conséquences qu une restructuration peut engendrer
Guide d'utilisation. OpenOffice Calc. AUTEUR INITIAL : VINCENT MEUNIER Publié sous licence Creative Commons
Guide d'utilisation OpenOffice Calc AUTEUR INITIAL : VINCENT MEUNIER Publié sous licence Creative Commons 1 Table des matières Fiche 1 : Présentation de l'interface...3 Fiche 2 : Créer un nouveau classeur...4
4. Résultats et discussion
17 4. Résultats et discussion La signification statistique des gains et des pertes bruts annualisés pondérés de superficie forestière et du changement net de superficie forestière a été testée pour les
Algorithmes récursifs
Licence 1 MASS - Algorithmique et Calcul Formel S. Verel, M.-E. Voge www.i3s.unice.fr/ verel 23 mars 2007 Objectifs de la séance 3 écrire des algorithmes récursifs avec un seul test rechercher un élément
MANUEL D UTILISATION LIVRET DE L ENSEIGNANT
MANUEL D UTILISATION LIVRET DE L ENSEIGNANT Septembre 2007 Le contenu de ce manuel est susceptible d évoluer en fonction des adaptations apportées à l application CORRELYCE. La version actualisée de ce
CCI Génie Logiciel UFR - IMA. Objectifs du cours d'aujourd'hui. Génie Logiciel Validation par le test. Qu est-ce que tester un programme?
Validation par le test Objectifs du cours d'aujourd'hui Donner des réponses aux questions suivantes : Lydie du Bousquet 2 Qu est-ce que tester un programme? Exercice 1 : Inscrivez sur une feuille ce que
3. SPÉCIFICATIONS DU LOGICIEL. de l'expression des besoins à la conception. Spécifications fonctionnelles Analyse fonctionnelle et méthodes
PLAN CYCLE DE VIE D'UN LOGICIEL EXPRESSION DES BESOINS SPÉCIFICATIONS DU LOGICIEL CONCEPTION DU LOGICIEL LA PROGRAMMATION TESTS ET MISE AU POINT DOCUMENTATION CONCLUSION C.Crochepeyre Génie Logiciel Diapason
Structures algébriques
Structures algébriques 1. Lois de composition s Soit E un ensemble. Une loi de composition interne sur E est une application de E E dans E. Soient E et F deux ensembles. Une loi de composition externe
Problèmes d ordonnancement dans les systèmes de production. Journée Automatique et Optimisation Université de Paris 12 20 Mars 2003
Problèmes d ordonnancement dans les systèmes de production Michel Gourgand Université Blaise Pascal Clermont Ferrand LIMOS CNRS UMR 6158 1 Le LIMOS Laboratoire d Informatique, de Modélisation et d Optimisation
La NP-complétude. Johanne Cohen. PRISM/CNRS, Versailles, France.
La NP-complétude Johanne Cohen PRISM/CNRS, Versailles, France. Références 1. Algorithm Design, Jon Kleinberg, Eva Tardos, Addison-Wesley, 2006. 2. Computers and Intractability : A Guide to the Theory of
Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT
Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Ces exercices portent sur les items 2, 3 et 5 du programme d informatique des classes préparatoires,
Mesure agnostique de la qualité des images.
Mesure agnostique de la qualité des images. Application en biométrie Christophe Charrier Université de Caen Basse-Normandie GREYC, UMR CNRS 6072 Caen, France 8 avril, 2013 C. Charrier NR-IQA 1 / 34 Sommaire
LA CCMOSS VOUS INFORME Bulletin N 5
LA CCMOSS VOUS INFORME Bulletin N 5 NOUVELLES DISPOSITIONS DU CODE DES MARCHES PUBLICS Fin décembre 2008, plusieurs décrets sont venus modifier les dispositions du Code des marchés Publics : - Décret 2008-1334
Présentation BAI -CITC
Présentation BAI -CITC Expertise reconnue dans des niches technologiques Technologies embarquées Technologies sans contact Technologies d identification et d authentification Sécurité des objets connectés
MASTER SIS PRO : logique et sécurité DÉTECTION D INTRUSIONS. Odile PAPINI, LSIS. Université de Toulon et du Var. papini@univ-tln.
MASTER SIS PRO : logique et sécurité DÉTECTION D INTRUSIONS Odile PAPINI, LSIS. Université de Toulon et du Var. [email protected] Plan Introduction Généralités sur les systèmes de détection d intrusion
Initiation à la programmation en Python
I-Conventions Initiation à la programmation en Python Nom : Prénom : Une commande Python sera écrite en caractère gras. Exemples : print 'Bonjour' max=input("nombre maximum autorisé :") Le résultat de
CORRECTION EXERCICES ALGORITHME 1
CORRECTION 1 Mr KHATORY (GIM 1 A) 1 Ecrire un algorithme permettant de résoudre une équation du second degré. Afficher les solutions! 2 2 b b 4ac ax bx c 0; solution: x 2a Solution: ALGORITHME seconddegré
