GEOMETRIE DANS L ESPACE. I) Vecteurs de l espace

Save this PDF as:
Dimension: px
Commencer à balayer dès la page:

Download "GEOMETRIE DANS L ESPACE. I) Vecteurs de l espace"

Transcription

1 GEOETRIE DNS L ESPCE ant tot, rappelons ne propriété fondamentale : Tot théorème de Géométrie plane s appliqe dans n importe qel plan de l espace. Les exemples de ce chapitre se réfèrent a dessin ci-contre : CDEFIJ est n cbe EGHJKLN est n parallélépipède rectangle tel qe H = CI et JH = 2JI I) Vecters de l espace Lorsqe, la direction de est celle de la droite ( ), le sens de est le sens de ers et la longer o norme de, notée, est la distance. Lorsqe =, est le ecter nl, noté 0. On désigne soent les ecters par ne sele lettre, par exemple,, w Por tot point O de l espace et por tot ecter, il existe n niqe point tel qe O =. 1) Vecters égax Chacne des propriétés siantes signifie qe les ecters non nls et DC sont égax : et DC ont même direction, même sens et même norme. CD est n parallélogramme. ( Si,, C et D sont alignés, on dit qe CD est n parallélogramme aplati ) 2) Règles de calcl Les règles de calcl sr les ecters de l espace sont analoges ax règles de calcl sr les ecters d plan. RELTION DE CHSLES : + F = REGLE DU PRLLELOGRE : DC + DJ = OPPOSE D UN VECTEUR : = D + DI = JN + JH = JN + LG = ULTIPLICTION D UN VECTEUR PR UN REEL : Por tos réels a et b, et por tos ecters et on a : DE + KL = DC + DJ + D = a ( + ) = ( a + b ) = a ( b ) = a = 0 Géométrie dans l espace Page 1

2 3) Vecters colinéaires Dex ecters non nls et qi ont la même direction sont dits colinéaires. Par conention le ecter nl est colinéaire à tot atre ecter. Dire qe dex ecters non nls et sont colinéaires reient à dire q il existe n réel k tel qe Exemple : EG = 2 donc : Dire qe les points, et C sont alignés reient à dire q il existe k IR tel qe Exemple : ontrer qe les points D, I et sont alignés. 4) Vecters orthogonax Dex ecters non nls et dont les directions sont orthogonales sont dits orthogonax. On note. Par conention le ecter nl est orthogonal à tot atre ecter. Exemples : II) Interprétation ectorielle des droites et plans de l espace 1) Droites Soit d ne droite, on appelle ecters directers de d les ecters, non nls, définis par dex points de d. Soit n point de l espace et n ecter non nl. ( ; ) représente la droite qi passe par et de direction, la direction de. d Remarqes : La droite ( ; ) est l ensemble des points de l espace tels qe et sont colinéaires, c'est à dire tels q il existe n réel k érifiant = k Dire qe les droites ( ) et ( CD ) sont parallèles reient à dire qe les ecters et CD sont colinéaires, c'est à dire q il existe k IR * tel qe = k CD 2) Plans PLN DETERINE PR TROIS POINTS : Soit, et C trois points non alignés. Le plan ( C ) est l ensemble des points de l espace tels q il existe des réels x et y érifiant = x + y C On dit qe les ecters et C sont des ecters directers d plan ( C ). C 22 1 Ici :.. Géométrie dans l espace Page 2

3 PLN DEFINI PR UN POINT ET UN COUPLE DE VECTEURS NON COLINEIRES : Un point et dex ecters et non colinéaires déterminent n niqe plan : le plan ( C ) où = et C =. On note ( ;, ) ce plan ( ;, ) est l ensemble des points de l espace tels q il existe dex réels x et y érifiant = x + y. On dit qe les ecters et sont des ecters directers d plan ( ;, ) o encore qe le plan ( ;, ) est dirigé par et C Remarqe : Si est n ecter non nl colinéaire à, et n ecter non nl colinéaire à, alors le plan ( ;, ) est le même qe le plan ( ;, ) Exemple : Le plan ( ; DN, KL ) est le plan III) Vecters coplanaires, et w sont trois ecters de l espace tels qe et ne sont pas colinéaires. Dire qe, et w sont coplanaires reient à dire q il existe des réels a et b tels qe w = a + b. Démonstration : Soit O n point de l espace. On considère les points, et C tels qe O =, O = et OC = w. et ne sont pas colinéaires, les points O, et ne sont pas alignés et déterminent donc n plan, le plan ( O ). Par définition, dire qe, et w sont coplanaires reient à dire C ( O ) ce qi reient à dire q il existe des réels a et b tels qe OC = a O + b O. IV) Interprétation ectorielle d parallélisme 1) Dex droites Une droite de ecter directer et ne droite de ecter directer sont parallèles si et selement si et sont colinéaires 2) Une droite et n plan Dire q ne droite d, de ecter directer, est parallèle à n plan P, de ecters directers et w reient à dire qe, et w sont coplanaires. o encore : il existe des réels a et b tels qe = a + b w d d w P Géométrie dans l espace Page 3

4 3) Dex plans Dire q n plan P, de ecters directers et, est parallèle à n plan P de ecters directers et reient à dire qe,, et sont coplanaires. P P P P o encore : il existe des réels a et b tels qe = a + b et, il existe des réels a et b tels qe = a + b V) arycentre dans l espace Les définitions et propriétés concernant le barycentre dans le plan se généralisent à l espace. Soit, et C trois points de l espace et a, b et c trois réels tels qe a + b + c 0. Il existe n niqe point G érifiant : a G + b G + c GC = 0 Ce point G est appelé barycentre d système {(, a ) ; (, b ) ; ( C, c )}. Remarqes : Comme dans le plan le barycentre reste inchangé lorsq on mltiplie les coefficients, par n même nombre non nl. La règle d barycentre partiel reste raie. Le barycentre de {( ; a ), ( ; b )} appartient à la droite ( ). Le barycentre de {( ; a ), ( ; b ), ( C ; c )} appartient a plan ( C ). VI) Repères et coordonnées 1) ase et repère Soit i, j et k trois ecters non coplanaires de l espace et O n point de l espace, alors : ( i, j, k ) est ne base des ecters de l espace ( O ; i, j, k ) est n repère de l espace On dit qe le repère ( O ; i, j, k ) est orthogonal lorsqe les ecters i, j et k sont orthogonax dex à dex. Si, de pls, les ecters i, j et k sont nitaires ( ont por norme 1 ) alors, on dit qe le repère est orthonormal. Représentation classiqe d n repère orthonormal (O; i ; j ; k ) k j i O Géométrie dans l espace Page 4

5 2) Coordonnées Soit ( O ; i, j, k ) n repère de l espace. tot point de l espace, on pet associer n niqe triplet de réels ( x ; y ; z ) tel qe O = x i + y j + z k On dit qe ( x ; y ; z ) sont les coordonnées d point dans le repère ( O ; i, j, k ) o qe ( x ; y ; z ) sont les coordonnées d ecter O dans la base ( i, j, k ). x, y et z sont respectiement l abscisse, l ordonnée et la cote d point. z y x,i O Exemple : Dans le repère ( J ; JD ; JI ; JE ) : les coordonnées des points sont : C D E F G H I J K L N 3) Propriétés Les propriétés et les règles de calcl es dans le plan por les coordonnées de ecters et de points se prolongent dans l espace en ajotant simplement ne troisième coordonnée. Dans n repère donné de l espace, soit ( a, b, c ) et ( a, b, c ) dex ecters, ( x, y, z ) et ( x, y, z ) dex points. Por tot réel k, le ecter k a por coordonnées.. Le ecter + a por coordonnées = Le ecter a por coordonnées... Le milie I de [ ] a por coordonnées Le barycentre de {( ; α), ( ; β )} a por coordonnées. Géométrie dans l espace Page 5

6 VII) Distance et orthogonalité Dans ce paragraphe l espace est mni d ne repère orthonormal ( O ; i, j, k ). 1) Norme et distance Si n ecter a por coordonnées ( a ; b ; c ) alors : = a ² + b ² + c ² Si les points et ont por coordonnées respecties ( x, y, z ) et ( x, y, z ), alors : = ( x x ) ² + ( y y ) ² + ( z z ) ² Démonstrations : On note le point tel qe O =. Les coordonnées de O sont ( a ; b ; c ) et ² = O Pisqe le repère est orthonormal, le triangle O est rectangle en donc : O ² = a ² + b ² et ² = O ² = c ² On en dédit, d après le théorème de Pythagore qe : ² = O ² = O ² + O ² = a ² + b ² + c ² = c b a,i O 2) Condition analytiqe d orthogonalité Dans ne base orthonormale : Dire qe les ecters ( x ; y ; z ) et ( x ; y ; z ) sont orthogonax reient à dire qe x x + y y + z z = 0 Démonstration : Le résltat est immédiat lorsqe = 0 o = 0. Si et sont non nls, on note et les points définis par = O et = O. Les coordonnées de et de sont respectiement celles de et de. insi dire qe et sont orthogonax reient à dire qe le triangle O est rectangle en O c'est à dire qe O² + O ² = ² Or O² =.. O ² =.. ² =.... insi Géométrie dans l espace Page 6

TRANSLATION ET VECTEURS

TRANSLATION ET VECTEURS TRNSLTION ET VETEURS 1 sr 17 ctivité conseillée ctivités de grope La Translation (Partie1) http//www.maths-et-tiqes.fr/telech/trans_gr1.pdf La Translation (Partie2) http//www.maths-et-tiqes.fr/telech/trans_gr2.pdf

Plus en détail

Étudier si une famille est une base

Étudier si une famille est une base Base raisonnée d exercices de mathématiqes (Braise) Méthodes et techniqes des exercices Étdier si ne famille est ne base Soit E n K-espace vectoriel. Comment décider si ne famille donnée de vecters de

Plus en détail

Séquence 10. Géométrie dans l espace. Sommaire

Séquence 10. Géométrie dans l espace. Sommaire Séquence 10 Géométrie dans l espace Sommaire 1. Prérequis 2. Calculs vectoriels dans l espace 3. Orthogonalité 4. Produit scalaire dans l espace 5. Droites et plans de l espace 6. Synthèse Dans cette séquence,

Plus en détail

Equations cartésiennes d une droite

Equations cartésiennes d une droite Equations cartésiennes d une droite I) Vecteur directeur d une droite : 1) Définition Soit (d) une droite du plan. Un vecteur directeur d une droite (d) est un vecteur non nul la même direction que la

Plus en détail

Corrigé du baccalauréat S Asie 21 juin 2010

Corrigé du baccalauréat S Asie 21 juin 2010 Corrigé du baccalauréat S Asie juin 00 EXERCICE Commun à tous les candidats 4 points. Question : Le triangle GBI est : Réponse a : isocèle. Réponse b : équilatéral. Réponse c : rectangle. On a GB = + =

Plus en détail

LE PRODUIT SCALAIRE ( En première S )

LE PRODUIT SCALAIRE ( En première S ) LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation

Plus en détail

1S Modèles de rédaction Enoncés

1S Modèles de rédaction Enoncés Par l équipe des professeurs de 1S du lycée Parc de Vilgénis 1S Modèles de rédaction Enoncés Produit scalaire & Corrigés Exercice 1 : définition du produit scalaire Soit ABC un triangle tel que AB, AC

Plus en détail

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors N I) Pour démontrer que deux droites (ou segments) sont parallèles (d) // (d ) (d) // (d ) deux droites sont parallèles à une même troisième les deux droites sont parallèles entre elles (d) // (d) deux

Plus en détail

Chapitre 2 : Vecteurs

Chapitre 2 : Vecteurs 1 Chapitre 2 : Vecteurs Nous allons définir ce qu'est un vecteur grâce à une figure (le parallélogramme), mais au préalable nous allons aussi définir une nouvelle transformation (la translation). Nous

Plus en détail

Angles orientés et trigonométrie

Angles orientés et trigonométrie Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.

Plus en détail

Lecture graphique. Table des matières

Lecture graphique. Table des matières Lecture graphique Table des matières 1 Lecture d une courbe 2 1.1 Définition d une fonction.......................... 2 1.2 Exemple d une courbe........................... 2 1.3 Coût, recette et bénéfice...........................

Plus en détail

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R. Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur

Plus en détail

Représentation géométrique d un nombre complexe

Représentation géométrique d un nombre complexe CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres

Plus en détail

Montages à plusieurs transistors

Montages à plusieurs transistors etor a men! ontages à plsiers transistors mplificaters à plsiers étages Dans de nombrex amplificaters, on cerce à obtenir n grand gain, ne impédance d entrée élevée (afin de ne pas pertrber la sorce d

Plus en détail

Microphones d appels Cloud avec message pré-enregistrés intégré

Microphones d appels Cloud avec message pré-enregistrés intégré Microphones d appels Clod avec message pré-enregistrés intégré Clearly better sond Modèles PM4-SA et PM8-SA Description générale Les microphones d appels nmériqes Clod de la gamme PM-SA ont été développés

Plus en détail

PROBLEME(12) Première partie : Peinture des murs et du plafond.

PROBLEME(12) Première partie : Peinture des murs et du plafond. PROBLEME(12) Une entreprise doit rénover un local. Ce local a la forme d'un parallélépipède rectangle. La longueur est 6,40m, la largeur est 5,20m et la hauteur est 2,80m. Il comporte une porte de 2m de

Plus en détail

Thème : Electricité Fiche 5 : Dipôle RC et dipôle RL

Thème : Electricité Fiche 5 : Dipôle RC et dipôle RL Fiche ors Thème : Elecricié Fiche 5 : Dipôle e dipôle Plan de la fiche Définiions ègles 3 Méhodologie I - Définiions oran élecriqe : déplacemen de charges élecriqes q a mesre d débi de charges donne l

Plus en détail

PARTIE NUMERIQUE (18 points)

PARTIE NUMERIQUE (18 points) 4 ème DEVOIR COMMUN N 1 DE MATHÉMATIQUES 14/12/09 L'échange de matériel entre élèves et l'usage de la calculatrice sont interdits. Il sera tenu compte du soin et de la présentation ( 4 points ). Le barème

Plus en détail

Corrigé du baccalauréat S Pondichéry 12 avril 2007

Corrigé du baccalauréat S Pondichéry 12 avril 2007 Corrigé du baccalauréat S Pondichéry 1 avril 7 EXERCICE 1 Commun à tous les candidats 4 points 1 a Les vecteurs AB et AC ont pour coordonnées AB ; ; ) et AC 1 ; 4 ; 1) Ils ne sont manifestement pas colinéaires

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

MESURE DE LA PERFORMANCE GLOBALE DES AGENCES BANCAIRES : UNE APPLICATION DE LA MÉTHODE DEA

MESURE DE LA PERFORMANCE GLOBALE DES AGENCES BANCAIRES : UNE APPLICATION DE LA MÉTHODE DEA MESURE DE LA PERFORMANCE GLOBALE DES AGENCES BANCAIRES : UNE APPLICATION DE LA MÉTHODE DEA Ade Hbrecht, Fabienne Gerra To cite this version: Ade Hbrecht, Fabienne Gerra. MESURE DE LA PERFORMANCE GLOBALE

Plus en détail

Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point

Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point 03 Mai 2013 Collège Oasis Durée de L épreuve : 2 heures. apple Le sujet comporte 4 pages et est présenté en livret ; apple La calculatrice est autorisée ; apple 4 points sont attribués à la qualité de

Plus en détail

Votre expert en flux documentaires et logistiques. Catalogue des formations

Votre expert en flux documentaires et logistiques. Catalogue des formations Votre expert en flx docmentaires et logistiqes Cataloge des formations Qelles qe soient les entreprises, les salariés pevent sivre, a cors de ler vie professionnelle, des actions de formation professionnelle

Plus en détail

pour toute la famille

pour toute la famille La gamme santé solidaire por tote la famille CHEZ NOUS PAS DE PROFIT SUR VOTRE SANTÉ Nos sommes ne vraie mtelle à bt non lcratif. À tot moment, nos vos en donnons les preves : pas de sélection à l entrée

Plus en détail

Séquence 2. Repérage dans le plan Équations de droites. Sommaire

Séquence 2. Repérage dans le plan Équations de droites. Sommaire Séquence Repérage dans le plan Équations de droites Sommaire 1 Prérequis Repérage dans le plan 3 Équations de droites 4 Synthèse de la séquence 5 Exercices d approfondissement Séquence MA0 1 1 Prérequis

Plus en détail

Vecteurs. I Translation. 1. Définition :

Vecteurs. I Translation. 1. Définition : Vecteurs I Translation Soit A et B deux points du plan. On appelle translation qui transforme A en B la transformation du plan qui a tout point M associe le point M tel que [AM ] et [BM] aient le même

Plus en détail

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

Géométrie dans l espace Produit scalaire et équations

Géométrie dans l espace Produit scalaire et équations Chapitre 11. 2ème partie Géométrie dans l espace Produit scalaire et équations Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 2ème partie Produit scalaire Produit scalaire

Plus en détail

La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques

La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques III. Cercles 1. Cercle d'euler 2. Droite d'euler 3. Théorème de Feuerbach 4. Milieux des segments joignant

Plus en détail

EMC BACKUP AND RECOVERY OPTIONS FOR VSPEX VIRTUALIZED ORACLE 11GR2

EMC BACKUP AND RECOVERY OPTIONS FOR VSPEX VIRTUALIZED ORACLE 11GR2 EMC BACKUP AND RECOVERY OPTIONS FOR VSPEX VIRTUALIZED ORACLE 11GR2 Version 1.3 Gide de conception et de mise en œvre H12347.3 Copyright 2013-2014 EMC Corporation. Tos droits réservés. Pblié en Mai, 2014

Plus en détail

Fonction dont la variable est borne d intégration

Fonction dont la variable est borne d intégration [hp://mp.cpgedpydelome.fr] édié le 1 jille 14 Enoncés 1 Foncion don la variable es borne d inégraion Eercice 1 [ 1987 ] [correcion] Soi f : R R ne foncion conine. Jsifier qe les foncions g : R R sivanes

Plus en détail

La complémentaire santé. des 16-30 ans CHEZ NOUS PAS DE PROFIT SUR VOTRE SANTÉ. adaptée à vos besoins pour faciliter votre accès aux soins :

La complémentaire santé. des 16-30 ans CHEZ NOUS PAS DE PROFIT SUR VOTRE SANTÉ. adaptée à vos besoins pour faciliter votre accès aux soins : La complémentaire santé des 16-30 ans CHEZ NOUS PAS DE PROFIT SUR VOTRE SANTÉ la réponse santé adaptée à vos besoins por faciliter votre accès ax soins : avec le tiers payant por ne pls avancer vos frais

Plus en détail

Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme

Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme Fonctions linéaires et affines 3eme 1 Fonctions linéaires 1.1 Vocabulaire Définition 1 Soit a un nombre quelconque «fixe». Une fonction linéaire associe à un nombre x quelconque le nombre a x. a s appelle

Plus en détail

STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE

STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE ÉCOLE D'INGÉNIEURS DE FRIBOURG (E.I.F.) SECTION DE MÉCANIQUE G.R. Nicolet, revu en 2006 STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE Eléments de calcul vectoriel Opérations avec les forces Equilibre du point

Plus en détail

Enregistreur numérique Divar

Enregistreur numérique Divar Vidéo Enregistrer nmériqe Divar Enregistrer nmériqe Divar www.boschsecrity.fr Versions 6, 9 et 16 voies Technologie en option Enregistrement, lectre et archivage simltanés Contrôle des caméras AtoDome

Plus en détail

EMC BACKUP AND RECOVERY FOR VSPEX FOR END USER COMPUTING WITH VMWARE HORIZON VIEW

EMC BACKUP AND RECOVERY FOR VSPEX FOR END USER COMPUTING WITH VMWARE HORIZON VIEW EMC BACKUP AND RECOVERY FOR VSPEX FOR END USER COMPUTING WITH VMWARE HORIZON VIEW Version 1.2 Gide de conception et de mise en œvre H12388.2 Copyright 2013-2014 EMC Corporation. Tos droits réservés. Pblié

Plus en détail

Synthèse de cours (Terminale S) Calcul intégral

Synthèse de cours (Terminale S) Calcul intégral Synthèse de cours (Terminle S) Clcul intégrl Intégrle d une onction continue positive sur un intervlle [;] Dns cette première prtie, on considère une onction continue positive sur un intervlle [ ; ] (

Plus en détail

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par

Plus en détail

par Jacques RICHALET Directeur société ADERSA

par Jacques RICHALET Directeur société ADERSA Commande prédictive par Jacqes RICHALET Directer société ADERSA 1. Les qatre principes de la commande prédictive... R 7 423 2 1.1 Modèle interne... 2 1.2 Trajectoire de référence... 3 1.3 Strctration de

Plus en détail

Objectifs Zoom Motorisés avec Iris Automatique

Objectifs Zoom Motorisés avec Iris Automatique Vidéo Objectifs Zoom Motorisés avec Iris Atomatiqe Objectifs Zoom Motorisés avec Iris Atomatiqe www.boschsecrity.fr Optiqe de hate qalité Constrction fiable et robste Format d'image 1/3" avec coande DC

Plus en détail

Activités numériques [13 Points]

Activités numériques [13 Points] N du candidat L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation entrent pour 2 points dans l appréciation des copies. Les résultats seront soulignés. La correction est disponible

Plus en détail

PRÉSENTATION DU CONTRAT

PRÉSENTATION DU CONTRAT PRÉSENTATION DU CONTRAT 2 L ASSURANCE VIE UN FANTASTIQUE OUTIL DE GESTION PATRIMONIALE Le fait qe l assrance vie soit, depis plsiers décennies, le placement préféré des Français n est certes pas le frit

Plus en détail

VRM Video Recording Manager

VRM Video Recording Manager Vidéo VRM Video Recording Manager VRM Video Recording Manager www.boschsecrity.fr Stockage réparti et éqilibrage de la configrable Basclement sr n enregistrer de secors iscsi en cas de défaillance, por

Plus en détail

La DGFiP AU SERVICE DES COLLECTIVITÉS TERRITORIALES ET DES USAGERS. Un nouveau service pour faciliter les paiements

La DGFiP AU SERVICE DES COLLECTIVITÉS TERRITORIALES ET DES USAGERS. Un nouveau service pour faciliter les paiements La DGFiP AU SERVICE DES COLLECTIVITÉS TERRITORIALES ET DES USAGERS TIPI Titres Payables par Internet Un novea service por faciliter les paiements Un moyen de paiement adapté à la vie qotidienne TIPI :

Plus en détail

La spirale de Théodore bis, et la suite «somme=produit».

La spirale de Théodore bis, et la suite «somme=produit». Etde d e vrite de l spirle de Théodore, dot issce à e site dot les sommes prtielles sot égles x prodits prtiels. Mots clés : spirle de Théodore, théorème de Pythgore, site, série, polyôme. L spirle de

Plus en détail

C f tracée ci- contre est la représentation graphique d une

C f tracée ci- contre est la représentation graphique d une TLES1 DEVOIR A LA MAISON N 7 La courbe C f tracée ci- contre est la représentation graphique d une fonction f définie et dérivable sur R. On note f ' la fonction dérivée de f. La tangente T à la courbe

Plus en détail

Nombre dérivé et tangente

Nombre dérivé et tangente Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative

Plus en détail

Risques professionnels et qualité de vie au travail dans les crèches : les pratiques de prévention

Risques professionnels et qualité de vie au travail dans les crèches : les pratiques de prévention Petite enfance Risqes professionnels et qalité de vie a travail dans les crèches : les pratiqes de prévention Rédaction : Emmanelle PARADIS, Chef de projet «Prévention des risqes professionnels», por CIDES

Plus en détail

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b I Définition d une fonction affine Faire l activité 1 «une nouvelle fonction» 1. définition générale a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe

Plus en détail

MINISTÈRE DE L'ÉCOLOGIE, DE L'ÉNERGIE DU DÉVELOPPEMENT DURABLE ET DE L'AMÉNAGEMENT DU TERRITOIRE

MINISTÈRE DE L'ÉCOLOGIE, DE L'ÉNERGIE DU DÉVELOPPEMENT DURABLE ET DE L'AMÉNAGEMENT DU TERRITOIRE MINISTÈRE DE L'ÉCOLOGIE, DE L'ÉNERGIE DU DÉVELOPPEMENT DURABLE ET DE L'AMÉNAGEMENT DU TERRITOIRE MINISTÈRE DE L'INTÉRIEUR, DE L'OUTRE-MER ET DES COLLECTIVITÉS TERRITORIALES Connaître Rédire Aménager Informer

Plus en détail

Le théorème de Thalès et sa réciproque

Le théorème de Thalès et sa réciproque Le théorème de Thalès et sa réciproque I) Agrandissement et Réduction d une figure 1) Définition : Lorsque toutes les longueurs d une figure F sont multipliées par un même nombre k on obtient une autre

Plus en détail

Quelques contrôle de Première S

Quelques contrôle de Première S Quelques contrôle de Première S Gilles Auriol auriolg@free.fr http ://auriolg.free.fr Voici l énoncé de 7 devoirs de Première S, intégralement corrigés. Malgré tout les devoirs et 5 nécessitent l usage

Plus en détail

Eté 2015. LIVRET de RÉVISIONS en MATHÉMATIQUES

Eté 2015. LIVRET de RÉVISIONS en MATHÉMATIQUES Eté 2015 LIVRET de RÉVISIONS en MATHÉMATIQUES Destiné aux élèves entrant en Seconde au Lycée Honoré d Estienne d Orves Elaboré par les professeurs de mathématiques des collèges et lycées du secteur Une

Plus en détail

Plan du cours : électricité 1

Plan du cours : électricité 1 Semestre : S2 Module Physique II 1 Electricité 1 2 Optique géométrique Plan du cours : électricité 1 Partie A : Electrostatique (discipline de l étude des phénomènes liés aux distributions de charges stationnaires)

Plus en détail

AMC2 - (Contrôleur d'accès modulaire - Access Modular Controller)

AMC2 - (Contrôleur d'accès modulaire - Access Modular Controller) Engineered Soltions AMC2 - (Contrôler d'accès modlaire - Access Modlar Controller) AMC2 - (Contrôler d'accès modlaire - Access Modlar Controller) www.boschsecrity.fr Gestion intelligente des accès por

Plus en détail

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x = LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste

Plus en détail

Mais comment on fait pour...

Mais comment on fait pour... Mais comment on fait pour... Toutes les méthodes fondamentales en Maths Term.S Édition Salutπaths Table des matières 1) GÉNÉRALITÉS SUR LES FONCTIONS...13 1.Comment déterminer l'ensemble de définition

Plus en détail

DINION capture 5 000. Vidéo DINION capture 5 000. www.boschsecurity.fr. La technologie DINION 2X génère des images nettes, cohérentes et précises

DINION capture 5 000. Vidéo DINION capture 5 000. www.boschsecurity.fr. La technologie DINION 2X génère des images nettes, cohérentes et précises Vidéo DINION captre 5 000 DINION captre 5 000 www.boschsecrity.fr La technologie DINION 2X génère des images nettes, cohérentes et précises Night Captre Imaging System garantit n fonctionnement 24 heres

Plus en détail

Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS

Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS N o Lieu et date Q.C.M. Algébrique Géométrie 1 Asie juin 2012 2 Métropole juin

Plus en détail

mettez le casque et savourez votre calme! Réduction active des bruits de fond (ANC):

mettez le casque et savourez votre calme! Réduction active des bruits de fond (ANC): & pls03/ 2014 Une conversation de vive voix en dit pls qe mille corriers électroniqes Page 3 Série Jabra Evolve Pages 4 5 Micros-casqes UC Pages 6 7 freevoice SondPro 355 Page 8 Jabra PRO925/935 Page 9

Plus en détail

CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE

CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE Jean Luc Bovet, Auvernier L'article de Monsieur Jean Piquerez (Bulletin de la SSPMP No 86), consacré aux symédianes me paraît appeler une généralisation. En

Plus en détail

Le contexte. Le questionnement du P.E.R. :

Le contexte. Le questionnement du P.E.R. : Le contexte Ce travail a débuté en janvier. Le P.E.R. engagé depuis fin septembre a permis de faire émerger ou de réactiver : Des raisons d être de la géométrie : Calculer des grandeurs inaccessibles et

Plus en détail

annexes circulaire interministérielle n DGUHC 2007-53 du 30 novembre 2007

annexes circulaire interministérielle n DGUHC 2007-53 du 30 novembre 2007 annexes circlaire interministérielle n DGUHC 2007-53 d 30 novembre 2007 relative à l accessibilité des établissements recevant d pblic, des installations overtes a pblic et des bâtiments d habitation Annexes

Plus en détail

Mesure d angles et trigonométrie

Mesure d angles et trigonométrie Thierry Ciblac Mesure d angles et trigonométrie Mesure de l angle de deux axes (ou de deux demi-droites) de même origine. - Mesures en degrés : Divisons un cercle en 360 parties égales définissant ainsi

Plus en détail

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 % 23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une

Plus en détail

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée. ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle

Plus en détail

Mesures générales de prévention pour l utilisation des fardeleuses

Mesures générales de prévention pour l utilisation des fardeleuses la fardelese Les fardeleses, machines semi-atomatiqes d emballage de palettes, assi nommées palettisers o «wrapeses» sont d sage corant dans le secter de l imprimerie. On s en sert por envelopper d ne

Plus en détail

EMC BACKUP AND RECOVERY OPTIONS FOR VSPEX PRIVATE CLOUDS

EMC BACKUP AND RECOVERY OPTIONS FOR VSPEX PRIVATE CLOUDS EMC BACKUP AND RECOVERY OPTIONS FOR VSPEX PRIVATE CLOUDS Version 1.3 Gide de conception et de mise en œvre H12387.3 Copyright 2013-2014 EMC Corporation. Tos droits réservés. Pblié en Mai, 2014 EMC estime

Plus en détail

Exercices de géométrie

Exercices de géométrie Exercices de géométrie Stage olympique de Bois-le-Roi, avril 2006 Igor Kortchemski Exercices vus en cours Exercice 1. (IMO 2000) Soient Ω 1 et Ω 2 deux cercles qui se coupent en M et en N. Soit la tangente

Plus en détail

Commande prédictive des systèmes non linéaires dynamiques

Commande prédictive des systèmes non linéaires dynamiques Rébliqe Algérienne Démocratiqe et olaire Ministère de l Enseignement Sérier et de la Recherche Scientifiqe Université Molod Mammeri de Tizi-Ozo Faclté de Génie Electriqe et Informatiqe Déartement Atomatiqe

Plus en détail

Thème 17: Optimisation

Thème 17: Optimisation OPTIMISATION 45 Thème 17: Optimisation Introduction : Dans la plupart des applications, les grandeurs physiques ou géométriques sont exprimées à l aide d une formule contenant une fonction. Il peut s agir

Plus en détail

Deux disques dans un carré

Deux disques dans un carré Deux disques dans un carré Table des matières 1 Fiche résumé 2 2 Fiche élève Seconde - version 1 3 2.1 Le problème............................................... 3 2.2 Construction de la figure avec geogebra...............................

Plus en détail

JE LÈGUE À L ŒUVRE DES VOCATIONS POUR FORMER NOS FUTURS PRÊTRES NOS RÉPONSES À VOS QUESTIONS SUR LES LEGS, DONATIONS, ASSURANCES VIE

JE LÈGUE À L ŒUVRE DES VOCATIONS POUR FORMER NOS FUTURS PRÊTRES NOS RÉPONSES À VOS QUESTIONS SUR LES LEGS, DONATIONS, ASSURANCES VIE Diocèses de Paris, Nanterre, Créteil et Saint-Denis JE LÈGUE À L ŒUVRE DES VOCATIONS POUR FORMER NOS FUTURS PRÊTRES NOS RÉPONSES À VOS QUESTIONS SUR LES LEGS, DONATIONS, ASSURANCES VIE FAITES DE VOS BIENS

Plus en détail

Dynamique du point matériel

Dynamique du point matériel Chaptre III Dynaqe d pont atérel I Généraltés La cnéatqe a por objet l étde des oveents des corps en foncton d teps, sans tenr copte des cases q les provoqent La dynaqe est la scence q étde (o déterne)

Plus en détail

6. Les différents types de démonstrations

6. Les différents types de démonstrations LES DIFFÉRENTS TYPES DE DÉMONSTRATIONS 33 6. Les différents types de démonstrations 6.1. Un peu de logique En mathématiques, une démonstration est un raisonnement qui permet, à partir de certains axiomes,

Plus en détail

Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA

Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA 75. Un plombier connaît la disposition de trois tuyaux sous des dalles ( voir figure ci dessous ) et il lui suffit de découvrir une partie de chacun d eux pour pouvoir y poser les robinets. Il cherche

Plus en détail

ISC-PDL1-W18x Détecteurs TriTech Série Pro

ISC-PDL1-W18x Détecteurs TriTech Série Pro Systèmes d'alarme intrsion ISC-PDL-W8x Détecters TriTech Série Pro ISC-PDL-W8x Détecters TriTech Série Pro www.boschsecrity.fr Covertre de détection 8 m x 5 m, avec ne sélection de covertre rédite à 8

Plus en détail

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique DOMAINE P3.C3.D1. Pratiquer une démarche scientifique et technologique, résoudre des

Plus en détail

Réalisez des simulations virtuelles avec des outils de test complets pour améliorer vos produits

Réalisez des simulations virtuelles avec des outils de test complets pour améliorer vos produits SOLIDWORKS Simlation Réalisez des simlations virtelles avec des otils de test complets por améliorer vos prodits SOLUTIONS DE SIMULATION SOLIDWORKS Les soltions de simlation SOLIDWORKS permettent à tot

Plus en détail

Construction d un cercle tangent à deux cercles donnés.

Construction d un cercle tangent à deux cercles donnés. Préparation au CAPES Strasbourg, octobre 2008 Construction d un cercle tangent à deux cercles donnés. Le problème posé : On se donne deux cercles C et C de centres O et O distincts et de rayons R et R

Plus en détail

Comment tracer une droite représentative d'une fonction et méthode de calcul de l'équation d'une droite.

Comment tracer une droite représentative d'une fonction et méthode de calcul de l'équation d'une droite. Comment tracer une droite représentative d'une fonction et méthode de calcul de l'équation d'une droite. Introduction : Avant de commencer, il est nécessaire de prendre connaissance des trois types de

Plus en détail

AVEC LA DOUANE PRODUIRE EN FRANCE. # produireenfrance. Présentation des entreprises participant aux tables rondes. Octobre 2014 - Bercy

AVEC LA DOUANE PRODUIRE EN FRANCE. # produireenfrance. Présentation des entreprises participant aux tables rondes. Octobre 2014 - Bercy 16 Octobre 2014 - Bercy PRODUIRE EN FRANCE AVEC LA DOUANE Présentation des entreprises participant ax tables rondes # prodireenfrance Live tweet sr le compte officiel de la doane @doane_france la doane

Plus en détail

Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. ses côtés opposés. ses côtés opposés de. deux côtés opposés

Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. ses côtés opposés. ses côtés opposés de. deux côtés opposés P1 P2 P3 P4 a a a a ses côtés opposés ses côtés opposés de deux côtés opposés ses diagonales qui se parallèles, alors c est même longueur alors parallèles et de même coupent en leur un c est un longueur

Plus en détail

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère

Plus en détail

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation ) DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité

Plus en détail

Le travail c est la santé... bien se positionner devant son écran, c est aussi la conserver!

Le travail c est la santé... bien se positionner devant son écran, c est aussi la conserver! Santé et travail sr poste informatisé bonnes postres et bonnes pratiqes Le travail c est la santé... bien se positionner devant son écran, c est assi la conserver! www.simt.fr Santé et prévention a bénéfice

Plus en détail

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES. 15 mars 2006 CLASSE DE PREMIERE ES, GMF

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES. 15 mars 2006 CLASSE DE PREMIERE ES, GMF OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 15 mars 2006 CLASSE DE PREMIERE ES, GMF Durée : 4 heures Les quatre exercices sont indépendants Les calculatrices sont autorisées L énoncé comporte trois pages Exercice

Plus en détail

concernant la déclaration d impôt Impôt cantonal et communal Impôt fédéral direct

concernant la déclaration d impôt Impôt cantonal et communal Impôt fédéral direct CANTON DE VAUD Administration cantonale des impôts GUIDE 2013 concernant la déclaration d impôt Impôt cantonal et commnal Délai por le renvoi de la déclaration : 15 mars 2014 Impôt fédéral direct Simplifiezvos

Plus en détail

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et

Plus en détail

Géométrie dans l espace

Géométrie dans l espace Géométrie dans l espace Mabrouk Brahim Université Virtuelle de Tunis 2007 Ce cours a pour objet la présentation des différents concepts de la géométrie de l espace comme une continuation de ceux vus en

Plus en détail

Système isolateur de ligne de haut-parleurs

Système isolateur de ligne de haut-parleurs Systèmes de commnications Système isolater de ligne de hat-parlers Système isolater de ligne de hat-parlers www.boschsecrity.fr Fornit des bocles de hat-parler redondantes por les systèmes de sonorisation

Plus en détail

Les qualifications INSTALLATEURS ÉNERGIES RENOUVELABLES. Forage géothermique. Solaire thermique. Aérothermie et géothermie

Les qualifications INSTALLATEURS ÉNERGIES RENOUVELABLES. Forage géothermique. Solaire thermique. Aérothermie et géothermie INSTALLATEURS ÉNERGIES RENOUVELABLES Les qalifications Edition jillet 2014 Solaire thermiqe Forage géothermiqe Solaire photovoltaïqe Bois énergie Aérothermie et géothermie Les énergies renovelables : des

Plus en détail

Baccalauréat technique de la musique et de la danse Métropole septembre 2008

Baccalauréat technique de la musique et de la danse Métropole septembre 2008 Baccalauréat technique de la musique et de la danse Métropole septembre 008 EXERCICE 5 points Pour chacune des cinq questions à 5, trois affirmations sont proposées dont une seule est exacte. Pour chaque

Plus en détail

Du Premier au Second Degré

Du Premier au Second Degré Du Premier au Second Degré Première Bac Pro 3 ans November 26, 2011 Première Bac Pro 3 ans Du Premier au Second Degré Sommaire 1 Fonction Polynôme du second degré 2 Fonction Polynôme du Second Degré: Synthèse

Plus en détail

Brevet 2007 L intégrale d avril 2007 à mars 2008

Brevet 2007 L intégrale d avril 2007 à mars 2008 Brevet 2007 L intégrale d avril 2007 à mars 2008 Pondichéry avril 2007................................................. 3 Amérique du Nord juin 2007......................................... 7 Antilles

Plus en détail

Triangles isométriques Triangles semblables

Triangles isométriques Triangles semblables Triangles isométriques Triangles semblables Les transformations du plan ont permis de dégager des propriétés de figures superposables. Le théorème de Thalès a permis de s initier aux notions de réduction

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites I Droites perpendiculaires Lorsque deux droites se coupent, on dit qu elles sont sécantes Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites Lorsque deux

Plus en détail