Mth Spé MP Chpitre 13 : intégrtion sur un intervlle quelconque : théorie 19/1/2012 1 Cs des onctions à vleurs dns R + Déinition : onction continue pr morceux sur un intervlle : Une onction : K où (K = R ou C) est dite continue pr morceux sur si elle est continue pr morceux sur chque segment J. Déinition : intégrbilité : Soit : R + où est un intervlle de R. est dite intégrble (ou sommble) sur si C m (,R + ); et s il existe M R + tel que pour tout segment J, M. On ppelle lors intégrle de sur le nombre : { } = Sup : J segment / J J Déinition : suite exhustive de segments : Soit un intervlle. On ppelle suite exhustive de segments de toute suite ( n ) croissnte pour l inclusion de segments telle que n =. Propriété : propriété ondmentle : Soit ( n ) une suite exhustive de segments de. Soit J un segment inclus dns. Alors n 0 N / J (et ortiori, si n n 0, J n ). Théorème : Soit un intervlle, soit C m (,R + ). Soit ( n ) une suite exhustive de segments de. ( ) est intégrble sur si et seulement si l suite converge. Et lors, = lim. n + n Exemple : «intégrle de Riemnn» : J n : { [1,+ [ R t 1 t α est intégrble sur [1,+ [ si et seulement si α > 1 et lors + 1 dt t = 1 α α 1 g : { ]0,1] R t 1 t α est intégrble sur ]0,1] si et seulement si α < 1 et lors 1 1 0 dt t = 1 α 1 α
Propriété : «linérité» : Soient,g C m (,R + ) et α R +. Si et g sont intégrble sur, lors α +g est intégrble sur et α +g = α + g Propriété : croissnce et comprison : Soient,g C m (,R + ) telles que g. Alors si g est intégrble, lors est intégrble et g Propriété : positivité méliorée : Si C(,R + ). Si est intégrble sur et si lors = 0. = 0, Prorpiété préliminire : Soit C m (,R + ). Si est intégrble sur et si lors est intégrble sur et Théorème : principe de scission : Soit C m (,R + ), soitc. On pose + = [c,+ [, = ],c] lors est intégrble sur si et seulement si est intégrble sur + et sur et lors = + + Théorème : principe de comprison : Soient,g C m ([,b[,r + ). Si (t) = o(g(t)) t b ou = O(g(t)) ou (t) g(t) et si g est intégrble sur [,b[, lors est ussi intégrble sur t b t b [,b[. Corollire : Si g. etg seront toutes les deux intégrbles ou toutes deux non intégrbles. b [,X] Théorème : nouvelle crctéristion de l intégrbilité des onctions positives : Soit [,b[ R C m ([,b[,r + X ) Soit F :. est intégrble sur [,b[ si et seule- X (t)dt = ment si F dmet à guche en b une limite inie et lors [,b[ X = lim (t)dt X b Proposition : comprison série intégrle : Soit C m ([0,+ [,R + ) décroissnte sur son intervlle de déinition. Alors est intégrble sur [0,+ [ si et seulement si (n) converge. 2
2 Cs des onctions à vleurs dns R ou C Déinition : Soit C m (,K) où est un intervlle de R et K = R ou C. est dite intégrble si est intégrble. Proposition : comprison : Soit C m (,K), ϕ C m (,R + ). Si ϕ et si ϕ est intégrble, lors est intégrble. Structure : On note L 1 (,K) l ensemble des onctions intégrbles de dns K. (C 1 (,K)) est un K-espce vectoriel. Déinitions : Soit C m (,R). On note + = Mx(,0) et = Mx(,0). Théorème : intégrle d une onction à vleurs réelles : Soit C m (,R). est intégrble si et seulement si + et le sont. Déinition : = + Théorème : intégrle d une onction à vleurs complexes intégrble : Soit C m (,C). est intégrble si et seulement si Re() et m() le sont. Déinition : = Re()+i m() Proposition : utilistion de suite exhustive de segments : Soit L 1 (,K) (i.e. est intégrble). Soit ( n ) une suite exhustive de segments de. Alors : ( ) converge et = lim n + n Proposition : utre mode de clcul : Soit L 1 ([,b[,k) (i.e. est intégrble). Soit [,b[ K F : X X (t)dt. Alors : b X (t)dt = lim (t)dt X b Propriété : linérité : Si,g L 1 (,R) et si α K, lors : L 1 (,K) K α +g = α + g ou encore nt : est linéire. 3
Propriété : croissnce : Si K = R : Si,g L 1 (,R) et si g, lors : g Propriété : inéglité : Si L 1 (,K), lors : Propriété : bornes : Si > b, L 1 (]b,],k), on pose : b (t)dt = (t)dt = b ]b,] Propriété : conjugué : Si L 1 (,C), lors L 1 (,C) et = 3 Chngement de vrible Théorème 1 : cs d un segment : Soit C m ([,b],k). Soit ϕ C 1 ([α,β],[,b]). Alors : ϕ(β) ϕ(α) (u)du = β α (ϕ(t))ϕ (t)dt Théorème 2 : cs d un intervlle : Soit C m (,K) vec pr exemple = [,b[. Soit ϕ C 1 (J,) où J = [α,β[ (ou ]β,α]). = ϕ(α) et b = lim t β ϕ(t) (ou b = lim t β +ϕ(t)) vec ϕ bijective. Alors : L 1 ([,b[,k) si et seulement si [ ( ϕ) ϕ L 1 ([α,β[,k) ] 4 ntégrtion pr prtie b β et lors (u)du = (ϕ(t))ϕ (t)dt α Ps de thoérème u progrmme de Spé pour l intégrtion pr prtie sur un intervlle. Théorème : intégrtion pr prtie : X (t)dt = X u(t)v (t)dt = [u(t)v(t)] X X u (t)v(t)dt où X [,b[, u,v C 1 ([,b[,k). On note l 1 = lim X b u(x)v(x) et l 2 = lim (u v)(t)dt. X b Si l 1 et l 2 existent dns R : si 0 : on lors proubé que L 1 ([,b[,r + ); si 0 : le clcul ne sert à rien su si on montré u prélble que L 1 ([,b[,r). 4 X
5 ntégrles «impropres» : ttention dnger X l est possible que lim (t)dt existe (et soit inie) sns que soit intégrble (mis cel X b n rrive ps si 0). Dns ce cs, on dit (encore prois) que l intégrle b même exceptionnellement) (t)dt = lim X b On prle d intégrle «impropre». X b (t)dt. (t)dt «converge» et on note (qund 5