Préparation au CAPES Strasbourg, octobre 2008 Construction d un cercle tangent à deux cercles donnés. Le problème posé : On se donne deux cercles C et C de centres O et O distincts et de rayons R et R distincts. On suppose de plus que ces cercles ne sont pas tangents. On se donne un point A sur C. Construire un cercle tangent à C et tangent en A à C. 1. Rappel : Il existe exactement deux homothéties transformant le cercle C en le cercle C. Démonstration. Si une telle homothétie existe son rapport est nécessairement égal à R /R (qui est distinct de 1 par hypothèse) et son centre K, qui appartient à la droite (OO ) (on a supposé O O ) est tel que KO KO = R R. Comme O O et R R, il existe deux points I et J de la droite (OO ) vérifiant la relation ci-dessus (le barycentre J de (O(R ),O (R)) et le barycentre I de (O(R ),O ( R))). Il y a donc au plus deux homothéties transformant C en C. Notons h I (resp. h J ) l homothétie de centre I (resp. J) qui transforme O en O. L image de C par cette homothétie est un cercle (c est toujours vrai) de centre O. Vu la définition de I (resp. J) son rapport est égal à R R (resp. R R ) et par conséquent elle transforme C en le cercle de centre O et de rayon R c est-à-dire en C. Pour construire les points I et J, on utilise le fait qu une homothétie transforme une droite en une droite parallèle. En particulier si A est un point de C son image par h I (resp. h J ) appartient à l intersection de C avec la parallèle à (OA) passant par O. Cette parallèle coupe C en deux points B 1 et B 2. Les points I et J sont les intersections de la droite (OO ) avec les droites (AB 1 ) et (AB 2 ). Nous avons démontré l existence des homothéties h I et h J. Ceci implique l existence de toutes les intersections utilisées pour la construction de I et J. Remarque 1 : On peut noter que si la droite (IA) (resp. (JA)) est tangente à C en A alors elle est aussi tangent à C en B 1 (resp. B 2 )(conservation de l orthogonalité par homothétie). Remarque 2 : En particulier si les deux cercles sont tangents en A, l un des deux points B 1 ou
2 Nicole Bopp B 2 est confondu avec A qui est donc le centre de l une des deux homothéties. Réciproquement si le centre de l une des deux homothéties, par exemple I, appartient à C, alors la tangente en I à C est invariante par h I et est donc aussi tangente à C. En conclusion les deux cercles C et C sont tangents si et seulement si l un des centres d homothéties appartient à C. 2. Analyse. Supposons construit un cercle Γ de centre Ω tangent en A à C et tangent à C. On note A le point de contact avec C et on désigne par ρ le rayon du cercle Γ. Remarquons que le centre Ω de Γ appartient aux droites (OA) et (OA ). On considère les transformations suivantes : l homothétie H A de centre A transformant O en Ω et donc C en Γ ; l homothétie H A de centre A transformant Ω en O et donc Γ en C. La composée H A H A de ces deux homothéties admet pour application linéaire asociée λ.id où λ = ρ R R ρ = R R 1. C est donc une homothétie (et pas une translation) qui transforme le cercle C en cercle C. Nous avons démontré qu il existe deux telles homothéties h I et h J. On en conclut que H A H A = h I ou H A H A = h J. Supposons que H A H A = h I. On a alors en particulier H A (A) = h I (A). A I. En effet si A et I sont confondus, le point I appartient à C ce qui implique que I, point fixe de l homothétie h I, appartient aussi à C. Ceci implique que les cercles C et C se coupent en I qui est un point appartenant à la droite (OO ) et donc que ces cercles sont tangents en I. Or cette situation est exclue par hypothèse. A h I (A). En effet si A est un point fixe de h I soit c est le centre de h I mais c est impossible car A I, soit h I est égale à l identité ce qui est aussi impossible puisque les cercles C et C sont distincts. A (IA). Notons tout d abord que la droite (IA) est bien définie puisque A I. Les points A, A et H A (A) sont alignés (un point, son image par une homothétie et le centre de l homotéhtie sont alignés). Puisque H A (A) = h I (A), on en déduit que A appartient à la droite (Ah I (A)) (cette droite est bien définie car A h I (A) ) qui est aussi la droite (IA). Par conséquent, dans le cas où H A H A = h I, le point A, contact de C et Γ est déterminé de manière unique par les trois conditions A C ; A (IA) ; A h I (A).
Cercles tangents 3 Il y a donc au plus un cercle Γ dont le centre est nécessairement un point de (OA) (O A ) équidistant de A et A. Il y a de même au plus un cercle Γ dans le cas où H A H A = h J déterminé par les conditions analogues où on remplace I par J. 3. Synthèse. Étudions la construction qui fait intervenir le point I (ce sera analogue pour le point J). Comme A C la droite (IA) (nous avons démontré que I A) coupe le cercle C au point h I (A). Cas 1. La droite (IA) est tangente à C. Dans ce cas elle est aussi tangente à C et il n existe pas de point A appartenant à (IA) C, distinct de h I (A). Il n y a pas de cercle Γ tangent à C et à C en A. Cas 2. La droite (IA) n est pas tangente à C. Dans ce cas elle coupe C en deux points distincts et donc aussi C en deux points distincts : l un est h I (A) et nous notons A le second point. Cas 2.1. Les droites (OA) et (O A ) sont parallèles. Comme les droites (OA) et (O h I (A)) sont parallèles par définition de h I, ceci implique que les points O, A et h I (A) sont alignés. Comme la droite (A h I (A)) contient aussi les points I et A (par définiton de A ), on en déduit que A appartient à la droite (IO ) = (OO ). Il en est de même pour A et le milieu Ω de AA est bien le centre d un cercle qui convient : en effet le cercle de centre Ω passant par A contient A et est tangent à C en A et à C en A. Cas 2.2. Les droites (OA) et (O A ) sont sécantes. Notons Ω leur point d intersection. Démontrons que ΩA = ΩA. Les droites (OA) = (ΩA) et (O h I (A)) sont parallèles, le point A appartient à la droite (A h I (A)) et le point Ω appartient à la droite (OA). On déduit du théorème de Thalès que A Ω A O = AΩ h I (A)O. Comme h I (A) et A sont sur le cercle C de centre O on en déduit que ΩA = ΩA. Le cercle Γ de centre Ω passant par A, passe donc aussi par A. Il est tangent au cercle C en A (mêmes tangentes en A) et au cercle C en A.
4 Nicole Bopp Remarque : Il est possible que les points A et A soient confondus. En effet si A est un point d intersection des deux cercles, nécessairement la droite (IA) coupe C en h I (A) et en A, d où A = A. Dans ce cas le cercle Γ sera réduit à un point. Pour écrire l égalité des rapports déduite du théorème de Thalès nous avons choisi pour dénominateurs des longueurs dont nous étions assurés qu elles n étaient pas nulles. Les numérateurs par contre s annulent dans le cas où A = A. Conclusion. Si le point A n appartient pas à l une des tangentes communes aux deux cercles, il existe deux cercles Γ et Γ tangents en A à C et tangents à C. Ces deux cercles sont réduits à un point si A C C. Si le point A appartient à l une des tangentes communes, il n en existe plus qu un.. Comme on l a montré ci-dessus, pour construire ces cercles, on commence par déterminer le point A (resp. A ) du cercle C appartenant à la droite (IA) (resp. (JA)) et différent de h I (A) (resp. h J (A)). Puis on construit le point Ω (resp. Ω ) intersection de (OA) et (O A ) (resp. (O A ) si ces droites se coupent ou milieu de AA (resp. ((AA )) si elles sont confondues. Construction avec cabri. La difficulté consiste à permettre au logiciel de choisir le point A différent de h I (A) et que ce choix persiste même lorsque A traverse une tangente commune. Expérimentalement cela fonctionne bien si on construit les points I et J à partir du point A que l on va déplacer. Évidemment I et J ne dépendent pas du point A et auraient pu être construits indépendamment de A, mais dans ce cas cabri n arrive plus à choisir A quand A traverse une tangente commune. Commentaires. C est en rédigeant soigneusement les démonstrations que l on voit apparaître les cas particuliers. Dans la synthèse il faut vérifier à chaque étape que les objets dont on parle (les droites définies par deux points, les intersections de droites, de cercles ou de cercles et droites) sont bien définis. L utilisation d un logiciel de géométrie dynamique, permet aussi de voir apparaître certains cas particuliers, mais pour implanter la construction il faut déjà savoir la faire dans le cas général. On peut alors revenir à la démonstration pour comprendre les situations particulières.
Cercles tangents 5 Exemples de positions des cercles Cas générique. Cas où A est proche de la tangent commune passant par J. Cas où les deux cercles se coupent et où A est proche d un de leur point d intersection.