Produit semi-direct. Table des matières. 1 Produit de sous-groupes 2. 2 Produit semi-direct de sous-groupes 3. 3 Produit semi-direct de groupes 4



Documents pareils
Proposition. Si G est un groupe simple d ordre 60 alors G est isomorphe à A 5.

Structures algébriques

Le produit semi-direct

Groupe symétrique. Chapitre II. 1 Définitions et généralités

Axiomatique de N, construction de Z

Problèmes de Mathématiques Filtres et ultrafiltres

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E

Théorème du point fixe - Théorème de l inversion locale

Résumé du cours d algèbre 1, Sandra Rozensztajn. UMPA, ENS de Lyon, sandra.rozensztajn@ens-lyon.fr

Théorèmes du Point Fixe et Applications aux Equations Diérentielles

NOTATIONS PRÉLIMINAIRES

La Longue Marche à travers la théorie de Galois, Part Ib, 26-37


Intégration et probabilités TD1 Espaces mesurés Corrigé

Exemple 4.4. Continuons l exemple précédent. Maintenant on travaille sur les quaternions et on a alors les décompositions

Mathématiques Algèbre et géométrie

Cours de mathématiques

Premiers exercices d Algèbre. Anne-Marie Simon

RAPHAËL ROUQUIER. 1. Introduction

Développement décimal d un réel

Cours arithmétique et groupes. Licence première année, premier semestre

Feuille G1 RAPPEL SUR LES GROUPES

VI. COMPLÉMENTS SUR LES MODULES, THÉORÈME CHINOIS, FACTEURS INVARIANTS SÉANCES DU 15, 16 ET 22 OCTOBRE

Dérivées d ordres supérieurs. Application à l étude d extrema.

UNIVERSITE IBN ZOHR Faculté des sciences Agadir. Filière SMA & SMI. Semestre 1. Module : Algèbre 1

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Capes Première épreuve

Université Paris-Dauphine DUMI2E 1ère année, Applications

TIQUE DE FRANCE NILSYSTÈMES D ORDRE 2 ET PARALLÉLÉPIPÈDES

Condition de stabilité d'un réseau de les d'attente à deux stations et N classes de clients 1

par Denis-Charles Cisinski & Georges Maltsiniotis

chapitre 4 Nombres de Catalan

Moments des variables aléatoires réelles

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Calcul différentiel sur R n Première partie

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Introduction a l'algorithmique des objets partages. Robert Cori. Antoine Petit. Lifac, ENS Cachan, Cachan Cedex. Resume

Programme de la classe de première année MPSI

Construction d un cercle tangent à deux cercles donnés.

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

Relation d ordre. Manipulation des relations d ordre. Lycée Pierre de Fermat 2012/2013 Feuille d exercices

Cours de Probabilités et de Statistique

Cours 02 : Problème général de la programmation linéaire

Calcul différentiel. Chapitre Différentiabilité

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques

Construction de l'intégrale de Lebesgue

3. Conditionnement P (B)

Intégration et probabilités TD1 Espaces mesurés

SUR CERTAINS SYSTEMES D EQUATIONS AVEC CONTRAINTES DANS UN GROUPE LIBRE (*)

Points de Weierstrass d une surface de Riemann compacte

Optimisation des fonctions de plusieurs variables

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

MAT 721: Algèbre non commutative. Chapitre I: Algèbres. 1.1 Définitions et exemples

Introduction à l étude des Corps Finis

Fonctions de plusieurs variables et changements de variables

La mesure de Lebesgue sur la droite réelle

La transformée de Fourier sur un groupe fini et quelques-unes de ses applications. Elise Raphael Semestre d automne

Différentiabilité ; Fonctions de plusieurs variables réelles

Problème 1 : applications du plan affine

Chapitre III : Fonctions réelles à une variable réelle. Notion de Limite (ses variantes) et Théorèmes d'analyse

Continuité d une fonction de plusieurs variables

1 Première section: La construction générale

Problème : Calcul d'échéanciers de prêt bancaire (15 pt)

CNAM UE MVA 210 Ph. Durand Algèbre et analyse tensorielle Cours 4: Calcul dierentiel 2

[ édité le 30 avril 2015 Enoncés 1

ÉPREUVE COMMUNE DE TIPE Partie D

Angles orientés et trigonométrie

Yamina Yagoub-Zidi. Inconditionnalité et propriétés du point fixe dans les espaces de fonctions lisses

Rapport de stage de fin de première année : exemples de groupes, leur traitement par MAGMA, et applications en cryptographie

Algèbres simples centrales. involution de première espèce.

Corrigé Problème. Partie I. I-A : Le sens direct et le cas n= 2

Marc HINDRY. Introduction et présentation. page 2. 1 Le langage mathématique page 4. 2 Ensembles et applications page 8

CHAPITRE IV. L axiome du choix

C algèbre d un certain groupe de Lie nilpotent.

Développements limités. Notion de développement limité

Programmes des classes préparatoires aux Grandes Ecoles

Équations non linéaires

Cours introductif de M2 Théorie des Nombres

Cours d Analyse. Fonctions de plusieurs variables

Dualité dans les espaces de Lebesgue et mesures de Radon finies

Chapitre VI Fonctions de plusieurs variables

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens

Entiers aléatoires et analyse harmonique

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

Approximations variationelles des EDP Notes du Cours de M2

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables

Cours introductif de M2 Algèbres de Lie semi-simples et leurs représentations

CH.6 Propriétés des langages non contextuels

ANNALES SCIENTIFIQUES DE L É.N.S.

108y= 1 où x et y sont des entiers

PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES

6 Equations du première ordre

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.

F1C1/ Analyse. El Hadji Malick DIA

Raisonnement par récurrence Suites numériques

Transcription:

Produit semi-direct Table des matières 1 Produit de sous-groupes 2 2 Produit semi-direct de sous-groupes 3 3 Produit semi-direct de groupes 4 1

1 Produit de sous-groupes Soient G un groupe et H et K deux sous-groupes de G. Dénition On note par HK l'ensemble {hk / h H et k K}. Remarque H et K sont inclus dans HK puisque pour tous h de H et k et K, h=h1 HK et k=1k HK. Dénition On dit que K normalise H si pour tout k de K et pour tout h de H, khk 1 appartient à H. Proposition 1.0.1 Si K normalise H alors HK est un sous-groupe de G. Démonstration HK n'est pas vide puisque 1=11 appartient à HK. Soient h et h' appartenant à h et k et k' appartenant à K. Alors, hkh'k'=hkh(k 1 k)k'=h(khk 1 )kk'. Comme K normalise H, khk 1 appartient à H et donc hkh'k'=h(khk 1 )kk' appartient à HK. (hk) 1 = k 1 h 1 = k 1 h 1 kk 1. Comme K normalise H, k 1 h 1 k appartient à H et donc (hk) 1 = k 1 h 1 kk 1 appartient à HK. D'où HK est un sous-groupe de G. Corollaire 1.0.2 Si H est un sous-groupe normal de G, HK est un sous-groupe de G. Démonstration Puisque H est normal dans G, H est normalisé par n'importe quel sous-groupe de G et en particulier par K. D'où d'après la Proposition précédente, HK est un sous-groupe de G. Proposition 1.0.3 On suppose que K normalise H. Alors le sous-groupe HK est le sous-groupe de G engendré par H K. Démonstration H et K sont inclus dans HK donc H K est inclus dans HK. D'où, comme HK est un sous-groupe de G, <H K> est inclus dans HK. Soient h un élément de H et k un élément de K. Alors, hk appartient à <H K>={g 1... g n / n N, 1 i n g i H K ou g i 1 H K} (cf Partie Sous-groupes). D'où HK=<H K>. 2

Proposition 1.0.4 Si H et K sont normaux dans G alors HK est un sous-groupe de G. Démonstration Comme H est normal dans G, HK est un sous-groupe de G. Soient g appartenant à G et hk appartenant à HK (h H et k K). On a ghkg 1 = ghg 1 gkg 1. Comme H et K sont normaux dans G, ghg 1 appartient à H et gkg 1 appartient à K. D'où ghkg 1 = ghg 1 gkg 1 appartient à HK et donc HK est un sous-groupe normal de G. Proposition 1.0.5 Si G est abélien et si H K={1} alors HK est isomorphe à H K. Démonstration Comme G est abélien, K normalise H donc HK est un groupe. De plus, la loi de HK est hk.h'k'=h(kh'k 1 )kk'=hh'kk'. Soit ϕ l'application de H K dans HK dénie par ϕ(h,k)=hk pour tout (h,k) de H K. Montrons que ϕ est un homomorphisme : soient (h,k) et (h',k') appartenant à H K. Alors, ϕ((h, k)(h, k )) = ϕ(hh, kk ) = hh kk = hkh k car G est ablien = ϕ(h, k)ϕ(h, k ) donc ϕ est un homomorphisme de groupes. Montrons que ϕ est injective : soit (h,k) appartenant à H K tel que ϕ(h,k)=1. Alors, hk=1 et donc h=k 1. D'où h appartient à H K={1}. h=1 et par suite, k=h 1 =1. (h,k)=(1,1) donc Ker ϕ = {1} et par conséquent, ϕ est injective. ϕ est clairement surjective puisque si h appartient à H et k à K, hk=ϕ(h,k). D'où ϕ est un isomorphisme entre H K et HK. Remarque A la place de l'hypothèse : G est abélien, on peut prendre l'hypothèse : hk=kh pour tout h appartenant à H et pour tout k appartenant à K. 2 Produit semi-direct de sous-groupes Soient G un groupe, H un sous-groupe normal de G et K un sous-groupe de G. On a vu, dans la section précédente, que dans ce cas, HK est un sous-groupe de G. Dénition On dit que G est produit semi-direct des sous-groupes H et K si G=HK et H K={1}. Dans ce cas, on note G=H K ou K H. 3

Proposition 2.0.6 Soient G, H et K des groupes nis, ϕ un homomorphisme de H dans G et θ un homomorphisme de G dans K vériant Ker θ=im ϕ. On suppose qu'il existe un homomorphisme σ de K dans G, tel que θ σ=id (σ est alors appelé section au dessus de θ). Alors, G est le produit semi-direct de Im ϕ = ϕ(h) par Im σ = σ(k). Démonstration Comme ϕ et σ sont des homomorphismes de groupes, ϕ(h) et σ(k) sont des sous-groupes de G. ϕ(h)=im ϕ=ker θ donc ϕ(h) est un sous-groupe normal de G. Montrons que ϕ(h) σ(k) est réduit à {1} : Soit ϕ(h)=σ(k) appartenant à ϕ(h) σ(k). Comme Im ϕ=ker θ, θ(ϕ(h))=1. Mais θ(ϕ(h)) = θ(σ(k))=k par propriété de σ. Donc, k=1 et par conséquent, ϕ(h)=σ(k)=σ(1)=1. ϕ(h) σ(k) est réduit à {1}. Montrons que G=ϕ(H)σ(K) : Comme Im ϕ=ker θ, G/ϕ(H) est isomorphe à Im θ d'aprés le Premier Théorème d'isomorphismes. D'où, G = ϕ(h) Im θ. Comme θ σ=id, θ est surjective (si k appartient à K, k=θ(σ(k))) donc Im θ=k. Comme θ σ=id, σ est injective (si σ(k) = σ(k ) alors k=θ(σ(k)) = θ(σ(k ))=k') donc, d'après le Premier Théorème d'isomorphismes, K/Ker σ est isomorphe à K et à Im σ. D'où Im θ = K = Im σ = σ(k). On en déduit que G = ϕ(h) σ(k) = ϕ(h)σ(k) d'après la Proposition. D'où G=ϕ(H)σ(K). G est le produit semi-direct de ϕ(h) par σ(k). Corollaire 2.0.7 Soit G le groupe produit de deux groupes H et K. Alors, G est le produit semi-direct de H {1} (isomorphe à H) par {1} K (isomorphe à K). Démonstration On prend, dans la Proposition précédente, ϕ=ι H l'injection canonique de H {1} dans G, θ(g)=(1,p(g)) où p est la projection canonique de G sur K et σ=ι K l'injection canonique de {1} K dans G. 3 Produit semi-direct de groupes Soient H et K deux groupes. Soit ϕ un homomorphisme de K dans Aut(H). Pour tout k appartenant à K, on note ϕ k à la place ϕ(k). Proposition 3.0.8 L'ensemble G=H K muni de la loi (h,k)(h',k')=(hϕ k (h'),kk') est un groupe. 4

Démonstration Comme H et K ne sont pas vides, G n'est pas vide. Pour tous h' de H et k de K, ϕ k (h') appartient à H, (hϕ k (h'),kk') appartient à G pour tous h et h' de H et k et k' de K. Montrons que la loi est asociative : soient h, h' et h" appartenant à H et k, k' et k" appartenant à K. D'une part, ((h, k)(h, k ))(h, k ) = (hϕ k (h ), kk )(h, k ) D'autre part, = (hϕ k (h )ϕ kk (h ), kk k ) = (hϕ k (h )ϕ k (ϕ k (h )), kk k ) car ϕ est un homomorphisme. (h, k)((h, k )(h, k )) = (h, k)(h ϕ k (h ), k k ) = (hϕ k (h ϕ k (h )), kk k ) = (hϕ k (h )ϕ k (ϕ k (h )), kk k ) car ϕ k est un homomorphisme. D'où ((h,k)(h',k'))(h",k")=(h,k)((h',k')(h",k")) et la loi est asoociative. Pour tous h de H et k de K, (h,k)(1,1)=(hϕ k (1),k1)=(h,Id(1),k)=(h,k) car ϕ est un homomorphisme. D'où la loi admet un élément neutre : (1,1). Soient h appartenant à H et k appartenant à K. Comme ϕ k est bijective, il existe un élément h' de H tel que ϕ k (h')=h 1. D'où, (h, k)(h, k 1 ) = (hh 1, kk 1 )=(1,1). Comme ϕ est un homomorphisme, ϕ k 1 = ϕ k 1. D'où, ϕk 1(h 1 )=h'. ϕ k 1 est un homomorphisme donc ϕ k 1(h) = ϕ k 1((h 1 ) 1 ) = ϕ k 1(h 1 ) 1 = h 1. On en déduit que (h, k 1 )(h, k) = (h h 1, k 1 k)=(1,1). D'où, (h,k) admet (ϕ k 1(h 1 ), k 1 ) comme inverse. Donc G=H K est un groupe pour la loi (h,k)(h',k')=(hϕ k (h'),kk'). Dénition Le groupe G=H K muni de la loi (h,k)(h',k')=(hϕ k (h'),kk') est appelé produit semi-direct de H par K relativement à ϕ et est noté H ϕ K. Exemple Soient G un groupe, N un sous-groupe normal de G et K un sous-groupe de G. Alors, G est le produit semi-direct de N par K par l'homomorphisme ϕ déni de K dans Aut(N) par ϕ(k) : n knk 1. Proposition 3.0.9 Soient H'=H {1} et K'={1} K. Alors, G=H K est le produit semi-direct de H par K. Démonstration H' n'est pas vide puisque (1,1) appartient à H'. Soient (h,1) et (h',1) appartenant à H. 5

On a (h, 1)(h, 1) 1 = (h, 1)(ϕ 1 1(h 1 ), 1 1 ) = (h, 1)(Id(h 1 ), 1) = (h, 1)(h 1, 1) = (hϕ 1 (h 1 ), 1) = (hid(h 1 ), 1) = (hh 1, 1) donc (h, 1)(h, 1) 1 appartient à H' et par conséquent, H' est un sous-groupe de G. Soit (x,1) appartenant à H' et (h,k) appartenant à G. On a (h, k)(x, 1)(h, k) 1 = (hϕ k (x), k)(ϕ k 1(h 1 ), k 1 ) = (hϕ k (x)ϕ k (ϕ k 1(h 1 )), kk 1 ) = (hϕ k (x)ϕ kk 1(h 1 ), 1) = (hϕ k (x)id(h 1 ), 1) = (hϕ k (x)h 1, 1). Comme ϕ k (x) appartient à H par dénition de ϕ, hϕ k (x)h 1 appartient à h et par conséquent, (hϕ k (x)h 1, 1) appartient à H'. D'où, H' est un sous-groupe normal de G. K' n'est pas vide puisque (1,1) appartient à K'. Soient (1,k) et (1,k') appartenant à K'. On a (1, k)(1, k ) 1 = (1, k)(ϕ k 1(1), k 1 ) = (1, k)(1, k 1 ) = (1ϕ k (1), kk 1 ) = (1, kk 1 ). Donc (1, k)(1, k ) 1 et par conséquent, K' est un sous-groupe de G. Il est clair que H' K = {(1, 1)}. D'après la Proposition Cardinal HK, H K = H K = H K = H K = G H K donc G=H'K'. D'où, G est le produit semi-direct de H' par K'. Proposition 3.0.10 Soient H' un groupe isomorphe à H par un isomorphisme σ : H H et K' un groupe isomorphe à K par un isomorphisme θ : K K. Soit φ l'application de K' dans {f : H H } dénie par φ k (h ) = σ 1 (ϕ θ(k )(σ(h ))) (où on a posé φ k = φ(k')). Alors, φ est un homomophisme de K' dans Aut(H') et H' φ K' est isomorphe à H ϕ K. Démonstration Montrons que pour tout k' de K', φ k est un automorphisme de H' : soient h' et h" appartenant à H'. 6

φ k(h h ) = σ 1 (ϕ θ(k )(σ(h h ))) = σ 1 (ϕ θ(k )(σ(h )σ(h ))) car σ est un homomorphisme = σ 1 (ϕ θ(k )(σ(h ))ϕ θ(k )(σ(h )) car ϕ θ(k ) est un homomorphisme = σ 1 (ϕ θ(k )(σ(h )))σ 1 (ϕ θ(k )(σ(h ))) car σ 1 est un homomorphisme = φ k(h )φ k(h ) donc φ k est un endomorphisme de H'. Soit h' appartenant à H'. φ k 1(φ k (h )) = φ k 1(σ 1 (ϕ θ(k )(σ(h )))) = σ 1 (ϕ θ(k 1 )(σ(σ 1 (ϕ θ(k )(σ(h )))))) = σ 1 (ϕ θ(k 1 )(ϕ θ(k )(σ(h )))) = σ 1 (ϕ (θ(k )) 1(ϕ θ(k )(σ(h )))) = σ 1 ((ϕ θ(k )) 1 (ϕ θ(k )(σ(h )))) = σ 1 (σ(h )) = h et de même, φ(φ k 1(h ))=h'. Donc φ k est un automorphisme de H' d'inverse φ k 1. Montrons que H' φ K' est isomorphe à H ϕ K : soit f l'application de H' φ K' dans H ϕ K dénie par f(h',k')=(σ(h ), θ(k )). Montrons que f est un isomorphisme : soient (h',k') et (h",k") appartenant à H' φ K'. f((h, k )(h, k )) = f(h φ k (h ), k k ) = (σ(h φ k (h )), θ(k k )) = (σ(h )σ(φ k (h )), θ(k )θ(k )) car σ et θ sont des homomorphismes = (σ(h )σ(σ 1 (ϕ θ(k )(σ(h )))), θ(k )θ(k )) = (σ(h )ϕ θ(k )(σ(h )), θ(k )θ(k )) = (σ(h ), θ(k ))(σ(h ), θ(k )) = f(h, k )f(h, k ) donc f est un homomorphisme. Soit g l'application de H ϕ K dans H' φ K' dénie par g(h,k)= (σ 1 (h), θ 1 (k)). Soient (h',k') appartenant à H' φ K' et (h,k) à H ϕ K. g(f(h, k )) = g(σ(h ), θ(k )) = (σ 1 (σ(h )), θ 1 (θ(k ))) = (h, k ) et f(g(h, k)) = f(σ 1 (h), θ 1 (k)) = (σ(σ 1 (h)), θ(θ 1 (k))) = (h, k). Donc, f est un isomorphisme d'inverse g. H' φ K' est isomorphe à H ϕ K. 7