e x dx = e x dx + e x dx + e x dx.



Documents pareils
IGE G 4 E 87 M o M d o é d lisation o n de d s ba b ses de d do d n o n n é n es S ma m ine n 7

a g c d n d e s e s m b

LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE

Séries numériques. Chap. 02 : cours complet.

MTH 2301 Méthodes statistiques en ingénierie. MTH 2301 Méthodes statistiques en ingénierie

Mathématiques Financières : l essentiel Les 10 formules incontournables (Fin de période)

Baccalauréat S Asie 19 juin 2014 Corrigé

II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1

Estimation des incertitudes sur les erreurs de mesure.

La spirale de Théodore bis, et la suite «somme=produit».

Sciences Industrielles Précision des systèmes asservis Papanicola Robert Lycée Jacques Amyot

CHAPITRE 6 : LE BIEN-ETRE. Durée : Objectif spécifique : Résumé : I. L agrégation des préférences. Cerner la notion de bien-être et sa mesure.

Clemenceau. Régime sinusoïdal forcé. Impédances Lois fondamentales - Puissance. Lycée. PCSI 1 - Physique. Lycée Clemenceau. PCSI 1 (O.

Chapitre 8. Structures de données avancées. Primitives. Applications. L'informatique au lycée.

Intégrales doubles et triples - M

Etude de la fonction ζ de Riemann

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1

NOTICE DE MONTAGE VERSION 72

Compression Compression par dictionnaires

Liens entre fonction de transfert et représentations d'état d'un système (formes canoniques de la représentation d'état)

Coefficient de partage

SYSTEME FERME EN REACTION CHIMIQUE

Exponentielle exercices corrigés

Semestre : 4 Module : Méthodes Quantitatives III Elément : Mathématiques Financières Enseignant : Mme BENOMAR

Erreur statique. Chapitre Définition

!! " # $ #! %! &! ' (!& )**+

Intégrales généralisées

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

Le théorème de Thalès et sa réciproque

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1)

CHAPITRE 10. Jacobien, changement de coordonnées.

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) (

FILTRAGE. ANALOGIQUE et NUMERIQUE. (Vol. 8)

Université de Caen. Relativité générale. C. LONGUEMARE Applications version mars 2014

Onveutetudierl'equationdierentiellesuivante

Exercice I ( non spé ) 1/ u 1 = u / Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

rf( 1 f(x)x dx = O. ) U concours externe de recrutement de professeurs agreg6s composition d analyse

Limites des Suites numériques

RECAPITULATIF PLANS Pour quelle école?

1 Mesure et intégrale

III. Transformation des vitesses

MATHS FINANCIERES. Projet OMEGA

Le guide du parraina

ABANDONNER UNE OPTION / ABANDON D UNE OPTION L abandon d option consiste à ne pas exercer un contrat d option.

Comportement d'une suite

16.1 Convergence simple et convergence uniforme. une suite de fonctions de I dans R ou C.

OutilsMathematiques-L1-2004/2005-D.Brito.&G.Legaut.

Chapitre 2 Le problème de l unicité des solutions

OM 1 Outils mathématiques : fonction de plusieurs variables

Corrigé du baccalauréat S Pondichéry 13 avril 2011

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES.

1.1.1 Signaux à variation temporelle continue-discrète

Déroulement de l épreuve de mathématiques

Commande Prédictive Robuste d un Système MIMO utilisant un modèle BOG et les techniques LMI

LES ESCALIERS. Du niveau du rez-de-chaussée à celui de l'étage ou à celui du sous-sol.

Chapitre 1. L intérêt. 2. Concept d intérêt. 1. Mise en situation. Au terme de ce chapitre, vous serez en mesure de :

Calcul intégral élémentaire en plusieurs variables

ECOLE NATIONALE SUPERIEURE D'INGENIEURS DU MANS - UNIVERSITE DU MAINE. Jean-Claude Pascal

Théorème de Poincaré - Formule de Green-Riemann

Ce document a été mis en ligne par le Canopé de l académie de Montpellier pour la Base Nationale des Sujets d Examens de l enseignement professionnel.

A. RENSEIGNEMENTS GÉNÉRAUX. (Adresse civique) 3. Veuillez remplir l'annexe relative aux Sociétés en commandites assurées à la partie E.

Repérage d un point - Vitesse et

Direction des affaires financières DAF 3

Rupture et plasticité

INTENTION LES PROCESSUS MATHÉMATIQUES

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Offre jours fériés 2014: Cargo Rail, Cargo Express, Cargo Train, TC

Module : réponse d un système linéaire

TD1 Signaux, énergie et puissance, signaux aléatoires

Mécanique des fluides Rappels

Chapitre 11 : L inductance

Chapitre 3 : Fonctions d une variable réelle (1)

Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2

SYSTEME D EXPLOITATION : MS-DOS

l Agence Qui sommes nous?

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Comment chercher des passages dans la Bible à partir de références bibliques?

chapitre 2 interférences non localisées entre deux ondes monochromatiques cohérentes

PHY2723 Hiver Champs magnétiques statiques. Notes partielles accompagnant le cours.

Des prestations textiles personnalisées pour l hôtellerie et la restauration

Solutions particulières d une équation différentielle...

Différentiabilité ; Fonctions de plusieurs variables réelles

Le package bibleref-french

Introduction. Mathématiques Quantiques Discrètes

Groupe orthogonal d'un espace vectoriel euclidien de dimension 2, de dimension 3

Lot 4: Validation industrielle. Youness LEMRABET Pascal YIM, 19/11/2010

Fonctions de plusieurs variables. Sébastien Tordeux

[ édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ ] [correction] Si n est un entier 2, le rationnel H n =

= 1 si n = m& où n et m sont souvent des indices entiers, par exemple, n, m = 0, 1, 2, 3, 4... En fait,! n m

Calculer comment se constituer un capitale ; Calculer comment rembourser une dette en effectuant des versements réguliers.

Fonctions Analytiques

Budget Constrained Resource Allocation for Non-Deterministic Workflows on a IaaS Cloud

Matériau pour greffe MIS Corporation. Al Rights Reserved.

Le modèle de Black et Scholes

CULTURE GÉNÉRALE Histoire de l Art (RC) Philosophie (FB)

f n (x) = x n e x. T k

Vu la loi n portant code des assurances prom ulguée par le dahir n du 25 rejeb 1423 (3 octobre 2002), telle qu'elle a été complétée ;

C est signé mars 2015 Mutuelle soumise au livre II du Code de la Mutualité - SIREN N DOC 007 B-06-18/02/2015

! " # $ #% &!" # $ %"& ' ' $ (

10 juin 2010 Polytech Lille. Organisé par le Certia Interface, AQUIMER et le RMT (Réseau Mixte Technologique) Gestion durable des fluides.

Transcription:

Chtr Foctos Gmm t foctos d Bssl Chtr Focto Gmm t foctos d Bssl Détrmto d l focto Gmm L focto Gmm st très sml à dédur à rtr d l tégrl d'eulr: Ctt tégrl st u focto d rmètr ; ll st rrésté r l symbol () t s ll l focto Gmm L tégrl d Eulr st u tégrl o ror, cr l bor suérur st f, l'tégrl st égl à tdt vrs zéro our < our d t r coséqut touts ls rssos sous tégrl Cosdéros our qulls vlurs d l'tégrl ut str Pour cl, dvsos l trvll d tégrto tros rts: d zéro à >, d à t d à l'f O ur: d d d d Motros qu l drèr tégrl st our 'mort qull vlur d d lm b b (S l lmt st) O utls our motrr l'stc d l lmt: lm - (qu o ut fclmt motr lqut lusurs fos l théorèm d l'hôstl) t r coséqut, our ls grds vlurs d, r ml, s >, l vrbl sr férur à ε ; s o os d ε, s our > o : S o os, o ur: < t <

Chtr t < b b - - b d d < < b Foctos Gmm t foctos d Bssl Doc: Étt doé qu - - >, vc l crossc d b, d ugmt b lm b d st Cosdéros l tégrl d, our < Pour, ; t l focto sous tégrl sr d l'ordr our b, t d str our ls mêms vlurs d our lsqulls st l tégrl d Cdt: d lm lm ( ε ε ε ε ) d lm ε ε O ut rmrqur qu: s, ε > t l'tégrl str; s <, ε t l tégrl str S, o ur: c st-à-dr qu l'tégrl 'st s Doc, d lmd/ lm L ε ε ε ε, st our > Pr coséqut our >, o : 3 d

Chtr Foctos Gmm t foctos d Bssl A ttr d'ml clculos () t (): ( ) ( ) d () ( / ) / Posos z; dz / / d; z Doc: d / d ; Pour clculr ctt tégrl osos: (/ ) z dz O ut écrr qu: A z dz t A z dt Pros A dz L fctur Doc: z dz t dt st u costt qu'o ut clur ds l'tégrl A (z t ) dz dt L clcul st lus sml à rélsr s l o utls ls coordoés olrs ρ t ϕ (fg ) O coît qu : ( ) Doc : A où A A dϕ, A z t t l élémt d surfc st égl à ρ d d ϕ u ρ², du ρdρ; dϕ d u dϕ u dϕ ; 4 du 4

Chtr Foctos Gmm t foctos d Bssl L clcul rélsé c-dssus motr, qu l clcul d ( ) r l tégrl d Eulr st comlqué Fg Prorétés d l focto Gmm Prorété Eml ( ) ( ) () 7 4 4 4 4 3 3 3 3 3 3 4 3 3 3 Démostrto : rréstos ( ) r l tégrl d Eulr t tégros r rts : où ( ) d u,du dv d, v d; d, Or Pr coséqut : lm lm ( ) d ( ) Corollr 5

Chtr Foctos Gmm t foctos d Bssl S st ombr tr, o ( ) ( )! As, o : ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )! Doc, d c corollr, o ut rmrqur commt l focto gmm crot rdmt : ( ) ( 5) 4! 4 ( 9) ( ) ( 6) 5! ( ) ( 3)! ( 7) 6! 7 ( 4) 3! 6 ( 8) 7! 54 8! 43 3688 L focto gmm ut êtr utlsé our rédur l rréstto du rodut ( )( ) ( )( ) m m, où m- tr t S l o jout ( ), o obtt ( m ), d où l o ut écrr : Corollr (m ) (m - ) ( ) 6 ( m ) () Détrmto d l focto gmm our ls vlurs égtvs t o tèrs d Sot doé sur l trvll (, ) Doc sr trouvé sur l trvll (, ) t ( ) clculé r l formul d Eulr () Posos : Pour -, l formul do l f, t doc : t ( ) Pr coséqut ( ) st s ut êtr ( ) ( ) our (3) L trsto d u trvll à u utr (,) (, ), ( 3, ) tc, ut êtr détrmé r l formul (3) L focto gmm st s our ls égtfs trs Eml : 4 3 3 4 3 3 4 3 3 9 4 3

Chtr Foctos Gmm t foctos d Bssl L vlur d st trouvé à rtr d l tbl 3 Prorété : ( P) lm! ( )( )( ) Ctt formul st utlsé our l clcul romtf d l focto gmm Pour l démostrto, cosdéros l focto : O ut fclmt vor qu : lm f (,) ( ) Evdmmt : f (,) d lm lm f (,) lm d d d ( ) form : D u utr rt, tégrt r rts, o obtt our f (, ) u rsso sous l où O obtt l rsso : f (, ) u f ( ) du dv d, d d, v (,) d d; 7

Chtr Foctos Gmm t foctos d Bssl E l tégrt r rts cor u fos ost : d où O obtt : du u, dv d d ; v, d d Ou cor rès tégrto r rts fos, o obtt : Pr coséqut : ( ) ( ) ( ) ( ) ( ) ( ) f (, ) d! ( )( )( )!! ( )( ) ( )( ) ( ) lm! ( ) ( ) Prorété 3 Dérvé du logrthm d l focto gmm Trouvos l formul our : E ost, ( ) ( ) l ( ) : ( ) ( ) lm ; ( ) ( ) ( ) ( ) ( ) lm l l! l l ; ( ) ( )! lm l 8

Chtr Foctos Gmm t foctos d Bssl () lm l () L rt guch d ctt églté st égl romtvmt à -,577 L grdur,577 s ll l costt C d Eulr Pr coséqut : Doc, o ut écrr : lm l C ( ) lm [ l ( ) 3 ] lm [ l 3 C 3 m m m m 3 Détrmto d l focto d Bssl d rmèr sèc L équto dffértll d Bssl st : y y y L soluto d ctt équto s ll focto d Bssl L équto dffértll d Bssl st u équto lér d ordr du L soluto géérl l form : y C y C y, où C t C sot ds costts ; t y t y sot ls solutos lérs t dédts d l équto O v chrchr l soluto d l équto sous l form d l sér : (4) y ( ), E ost L roblèm sr d trouvr ls coffcts,,, t l ombr L focto : 9

Chtr Foctos Gmm t foctos d Bssl y, sr trodut ds l équto Trouvos ls dérvés : y y E ls rmlçt ds l équto, o trouv : ( ) ( )( ) ( ) ( ) ( ) ² L dtté ut êtr écrt sous form : ; O ut dédur qu : [( ) ] ( ) E tt comt qu : 3 5,,,,, c st-à-dr qu ls coffcts yt ds dcs mrs sot uls Sur l bs d l formul d récurrc, o ut écrr : 4 6 4 6 ( ) ² ( ) 4 ( 4) ( )( ) 4 ( ) ( ) 3 6 ( 6) 3( )( )( 3) ( ) K! ; ( )( ) ( ) ; ; O rmrqu qu tous ls coffcts rs sot rmés focto, o ut écrr lors : ( )

Chtr Foctos Gmm t foctos d Bssl E tt comt d ( ) ( ) ( ) ; ( )( ) ( 3 ), ( )( ) ( ) ( ) ( ), tc o ut écrr our smlfr qu : ( )! ( P ), L soluto d l équto ut êtr rrésté sous form : y ( ) ( / )! ( ) où ± v L soluto d l équto our st oté r () t ll st lé équto d Bssl d rmèr sèc d ordr v L soluto our lé équto d Bssl d rmèr sèc d ordr v Pr coséqut : j j v ( ) v ( ) Pour o tr ( ), ( ) t r coséqut : v ( )! ( ) ( ) v! ( ) v st oté r -v () t ll sot ds foctos lérmt dédts ( ) C ( ) y C st l soluto géérl d l équto d Bssl S st u tr égl à, ( ), ( ) srot lérmt dédts Pour cofrmr clu-c, cosdéros l sér our ( ) ( ) ( ), t trsformos l :! ( ) O coît qu l focto gmm our ls ombrs trs égtfs t ul ll st égl à l f Pr coséqut, our, ( ) ut êtr débuté d : t l sér sr ull L sommto

Chtr Foctos Gmm t foctos d Bssl ( ) ( )! ( ) S m -, o ur : ( ) ( ) m m ( ) ( ) m m ( m )! ( m ) m m ( m ) m! [ é t t doé qu ( m ) m!, lors, ( m ) ( m! )] focto ( ) Pr coséqut : Doc, ( ) t ( ) ( ) ( ) ( ) sot lérmt dédts Cosdéros ( ) t ( ): (vc! ) Pr coséqut : ( ) ( ) ( )! 4 ² 4 ²! 6 6 3! ( ) 8 8 4! K 5! L drèr sér détrm l (!) ( ) ( ) t l focto st r Pour, ( ) S our ( ) ds cq mmbrs d l sér : 4 6 8, 4 6 8! 3! 4!, o rd l somm l rrur sr férur à, L sér covrg lors rclmt our L 7 5! grh d l focto ( ) st rrésté r l fgu C grh ut êtr costrut rlvt d l tbl u sér ds vlurs d ( ) :

Chtr Foctos Gmm t foctos d Bssl () ( ) ( )! ( )! ( ) 3 5 7 3 5 7 3!3! 3!4! Pour, ( ) D lus, o ( ) ( ) t r coséqut ( ) L rlto ( ) ( ) t ( ) ( ) st mr rmt d drssr l tbl our ( ) ( ) ( c) ( ),,,,,39,5767,5,9385,43,5 -,484,497,,765,44 3, -,6,339,5,58,5579 Fg 4 Focto d Bssl d duèm sèc E qulté d duèm soluto o rd : Pour Y ( ) cos lm s 3 ( ) ( ), o : s,cos ( ) t( ) ( ) ( )] t o obtt u détrmto Utlsos l règl d l Hostl :

Chtr Foctos Gmm t foctos d Bssl ( ) [ cos ( ) ( ) ] Y lm s O obtt : ( ) ( ) Y ( ) ( ) l C ( ) ( ) ( ) m m m m où C st l costt d Eulr L soluto géérl st : C ( ) C ( ) Y L focto Y ( ) s ll équto d Bssl d duèm sèc d ordr ou focto d Num Ecrvos l sér our Y ( ) Y ( ) ( ) 4 4 m [ m m doc: Y l C 4 6 6 ( ) l C 3 ( ) our ( ) (!) ] ² 5 Equto dffértll codust à l équto d Bssl Focto d Bssl d trosèm sèc Sot l équto : y y (5) y Trsformos ctt équto trodust u ouvll vrbl dérvé d y focto d t : t Ermos l 4

Chtr Foctos Gmm t foctos d Bssl dy dy dt dy y ; d dt d dt dy d d d y dt y d dt d d y dt Ls rssos trouvés sot rmlcés ds (5) : smlfos r d y dt t dy dt t C st doc l équto d Bssl Ss solutos srot ( ) ( ) ( ) t t ou t Cosdéros l équto d y dt t 5 y ² y y y (6) ² S l o trodut l sg (-) sous l rthès t l o os, l équto (6) ² dvt : y y y, qu st u cs rtculr d l équto (5), qud L ² soluto d l équto (5) sr : ( ) t ( ) ( ) ( ) dy dt ( ) ( ) t y ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ; ;

Chtr Foctos Gmm t foctos d Bssl [ t ] o utlsé ( ), ( ) Ett doé qu l équto dffértll st homogè, doc qulqu sot C t qulqu sot C ls foctos C () t C () srot ss solutos E ost C,t C, o obtt l soluto sous form : ( )! ( ) ( )! ( ), ;! ( ) Posos! ( )! ( ) ( ), ( ) Ls foctos ( ) t ( ) sot ls foctos d Bssl du trosèm sèc Ds l cs d frctol, ( ) t ( ) sot lérmt dédts t y C ( ) C ( ) soluto géérl d (6) Ds l cs (tr), ( ) ( ) Vérfos : ( )! (étt doé qu, l ombr ( )! ( ) sr l t r coséqut ( ), t ls mmbrs corrsodts d l sér sot uls) trodusos u ouvu dc d sommto m, ost m D où : 6

Chtr Foctos Gmm t foctos d Bssl m m ( ) ( m )! ( m ) m m ( m ) m! Ds l cs où st u tr, l ouvll soluto lérmt dédt vc ( ) : K ( ) t l soluto géérl d (6) s écrr sous form : y C ( ) ( ) s ( ) C K ( ) 6 Focto géértrc d l focto Bssl Cosdéros l focto ( z, t) z t t u qu o décomos sér : ( ) O ut écrr, qu ou u zt u z t ( ) z!m! ( z, t) m u ( z, t) zt! m ( z, t) A t m z t m! m t m m L coffct A st : A m ( ) m z m Pour z, l coffct A dvt ( ) t u z m m ( ) ( m )!m! m! ( m ) m t t (, t) ( ) t (7) L focto u (, t) s ll l focto géértrc d l focto d Bssl d rmèr sèc d ordr tr S l o os z, o : 7

Chtr Foctos Gmm t foctos d Bssl 8 ( ) ( ) ( ) ( ) ( ),!! ) ( t t m m m m m m t t u t m m m m A (8) L focto u (, t) s ll l focto géértrc d l focto d Bssl d trosèm sèc 7 Prorétés d l focto d Bssl d rmèr t trosèm sècs Formul d récurrc ( ) ( ) () Ctt formul jou u rôl mortt ds l théor ds foctos d Bssl Ell rmt d rédur l clcul ds foctos d ordr suérur à ds foctos d rmr t duèm ordr, c st à dr ( ) ( ) t Eml : ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ² 4 8 ² 48 8 ² 4 48 6 4 () () 4 6 6 3 3 3 4 L formul d récurrc rmt our l focto d Bssl d ordr tr d s lmtr à l étblssmt ds tbls our ( ) ( ) t Démostrto : ros l rlto (7) t clculos t u r du méthods :

Chtr Foctos Gmm t foctos d Bssl ) t t u ( ) ( ) t () t ; t t² t u b) ( ) t Ls du rts drots ds du dfférts rssos dovt êtr égls our Eglsos ls coffcts our t O obtt : u t D où : ( ) ( ) ( ) ( ) ( ) ( ) ( ), tc Formul our l dérvé [ ] ( ) ( ) ( ) Pour l démostrto clculos r du méthods () t u ) t t t t u b) ( ) t ( ) ; t Églsos ls coffcts our t O obtt : ' ( ) [ () ()], tc L formul motr, qu r ls tbls ( ) t ( ), Ds l cs rtculr our, o obtt : o ut clculr '( ) ' ( ) [ ( ) ( ) ] [ ( ) ( ) ] ( ) 3 Pros l formul (8) Dérvos r rort à t comm focto otll d bord us comm sér : 9

Chtr Foctos Gmm t foctos d Bssl u t u t t t t () t Eglsos ls coffcts our t - O obtt : ou : d où : () () t () t [ () ()] [ () ()] [ ] ( ) ( ) ( ) ( ) ( ) ( ) l formul récurrt our l focto d Bssl d trosèm sèc 4 S l o clcul u d l formul (8) r du méthods t o égls ls coffcts ds ls du rssos trouvés our t, o obtdr l dérvé d l focto d Bssl du trosèm sèc : D u utr rt, où : t t t ( ) t t u u ( ) t ( ) t ; ( ) [ ( ) ( )] [ ( ) ( )]

Chtr Foctos Gmm t foctos d Bssl vc : Pour ( ) [ () ()] tc ( ) [ () ()] ( ), ( ) ( ) Ds formuls logus uvt êtr obtus our Y ( ) t K ( ) 8 Formuls tégrls d l focto d Bssl d rmèr t trosèm sècs Af d dédur ls formuls our ( ), o rd l rlto : t o os t ϕ D où t l rlto (7 ) dvt : L focto vc Pour, o : t t ϕ t t ( ) t (7 ) s ϕ ϕ ϕ ϕ s ϕ; t ϕ ( ) ϕ (9) ϕ ϕ l rorété tll qu, dϕ Kϕ our, doc : d, ϕ ϕ t ϕ cos s dϕ dϕ Doc, our trouvr ls foctos our ( ), l fut multlr l églté (9) r tégrr r rort à ϕ sur l trvll sϕϕ dϕ ( ) ( ) ϕ dϕ ϕ t

Chtr Foctos Gmm t foctos d Bssl O obtt f : ( ) dϕ ( ) E trsformt l rt guch r l formul d Eulr, o obtt : [ cos ( s ϕ ϕ) s ( s ϕ ϕ)] dϕ ( ) Pour ls vlurs rélls d, l focto ( ) ossbl s : Pr coséqut : Ds l cs rtculr our, o s ( ) cos ( s ϕ) rdr ds vlurs rélls t l églté sr ( s ϕ ϕ) dϕ ( ) cos ( s ϕ ϕ) dϕ cos ( s ϕ)dϕ dϕ cos ( s ϕ)dϕ () Af d trouvr l formul tégrl our ( ), ros l focto géértrc our l focto d Bssl d trosèm sèc : t t ( ) t t ffctuos ls mêms trsformtos ost t ϕ, d où t t s ϕ; t ϕ ϕ ϕ s ϕ t sϕ ϕ ( ) Multlos r ϕ t tégros d o à : s ϕϕ dϕ ( ) ϕ ( ) dϕ

Chtr Foctos Gmm t foctos d Bssl U sul tégrl st our ds l rt drot, d où : Pour, o : s ϕϕ dϕ s ϕ dϕ ( ) ( ) 9 tégrl d Wbr-Lchtz O rcotr souvt géohysqu ls tégrls d Wbr-Lchtz : z K ( r) d z r ( r) cos( z) d, Motros l rmèr formul Pour ( r) ros l formul tégrl () : z r ( r) cos(r s ϕ) d ϕ E rmlçt ctt rsso ds l rt guch d ctt équto, o obtt : z l'rsso cos ( r s j ) st égl à : D où : z ( r) d cos( r s ϕ) dϕd r s ϕ r s ϕ z z r s ϕ z r s ϕ ( ) ϕ r d d d z r s ϕ z r s ϕ dϕ z r s ϕ z r s ϕ z r s ϕ z r s ϕ dϕ 3

Chtr Foctos Gmm t foctos d Bssl E rédust u mêm déomtur, o : z z z² r²s z ( r) d dϕ ϕ dϕ z² r²s ϕ Posos tg ϕ t ; dt sc ϕdϕ; L tégrl chrché sr : dϕ dt sc ² ϕ dt dt ; tg² ϕ t² tg² ϕ t² s ² ϕ sc ² ϕ t² z dt z dt ² t z ( z² r² ) t ( t² ) z² r² t z dt z z² r² ( z² r² ) z² t² ( z² r² ) z z² r² t z² r² rc tg z z² r² z² r² Ds l cs rtculr our z : ( r) d r Orthogolté d l focto d Bssl L vlur st l rc d ( ), dfférts d l focto ( ), o ur : s ( ) ( ) ( µ) d Motros qu s t µdu rcs L églté à zéro d l tégrl st u rorété d orthogolté d l focto d Bssl : y µ y Pour l démostrto, osos ( ) t ( ), doc coformémt à (6), o 4

Chtr Foctos Gmm t foctos d Bssl y y y ² y µ² y y, Af d trouvr l focto sous tégrl y y, multlos l rmèr équto r y t l duèm r y t rtrchos l duèm églté d l rmèr O obtt : qu o ut écrr sous form : L tégrl d à do : ( y y y y ) ( y y y y ) ( ² µ² ) y y d d (y y y y ) ( µ ) yy ( ) ( ) ( y y y y ) ² µ ² y y d () E cosdért qu µ st u vrbl : ( ) ( ) ( ) ( µ ) y, y ; y µ, y ; ( ) ( ) ( ) ( ) d d d y ( ) ; y ( ) d d d E rmlçt l rsso trouvé, o trouv : ( ) ( ) ( ) y y y y µ D où : ( ) [ ( y y y y )] ( ) ( µ ) ² d lm lm µ µ² ² µ µ² ² E lqut l théorèm d Hôstl à l rt drot, o : ( ) ( ) ( ) µ ² ( ) d lm µ µ 5

Chtr Foctos Gmm t foctos d Bssl d où : v ( ) d ( ) Décomosto d l focto f ( ) sér r l focto d Bssl f() r : Ls foctos ( ) ossèdt u fté d solutos,,,,, Rréstos f() c ( ) c j ( ) c ( ) Af d trouvr ls costts c, c, c, utlsos l rorété d orthogolté f ( ) ( ) d C ( ) ( ) C ( ) d d O obtt : D où : f ( ) ( ) f d ( ) ( ) d c ² ( ) d c f ( ) ( ) d [ ( ) ]² v ( ) d () Eml : Décomosr ordr f () sur trvll (, ) sér r l focto d Bssl du rmr Soluto : sot : f () c ( ) c ( ) c ( ) c ( ) Ls coffcts d l sér sot détrmés r l formul () O os, d où : ( t) dt ² ( ) c ² ( )d ² [ ( )] t O os t, doc : dt d, o ut écrr : 6

Chtr Foctos Gmm t foctos d Bssl Doc : t ² 3 ( ) d ² ( t) t² f () c t ( t) dt ( ) ( ) [ ' 3 ( ) v ]² ( ) ( ) ' [ ] dt ( ) ( ) ² Clculos our c D l tbl o 3,837 O trouv r l formul d récurrc d Bssl d rmèr sèc qu : D l tbl o trouv ( ),48 Pr coséqut : ( ) ( ) ( ) ( ) Pr coséqut : t ( ),48 ( ) / [ ( ) ( )],48 c,955 O ut clculr d u mèr logu, c, c 3 Alcto d l focto d Bssl à l soluto ds roblèms d hysqu mthémtqu Problèm Progto d l chlur ds u cyldr f d ryo R l fut détrmr l tmértur à l térur du cyldr, s o l dstrbuto d l tmértur u momt tl t sur l surfc du cyldr O rd qu l tmértur U déd d l dstc ρ Sot l codto tl : 7

Chtr Foctos Gmm t foctos d Bssl Fg 3 O v cosdérr qu l tmértur U à l surfc st ull, d où U R (Codto tl) L équto d coductblté thrmqu st : U ² U t L oértur d Llc st lus sml à rdr coordoés cyldrqus : U ρ ρ U ρ ρ ρ ² U ² U ρ ϕ² z² Ds codtos du roblèm, o U qu déd s d ϕ t d z, d où : ρ ²U ϕ² ²U t z² L équto d coductblté thrmqu rd l form : ou U t ² ρ ρ U ρ ρ ² ² ρ ρ ρ U ² U ²U U ² t ² ρ ρ ρ U ρ (3) 8

Chtr Foctos Gmm t foctos d Bssl As, l fut résoudr l équto (3) s U R méthod d Fourr our l résoluto sous form : U ( ρ, t) ω( ρ) T ( t) ρ t U t f ( ρ) O v utlsr lors l Doc : L équto (3) rd l form : U ω ρ t U ω ρ ²U ω ρ² ( ) T ( t), ( ρ) T ( t), ( ρ) T ( t), qu o ut écrr sous form : T ( t) ω( ρ) ² T( t) ω ( ρ) ω ( ρ) T ²T ( t) ( t) Pour qu U sot soluto d (3), l fut : ω ( ) ( ) ρ ω ρ ( ρ) ω ( ρ) 9 ( ) ρ ² T t ² T t ; (4) ω ( ρ ) ω ( ρ ) ² ω ( ρ ) (5) ρ L équto (4) ut s écrr sous form : dt ² ² dt T E l tégrt, o obtt : focto : L focto : l T ² ² t l C ou T ² ² t C L équto (5) st l équto d Bssl d ordr t d rgumt U ω ( ρ) ( ρ) ² ²t ( ρ, t) C ( ρ) ρ S soluto sr l

Chtr Foctos Gmm t foctos d Bssl sr l soluto d l équto dffértll (3) stsfr l codto u lmts Pr coséqut : d où : ² t ( ) C R, ( R) Cdt l focto U( ρ, t) dot Ls vlurs R sot ls rcs d l focto ( ) S ls rcs sot désgés r µ µ,,,, doc our, o :, µ Pour ls doés o : qu st u soluto d (3) U µ, R µ,, R 3 µ, R ² ²t ( ρ, t) C ( ρ),,,3, foctos crctérstqus ou rors du roblèm Aucu focto U ( ρ, t) U C ( ρ), t o f( ρ ) Af d trouvr l soluto, ros : our t, U f(ρ ) t r coséqut : sot ls ombrs crctérstqus du roblèm ( ρ) stsft ls codtos u lmts, étt doé qu our t : ρ U (, t) C ² f ( ρ) ²t c ( ρ) ρ µ R L drèr sér st l décomosto d f ( ρ) r l focto d Bssl d ordr : doc : L focto : st l soluto du roblèm osé c ρ [ ] f ( ρ) µ d '( µ ) R R R ρ ρ c [ ] ρf ( ρ) ( ρ) dρ '( µ ) R t U ( ρ, t) c ( ρ) sot ls

Chtr Foctos Gmm t foctos d Bssl Problèm Problèm d Drchlt our u cyldr Sot u cyldr z, z H, R Trouvr l focto hrmoqu à l térur du cyldr, s l o coît ss vlurs sur l surfc l fut résoudr l roblèm U, vc ls codtos u lmts : U U U z H ρ z,, f ( ρ) U Pusqu U déd s d ϕ, t l équto dvt : ϕ U ρ U U ρ ρ z Posos U( ρ,z) ω( ρ)z(z) D où : U ω ( ρ)z(z); ρ U ω ( ρ) Z(z); ρ U ω( ρ) Z (z) z E ls rmlçt ds l équto, o obtt : [ ω ( ρ) ω ( ρ)]z(z) ω( ρ)z (z) ρ Décomosos ls vrbls : ω ( ρ) ω ( ρ) ρ Z (z) ω( ρ) Z(z) Pour trouvr ω(ρ) t Z(z), obtos ls équtos : Z (z) Z(z) (6) ω ( ρ) ω ( ρ) ω( ρ) (7) ρ L équto (6) st u équto lér t homogè du duèm ordr Pour s résoluto, étblssos l équto crctérstqu : S soluto géérl sr : Z(z) C, ± z C L équto (7) st u équto d Bssl dot l soluto st D ( ρ ) 3 z

Chtr Foctos Gmm t foctos d Bssl L focto : sr l soluto d l équto d Llc U z z (z, ρ) D(C C ) ( ρ) Af qu our z H, o U, l fut qu : L églté sr stsft s : H H C C C H, C H D où : (Hz) (Hz) z z C C sh(h z), t l focto U(z, ρ ) Dsh (H z) ( ρ) stsfr l rmèr codto u lmts Af d stsfr l duèm codto u lmts, l fut qu : ρ, ( ρ), C'st-à-dr : ( ) S,,, sot ls rcs d ( ), doc,,, o :, U D sh (H z) ( qu stsfr ls du rmèrs codtos u lmts E qulté d u ouvll soluto, ros l focto : U ( ρ,z) ρ) D sh (H z) ( ρ) Chosssos ls coffcts d fço qu our z, o : f ( ρ) D sh ( H) ( ρ) Ls codtos d l sér sot détrmés r l formul () Pr coséqut : L focto : D sh ( H) ρf ( ρ) ( ρ)dρ [ `( )] D sh (H z) ( ρ), sr l soluto du roblèm osé 3

Chtr Foctos Gmm t foctos d Bssl Problèm 3 Cosdéros l roblèm d Drchlt vc ls codtos suvts : Posos : U ( ρ, z) U ( ρ, z) Z z H,, U ( ρ, z) ρ U( ρ,z) ω( ρ)z(z), f ( z) O trouv : ou cor : t ω ( ρ) ω ( ρ) ρ Z (z) ω( ρ) Z(z) ω ( ρ) ω ( ρ) ω( ρ) ρ Z (z) Z(z) L rmèr équto st u équto dffértll our l focto d Bssl du trosèm sèc d ordr t d rgumt ρ S soluto sr l focto : ω ( ρ) ( ρ) L duèm équto st lér à coffcts costts Ls rcs d l équto crctérstqu sot ± L soluto géérl d ctt équto sr : L focto : sr l soluto d l équto d Llc Pour qu z, o U, l fut qu : chos ossbl qu our C C cos z Ds z U ( ρ, z) ( C cosz Ds z) ( ρ) C cos Ds, Pour qu our zh, o U, l fut qu D s H, chos ossbl qu our : Pr coséqut, où,,3, H H 33

Chtr Foctos Gmm t foctos d Bssl L focto : U z ( ρ, z) D ρ s H H Stsft ls du codtos u lmts Af d trouvr l focto stsfst l trosèm codto u lmts, ros : t cosdéros qu : D ρ s z H Hρ z D s f (z) H H Ctt sér st l sér d Fourr our l focto f (z) Pr ls formuls d Fourr, o trouv : L focto : sr l soluto du roblèm osé rors D H z f (z)s dz H H H z U( ρ,z) D ρ s H H sot ls vlurs rors t H z s sot ls foctos H Erccs 3 3 Scht, trouvr,, Motrr qu : où st tr () s, Ecrr l équto dffértll our () t () 3 Vérfr qu s t cos () stsfot l équto dffértll : y y y 4 cos ; 34

Chtr Foctos Gmm t foctos d Bssl 4 Trouvr ls rssos our : 5 Trouvr 4 (,5) t (,5) 6 Motrr qu: 3 () t () 5 sϕ 7 E utlst l'rcc 6, motrr qu: 8 Motrr qu: () ( ()cos ϕ ()cos 4ϕ ) ( ()sϕ ()s3ϕ ) 3 4 ( ) cos( sϕ)cos ϕdϕ, () s ( s ϕ)s ( ) ϕdϕ t (t)dt () 9 Décomosr l focto f() sur (,) sér r foctos d Bssl d'ordr Réos : c ( ) Motrr qu: t (t)dt () Bblogrh - Coulomb, obrt G Trté d géohysqu tr Msso t sc, Prs 975 - Murry Y, Sgl R Alys d Fourr t lcto u roblèms d vlurs u lmts Sér Schum, Edscc, 98 3- Smrov V Cours d mthémtqus suérurs, T Mr, Moscou, 97 35