UT ORSAY Mesures Physiques ntégrales doubles Calcul d aires et de volumes Cours du ème semestre A Notion d intégrale double A- omaine quarrable On suose que le lan est muni d un reère orthonormé ( O; i; j) Soit un domaine du lan contenu dans le rectangle [ a, b] [ c, d] On artage [ a, b ] à l aide 0,, n tels que a = 0 < < < n = b et on artage de même [ c, d ] à l aide y0, y, y tels que c = y0 < y < < y = d On additionne les aires de tous les «sous-rectangles» [ i, i + ] [ y j, y j+ ] qui sont entièrement dans : le résultat est inférieur à l aire de si ossède une aire Aelons A n, ce résultat On additionne les aires de tous les «sous-rectangle» [ i, i + ] [ y j, y j+ ] qui ont au moins un oint en commun avec : le résultat est suérieur à l aire de si ossède une aire Aelons n, ce résultat On augmente le nombre de oints des artages 0,, n et y0, y, y de sorte que la diagonale des «sous-rectangles» tende vers 0 : les deu résultats A n, et A + n, sont de lus en lus roches de l aire de si ossède une aire éfinition : + On dit que est quarrable si lim An, = lim An, et on dit alors que cette limite est l aire de diag 0 diag 0 A l école rimaire il y a longtems, on construisait réellement des quadrillages de lus en lus fins our deviner quelle était l aire d un disque et on constatait que le quotient de l aire obtenue en ratique ar le carré du rayon était quasiment le même our tous les élèves : à eine lus que A- Notation intégrale, calcul de l aire d un domaine où Si désigne un domaine quarrable, son aire est notée d A + d rerésente l aire d un élément de surface Pour calculer cette intégrale (qui est double), suivant la forme du domaine on utilise une méthode qui ermet de la remlacer ar deu intégrales simles successives er Cas Suosons que, d une art les oints de ont tous des abscisses entre a et b, d autre art, our toute valeur de entre a et b, les oints de ont des ordonnées y qui vérifient g( ) < y < g( ) et g sont des fonctions continues On eut alors écrire : b g ( ) d = ( ) d a g ( ) ème Cas Suosons que, d une art les oints de ont tous des ordonnées entre c et d, d autre art, our toute valeur de y entre c et d, les oints de ont des abscisses qui vérifient g < < g et g sont des fonctions continues On eut alors écrire : d g d = ( d) c g Page 49
Eemles : ) Calculer l aire du domaine tel que ) Calculer l aire du domaine tel que ) Calculer l aire du domaine tel que π 0 < < sin( ) < y < 0 < y < y 0 < < e 0 < y < y < < + y A- L intégrale double Soit f (, y ) une fonction de R vers R à valeurs ositives définie dans un domaine quarrable La rerésentation de f est une surface S dans l esace muni du reère ( O, i, j, k) On artage en sous-rectangles comme au aragrahe A ans chaque sous-rectangle [, ] [ y, y ], on choisit un oint M (, y ) et i i+ j j+ on calcule l image de (, y ) our la fonction f La somme des volumes des colonnes dont la base est un des sous-rectangles et la hauteur f (, y ) est une aroimation du volume comris entre le lan z = 0 et la surface S, s auyant sur le contour de : on reconnaît la méthode de Riemann Lorsque le quadrillage de devient suffisamment «fin» our que la diagonale de chaque sous-rectangle tende vers 0, si le domaine de l esace comris entre le lan z = 0 et la surface S, s auyant sur le contour de, ossède un volume celui ci est la limite des sommes de Riemann et on le note f (, y) d Remarques fondamentales : ) A riori, l intégrale double est faite our calculer un volume de même que l intégrale simle était faite our calculer une aire ) Si f (, y ) n est as à valeurs ositives, l intégrale ne s interrète lus comme un volume mais la méthode de Riemann est la même ) ans une intégrale double, les bornes en et y doivent toujours être rangées en ordre croissant c est à dire la lus etite «en bas» et la lus grande «en haut» A-V Proriétés de l intégrale double a ntégrales successives (ou itérées) er Cas Si les oints de ont tous des abscisses entre a et b, et si our toute valeur de entre a et b, les oints de ont des ordonnées y qui vérifient g( ) < y < g( ) et g sont des fonctions continues On eut alors écrire : b g ( ) f (, y) d = ( f (, y) ) d a g ( ) 50
ème Cas Suosons que, d une art les oints de ont tous des ordonnées entre c et d, d autre art, our toute valeur de y entre c et d, les oints de ont des abscisses qui vérifient g < < g et g sont des fonctions continues On eut alors écrire : d g f (, y) d = ( f (, y) d) c g Cas articulier Si est le rectangle [ a, b] [ c, d] et si f (, y ) est un roduit de deu fonctions intégrables l une de et l autre de y, c est à dire f (, y) = f ( ) f alors on a : f (, y) d = f ( ) d f a c b Ce cas, bien que «très agréable» est, hélas, assez rare : en général une intégrale double n est as le roduit de deu intégrales simles Eercices : π < < 0 ) est tel que 0 < y < Calculer f (, y) d et on donne f (, y) = cos ) est le triangle de sommets A(;0), B(;), C (0;) Calculer ( + y) d ) est le rectangle de sommets O(0;0), A(;0), B(;), C (0;) Calculer b Linéarité Si f et g sont des fonctions intégrables dans, d ye ( ) d ( α f (, y) + β g(, y)) d = α f (, y) d + β g(, y) d c Additivité des domaines Si f est une fonction intégrable dans, et si de lus = avec = alors : Eercices : ) Calculer l intégrale = ( 0 + ) f (, y) d = f (, y) d + f (, y) d ( y) d ) On aelle le domaine délimité ar les quatre cercles de rayon et de centres resectifs A(;), B( ;), C( ; ), (; ) Calculer les intégrales suivantes : = d d = = y d 4 = ( ) y d ) On aelle le domaine délimité ar : < < Calculer les intégrales suivantes : < y < 0 5
= d d = = y d 4 = ( ) y d 4) Echanger l ordre d intégration dans les intégrales suivantes (on ne demande évidemment as de calculer l intégrale uisque la fonction est inconnue!) : b a b+ = ( ) f (, y) d avec a > 0 et b > 0 = 0 f (, y) d 0 0 a a y f (, y ) d = 0 a y B Changement de variables dans les intégrales doubles B- éterminant Jacobien d un changement de variables Soit ( u, v) un coule de variables calculées à artir de (, y ), c est à dire que u et v sont des fonctions de (, y ) Pour qu un tel changement de variable soit correct, il faut évidemment que u et v soient des fonctions à dérivées continues et que chaque coule de valeurs our (, y ) corresonde à un coule unique de valeurs our ( u, v ) et réciroquement c est à dire que le changement de variable doit être bijectif On aelle déterminant Jacobien du changement de variables (, y) ( u, v) le déterminant, noté J (, y ), u u y tel que : J (, y) = v v y u = + y Par eemle, si on a alors on a J (, y ) = = v = y = rcos( θ ) cos( θ ) rsin( θ ) Autre eemle, si on a alors on a J ( r, θ ) = = r y = rsin( θ ) sin( θ ) rcos( θ ) Proriété : Si dans un domaine le Jacobien d un changement de variable ne s annule jamais (sauf eut-être en des oints isolés) alors ce changement de variable est bijectif nterrétation du Jacobien : L élément de surface décrit ar les variables ( u, v ) c est à dire du dv n a as forcément la même «taille» que l élément de surface décrit ar les variables (, y ) c est à dire d Lorsque le changement de variable est correct on a la relation du dv = J (, y) d u = + y Par eemle, si on a alors on a J (, y ) = = donc du dv = d v = y = rcos( θ ) cos( θ ) rsin( θ ) Autre eemle, si on a alors on a J ( r, θ ) = = r donc d = r dr dθ y = rsin( θ ) sin( θ ) rcos( θ ) 5
B- Eercices : ) écrire les domaines suivants en coordonnées olaires : + y < a a ( ) + y < = + y > 0 = 4 y > 0 y > 0 (avec a > 0) Triangle de sommets = O(0;0) A(-;) B(;) ) Calculer les intégrales suivantes où les domaines sont ceu de l eercice récédent = ( + y ) d d d = = + + y = = 4 7 y d y d 5 = ( + y) d 8 = ( y) d d ) Calculer = où = { ; y ; + y } ( + y) 4) Calculer 5) Calculer = = 6 9 y d y d = + y d où = { + y y 0; + y 0; 0; y 0} = ( + y + ) d où = { + y 0} 5
54