Mécanique du point : forces Newtoniennes (PCSI)
|
|
|
- Adèle Lajoie
- il y a 10 ans
- Total affichages :
Transcription
1 écanique du oint : foces Newtoniennes (PCSI Question de cous On admet que, losqu'il est soumis à une foce Newtonienne F K u, la tajectoie d'un cos est lane et décite a mc K +e cosθ où C θ est une constante du mouvement. Etabli l'exession de l'énegie mécanique en fonction de e, K, m et C. Enegie otentielle : E K Enegie cinétique : K mc ( + e cosθ et E c mv d v ṙ + θ θ + θ dθ ( d + C dθ 4 ( mc K ( m C 4 K ( K ( e sinθ mc ( + e cosθ + K e sin θ ( + e cosθ 4 + m C 4 K + e cosθ ( + e cosθ m C e sin θ + K m ( + e cosθ C K ( e m C sin θ + e cos θ + + ecosθ K ( e m C + + e cosθ ( K mc e + + e cosθ Enegie mécanique : E c + E ( K mc e C 4 C K 4 m 4 ( + e cosθ4 C8
2 Question de cous On considèe un objet soumise à une foce Newtonienne F K u. ontez que sa tajectoie est égie a une équation de la fome +e cosθ. Execice Paamète d'imact Une météoite aive deuis l'inni ves la Tee avec une vitesse v 0. On note b le aamète d'imact comme indiqué su la gue ci dessous. L'objectif de ce oblème est de détemine la valeu minimale de b ou laquelle la météoite évite la collision avec la Tee.. La météoite n'est soumise qu'à l'attaction gavitationnelle de la Tee. Déteminez la natue de sa tajectoie. ontez que le mouvement est lan et déteminez une elation ente et θ.. On note N le oint de la tajectoie auquel la distance qui séae la météoite de la Tee est la lus etite. ontez qu'en N, la vitesse est uniquement suivant u θ. En déduie une elation ente la vitesse v N au oint N, la distance ON, b et v En utilisant la consevation de l'énegie, montez la elation 0 min v 0 + G T min v 0b 4. En déduie l'exession minimale b c du aamète d'imact telle que ou b < b c, la météoite fae la Tee et ou b > b c, la météoite évite la Tee. Inteêtez.. Seule foce considéée : F G T m u dont le moment a aot à T vaut F 0 donc le TC donne v cste. Le fait que la diection de v soit constante imlique que ces deux vecteus sont toujous contenus dans le même lan (ca v est othogonal au lan qui les contient tous les deux donc le mouvement est lan. D'aute at, en coodonnées olaies, v ( u (ṙ u + θ u θ θ u z donc θ cste. on eut calcule m v m θ m 0 v 0 m ( x 0 ux b u y (v 0 ux mbv 0 uz donc θ v 0 b. v ṙ u + θ u θ et au oint le lus oche, ṙ 0 ca est minimal donc v N θ min uθ v0b uθ min. 3. E m mv 0 mv N G T m min m v 0 b G min T m min donc 0 min v 0 + G T min v0b 4. La valeu citique coesond à min R T donc v 0 b c R T v 0 + G T R T ie b c R T + G T R T v 0 R T + v lib v 0 Daniel Suchet - 0
3 Execice Extinction des Dinausoes Il y a de cela envion 65 millions d'années, les dinosaues et de nombeuses autes esèces vivantes ont été victimes d'une extinction massive et butale. Pami les diveses hyothèses oosées, la lus communément admise est celle de l'imact d'une comète à la suface de la Tee. Cet execice oose d'étudie la vitesse que eut avoi une telle comète los de son imact avec la Tee. Un ensemble d'astéoïdes de faible dimension se touve vaisemblablement éati dans le système solaie au dela de l'obite de luton. La masse de ces astéoïdes (nuage de Oot eésente envion le ties de la masse totale des 9 lanètes du système solaie. Losqu'un de ces astéoïdes est susamment dévié de sa tajectoie quasi-ciculaie (a l'eet gavitationnel d'autes lanètes ou astéoïdes, il eut s'aoche à tès coute distance du soleil et end le nom de comète. Nous étudions ici une comète C de masse m, kg ayant ou tajectoie autou du soleil une ellise tès allongée. Elle est aussi caactéisée a une distance maximale au soleil d max 5.04 a où a est le ayon de la tajectoie suosée ciculaie de la Tee autou du soleil. On note T 0 la éiode du mouvement de la Tee autou du soleil.. Comment aelle t-on a? Que valent a et T 0?. Détemine numéiquement la vitesse v 0 de la Tee su son obite ciculaie autou du Soleil. 3. On note G la constante de gavitation univeselle et S la masse du Soleil. Exime le oduit G s en fonction de v 0 et a. 4. Les distances minimales et maximales de C au soleil sont notées d m et d. Exime, en fonction ded m, a, v 0 et d, les vitesses maximale v et minimale v m de C su son obite. On utilisea les elations de consevation. 5. Quelle elation doivent véie d m et a ou qu'un imact de C su la suface de la Tee uisse ête envisagé? En déduie une évaluation numéique de la lus etite valeu ossible de v. 6. On considèe d m a. Quelles sont les valeus extêmes ossibles de la vitesse elative de la Tee et de C (vitesse d'imact au moment du choc de C su la Tee? Execice ise en obite d'un satellite Dans le éféentiel géocentique (suosé galiléen, un satellite aticiel de masse m se délace suivant une obite ciculaie de ayon R + h autou du cente de la tee (h étant son altitude a aot à la suface teeste.. onte que la vitesse v est constante et donne sa valeu.. En déduie la éiode T du mouvement et elie la éiode T à l'altitude. Comment s'aelle cette loi? 3. Exime l'énegie cinétique et l'énegie mécanique du satellite ; quelle est la elation simle ente les deux? Commente le signe de l'énegie mécanique. 4. Un satellite est dit géostationnaie s'il est immobile a aot au éféentiel teeste. Quelle est alos sa éiode? En déduie son altitude h. 5. Un satellite est initialement immobile a aot à la tee, su une base de lancement située à une latitude λ. Une fusée lui founit un tavail W ou l'amene su son obite avec la vitesse initiale calculée écédemment. (a Quelle est l'énegie mécanique du satellite avant son lancement (on n'oubliea as de teni comte de la otation de la tee? (b Calcule le tavail W que la fusée doit founi au satellite. Où doit-on lace de éféence la base de lancement? 3 Daniel Suchet - 0
4 Execice Obite de tansfet de Hoffman Pou E m K a.. Patie. Etude d'un mouvement ciculaie. Un satellite de masse m est en obite ciculaie autou de la Tee à un altitude. On cheche à le faie asse à une obite ciculaie d'altitude. Pou cela, on asse a une obite de tansfet : losque le satellite atteint le oint P, on active endant un cous instant des fusées que font vaie sa vitesse de v P et le font asse su une obite ellitique, dite obite de Hohmann. Losque le satellite aive au oint A, on éactive les fusées ou faie vaie la vitesse de v A et faie asse le satellite su son obite nale. (a ontez qu'un mouvement est ciculaie si et seulement si il est décit à vitesse angulaie constante. (b Déteminez la nome et la diection de la vitesse du satellite su chacune de ses obites ciculaies. (c Déteminez l'exession de l'énegie mécanique su chacune des obites ciculaies.. Etude de la tajectoie ellitique. (a Raelez la fome généale de (θ. (b Déteminez dans le cas de l'obite de Hohmann la valeu de l'excenticité e. (c Déteminez l'exession de l'énegie mécanique su l'obite de Hohmann. 3. Etude du tansfet d'obite. (a Déteminez les valeus de v P et de v A. (b Déteminez le tems nécessaie ou que le satellite asse de l'obite à l'obite. ( +e cosθ, E m K mc (e K (e. Pou une ellise, a e + +e e (a Constante des aies : θ cste donc si cste (tajectoie ciculaie, θ cste. donc a v u (b Pou une tajectoie ciculaie, m v u m T G u donc v T G (c E m E c + E m T G. Patie (a +e cosθ (b On veut que min T Gm (c Su une ellise, E m G T m a 3. Tansfet m T G +e et max e donc +e e et a + donc E m G T m donc e A + (a En A: on veut asse de l'énegie de l'obite ciculaie : m T G à l'énegie de l'obite de Homan G T m. On doit donc founi l'énegie G T m m T G G T m G T m, ce qui coesond à un changement de vitesse v tel que E c ((v m + v v G T m ie v +v v G T 0 avec v T G, on touve v T G ± ( T G + G T T G ( + T G + donc 4 Daniel Suchet - 0
5 (b En B : En A: on veut asse de l'énegie de l'obite de Homan G T m à l'énegie de l'obite ciculaie : m T G à. On doit donc founi l'énegie m T G G T m G T m G T m ( + G T m, ce qui coesond à un changement de vitesse v tel que E c m (v (v v etc 5 Daniel Suchet - 0
TRAVAUX DIRIGÉS DE M 6
D M 6 Coection PCSI 1 013 014 RVUX DIRIGÉS DE M 6 Execice 1 : Pemie vol habité (pa un homme) Le 1 avil 1961, le commandant soviétique Y Gagaine fut le pemie cosmonaute, le vaisseau spatial satellisé était
11.5 Le moment de force τ (tau) : Production d une accélération angulaire
11.5 Le moment de foce τ (tau) : Poduction d une accéléation angulaie La tige suivante est soumise à deux foces égales et en sens contaie: elle est en équilibe N La tige suivante est soumise à deux foces
Chapitre 6: Moment cinétique
Chapite 6: oment cinétique Intoduction http://www.youtube.com/watch?v=vefd0bltgya consevation du moment cinétique 1 - angula momentum consevation 1 - Collège éici_(360p).mp4 http://www.youtube.com/watch?v=w6qaxdppjae
CHAPITRE VI : Le potentiel électrique
CHPITRE VI : Le potentiel électiue VI. 1 u chapite III, nous avons vu ue losu'une foce est consevative, il est possible de lui associe une énegie potentielle ui conduit à une loi de consevation de l'énegie.
M F. F O Unité: [m. N] La norme du moment de force peut se calculer en introduit le bras de levier d
Chapite 2: But: connaîte les lois auxquelles doit obéi un cops solide en équilibe. Ceci pemet de décie la station debout ainsi que les conditions nécessaies pou teni une tasse dans la main, souleve une
où «p» représente le nombre de paramètres estimés de la loi de distribution testée sous H 0.
7- Tests d austement, d indépendance et de coélation - Chapite 7 : Tests d austements, d indépendance et de coélation 7. Test d austement du Khi-deux... 7. Test d austement de Kolmogoov-Sminov... 7.. Test
FINANCE Mathématiques Financières
INSTITUT D ETUDES POLITIQUES 4ème Année, Economie et Entepises 2005/2006 C.M. : M. Godlewski Intéêts Simples Définitions et concepts FINANCE Mathématiques Financièes L intéêt est la émunéation d un pêt.
Mouvement d'une particule chargée dans un champ magnétique indépendant du temps
Moueent d'une patiule hagée dans un hap agnétique indépendant du teps iblio: Pee elat Gaing Magnétise Into expéientale: Dispositif: On obsee une déiation du faseau d'életons losqu'il aie ae une itesse
DEUXIEME ANNEE TRONC COMMUN TECHNOLOGIE TRAVAUX DIRIGES DE PHYSIQUE VIBRATIONS ONDES
UNIVERSITE DES SCIENCES ET DE A TECHNOOGIE HOUARI BOUMEDIENNE INSTITUT DE PHYSIQUE DEPARTEMENT DES ENSEIGNEMENTS DE PHYSIQUE DE BASE DEUXIEME ANNEE TRONC COMMUN TECHNOOGIE TRAVAUX DIRIGES DE PHYSIQUE VIBRATIONS
Informations Techniques A7 A141. Roulements à Billes à Gorge Profonde. Roulements à Billes à Contact Oblique. Roulements à Billes Auto-Aligneurs
ROULEMENTS Pages Infomations Techniques A7 A141 Infos Tech. Roulements à Billes à Goge Pofonde B4 B45 Roulements à Billes à Contact Oblique Roulements à Billes Auto-Aligneus Roulements à Rouleaux Cylindiques
CIRCULAIRE N 02/04. Elle précise les méthodes de valorisation des titres de capital et des titres de créances contenus dans les actifs de l OPCVM.
Rabat, le 02 juillet 2004 CIRCULIRE N 02/04 RELTIVE UX CONDITIONS D ÉVLUTION DES VLEURS PPORTÉES À UN ORGNISME DE PLCEMENT COLLECTIF EN VLEURS MOBILIÈRES OU DÉTENUES PR LUI La pésente ciculaie vient en
Quelques éléments d écologie utiles au forestier
BTSA Gestion Foestièe Module D41 V.1.1. Avil 1997 Quelques éléments d écologie utiles au foestie Paysage vosgien : un exemple d écocomplexe divesifié. Sylvain Gaudin CFPPA/CFAA de Châteaufaine E 10 ue
Validation CFD axisymétrique de modèle zonal des écoulements gazeux de chambre de combustion de moteur Diesel
CONSERVATOIRE NATIONAL DES ARTS ET METIERS Cente d enseignement de Genoble Mémoie Mécanique des stuctues et des systèmes Validation CFD axisymétique de modèle zonal des écoulements gazeux de Auditeu: Jean-Michel
A la mémoire de ma grande mère A mes parents A Mon épouse A Mes tantes et sœurs A Mes beaux parents A Toute ma famille A Mes amis A Rihab, Lina et
Remeciements e tavail a été effectué au sein du laboatoie optoélectonique et composants de l univesité Fehat Abbas (Sétif, Algéie) en collaboation avec le goupe MALTA consolido du Dépatement du Physique
CLOUD CX263 MÉLANGEUR
COUD CX6 MÉANGEU Clealy bette soun ZONE ZONE MUSIC SOUCE MUSIC SOUCE MUSIC SOUCE MUSIC EVE MUSIC EVE MUSIC EVE MIC EVE MIC EVE MIC EVE MIC EVE MIC EVE MIC EVE 6 6 6 5 5 5 MICOPHONE CX6 4 4 4 F HF F HF
Serveur vidéo IP. caméras analogiques PC serveur. PC Client 1. Serveur de stockage ( optionnel )
Sony RealShot Manage V3 Info Poduit Mas 2005 RealShot Manage V3.0 Logiciel de gestion des caméas IP MJPEG, MPEG-4, Audio, il sait tout enegiste! Une nouvelle vesion du logiciel RealShot Manage de Sony
Po ur d o nne r un é lan à vo tre re traite
Po u d o nne un é lan à vo te e taite ez a p é P aite t e e vot joud'hui dès au E N EN T TR RE E N NOOUUSS,, CC EESSTT FFAA CC I I LL EE DD EE SS EE O M M PP RR EE NN DDRRE E CC O Toutes les gaanties de
CONSTANTES DIELECTRIQUES
9 E7 CONTANTE DIELECTRIQUE I. INTRODUCTION Dans cette expéience, nous étuieons es conensateus et nous éiveons les popiétés e iélectiques tels que l'ai et le plexiglas. II. THEORIE A) Conensateus et iélectiques
Créer un observatoire de la concurrence. Créer un observatoire de la concurrence. Démarche. ntérêt. C aractéristiques.
Cée un obsevatoie de la concuence poblématique I Quelle est l'étendue d'un maché? Quelle pat du maché, une entepise peut-elle espée pende? Quels sont les atouts des entepises pésentes su le maché? ntéêt
TS Physique Satellite à la recherche de sa planète Exercice résolu
P a g e 1 Phsique atellite à la recherche de sa planète Exercice résolu Enoncé Le centre spatial de Kourou a lancé le 1 décembre 005, avec une fusée Ariane 5, un satellite de météorologie de seconde génération
SOMMAIRE. ATRACOM-Centrafrique Manuel de Procédures Administratives Financiers et Comptables
ATRACOM-Centafique Manuel de Pocédues Administatives Financies et Comptables G MODULE G GESTION DE LA TRESORERIE SOMMAIRE G MODULE G GESTION DE LA TRESORERIE... 1 G.1 COMPOSANTES DE LA TRESORERIE... 2
Cours de. Point et système de points matériels
Abdellah BENYOUSSEF Amal BERRADA Pofesseus à la Faculté des Scences Unvesté Mohammed V Rabat Cous de Pont et système de ponts matéels A L USAGE DES ETUDIANTS DU 1 ER CYCLE UNIVERSITAIRE FACULTES DES SCIENCES,
Roulements à billes et à rouleaux
Fo New Technology Netwok R copoation Roulements à billes et à ouleaux CAT. NO. 222-VIII/F Manuel technique A- Roulements à billes à goges pofondes B- Roulements miniatues B- 1 Roulements à billes à contact
La gravitation universelle
La gravitation universelle Pourquoi les planètes du système solaire restent-elles en orbite autour du Soleil? 1) Qu'est-ce que la gravitation universelle? activité : Attraction universelle La cohésion
Évaluation de l'incertitude de mesure par une méthode statistique ("méthode de type A") Voir cours d'instrumentation
G. Pinson - Physique ppliquée Mesues - 16 / 1 16 - Instuments de mesues Eeu et incetitude su la mesue d'une gandeu Ce qui suit découle des pesciptions du IPM (ueau Intenational des Poids et Mesues, Fance),
Permis de feu. Travail par point chaud. r Soudage r Brasage. r Découpage r Tronçonnage. r Meulage r Autres. r Poste à souder r Tronçonneuse
Pemis de feu Tavail pa point chaud Patage vote engagement Ce document doit ête établi avant tout tavail pa point chaud (soudage, découpage, meulage, ) afin de péveni les isques d incendie et d explosion
CARACTERISTIQUES DES SECTIONS PLANES
CRCTERITIQUE DE ECTION PLNE OENT TTIQUE D UNE ECTION PLNE oient une aie pane et une doite Le moment statiue de a section pa appot à m est défini pa intégae : m ( ) ( ) δ d (doénavant, on note e moment
( Mecanique des fluides )
INSTITUT NTION GRONOMIUE ERTEMENT U GENIE RUR SECTION YRUIUE GRICOE YRUIUE GENERE ( Mecanique des fluides ) TRONC COMMUN ème NNEE atie : Statique des Fluides ( ydostatique ) atie : ynamique des Fluides
Chapitre 9 : Applications des lois de Newton et Kepler à l'étude du mouvement des planètes et des satellites
I- Les trois lois de Kepler : Chapitre 9 : Applications des lois de Newton et Kepler à l'étude du mouvement des planètes et des satellites Les lois de Kepler s'applique aussi bien pour une planète en mouvement
PHYSIQUE DES SEMI-CONDUCTEURS
Dépatement Mico-électonique et télécommunications Pemièe année 004/005 PHYSIQUE DES SEMI-CONDUCTEURS Rouge Violet Infa-Rouge Visible Ulta-Violet Cd x Hg 1-x Te InSb Ge Si GaAs CdSe AlAs CdS GaP SiC GaN
dénombrement, loi binomiale
dénombrement, loi binomiale Table des matières I) Introduction au dénombrement 1 1. Problème ouvert....................................... 2 2. Jeux et dénombrements...................................
Annexe II. Les trois lois de Kepler
Annexe II es tois lois de Keple écnique & 4 èe - Annexe II es tois lois de Keple Johnnes Keple (57-6), pulie en 596 son peie ouge, ysteiu Cosogphicu Teize nnées plus td, en 69, il pulie Astonoi No, dns
TD de Physique n o 1 : Mécanique du point
E.N.S. de Cachan Département E.E.A. M FE 3 e année Phsique appliquée 011-01 TD de Phsique n o 1 : Mécanique du point Exercice n o 1 : Trajectoire d un ballon-sonde Un ballon-sonde M, lâché au niveau du
Chapitre 5. Le ressort. F ext. F ressort
Chapitre 5 Le ressort Le ressort est un élément fondamental de plusieurs mécanismes. Il existe plusieurs types de ressorts (à boudin, à lame, spiral etc.) Que l on comprime ou étire un ressort, tel que
LES PROBLÈMES MONÉTAIRES AU MOYEN ÂGE
es oblèmes monétaies au moyen âge UNIVERSITÉ PARIS X NANTERRE Faculté de Sciences Économiques et de Gestion DEA Économie des Institutions ente de Recheche en Éistémologie Aliquée (École Polytechnique/NRS)
GESTION DE LA SAUVEGARDE DES DONNÉES (SÉCURITÉ ET STOCKAGE)
GESTION DE LA SAUVEGARDE DES DONNÉES (SÉCURITÉ ET STOCKAGE) SAUVEGARDE DES DONNÉES DEMANDE D INFORMATION Vous souhaitez ecevoi de l infomation elative aux solutions de la thématique Gestion de la sauvegade
Module : réponse d un système linéaire
BSEL - Physique aliquée Module : réonse d un système linéaire Diaoramas () : diagrammes de Bode, réonse Résumé de cours - Caractérisation d un système hysique - Calcul de la réonse our une entrée donnée
DYNAMIQUE DE FORMATION DES ÉTOILES
A 99 PHYS. II ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES, ÉCOLES NATIONALES SUPÉRIEURES DE L'AÉRONAUTIQUE ET DE L'ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE SAINT-ÉTIENNE,
Le second nuage : questions autour de la lumière
Le second nuage : questions autour de la lumière Quelle vitesse? infinie ou pas? cf débats autour de la réfraction (Newton : la lumière va + vite dans l eau) mesures astronomiques (Rœmer, Bradley) : grande
Mécanique. Chapitre 4. Mécanique en référentiel non galiléen
Mécanique Chapitre 4 Mécanique en référentiel non galiléen I Référentiel en translation Mécanique en référentiel non galiléen Jusqu à présent, nous avons fait de la mécanique du point dans un référentiel
Physique: 1 er Bachelier en Medecine. 1er juin 2012. Duree de l'examen: 3 h. Partie 1: /56. Partie 2 : /20. Nom: N ō carte d étudiant:
Nom: Prénom: A N ō carte d étudiant: Physique: 1 er Bachelier en Medecine 1er juin 2012. Duree de l'examen: 3 h Avant de commencer a repondre aux questions, identiez-vous en haut de cette 1ere page, et
Continuité et dérivabilité d une fonction
DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité
Magister en : Electrotechnique
انج س ت انجضائش ت انذ مشاط ت انشعب ت République Algéienne Démocatique et Populaie صاسة انتعه ى انعان انبحث انعه Minitèe de l Eneignement Supéieu et de la Recheche Scientifique Univeité Mohamed Khide Bika
Université de Caen. Relativité générale. C. LONGUEMARE Applications version 2.0. 4 mars 2014
Université de Caen LMNO Relativité générale C. LONGUEMARE Applications version.0 4 mars 014 Plan 1. Rappels de dynamique classique La force de Coulomb Le principe de moindre action : lagrangien, hamiltonien
( Codes : voir verso du feuillet 3 ) SPECIMEN
Aide demandeu d emploi Pojet pesonnalisé d accès à l emploi Pesciption de Pô emploi RFPE AREF CRP - CTP ou d un patenaie de Pô emploi Pécisez : N d AIS Concene de naissance Pénom Né(e) Inscit(e) depuis
DM n o 8 TS1 2012 Physique 10 (satellites) + Chimie 12 (catalyse) Exercice 1 Lancement d un satellite météorologique
DM n o 8 TS1 2012 Physique 10 (satellites) + Chimie 12 (catalyse) Exercice 1 Lancement d un satellite météorologique Le centre spatial de Kourou a lancé le 21 décembre 200, avec une fusée Ariane, un satellite
Cours IV Mise en orbite
Introduction au vol spatial Cours IV Mise en orbite If you don t know where you re going, you ll probably end up somewhere else. Yogi Berra, NY Yankees catcher v1.2.8 by-sa Olivier Cleynen Introduction
Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, 672 59 10 11 m 3 kg 1 s 2
Introduction Page xxi (milieu de page) G = 6, 672 59 1 11 m 3 kg 1 s 2 Erratum de MÉCANIQUE, 6ème édition Page xxv (dernier tiers de page) le terme de Coriolis est supérieur à 1% du poids) Chapitre 1 Page
Repérage d un point - Vitesse et
PSI - écanique I - Repérage d un point - Vitesse et accélération page 1/6 Repérage d un point - Vitesse et accélération Table des matières 1 Espace et temps - Référentiel d observation 1 2 Coordonnées
Développements limités. Notion de développement limité
MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un
Michel Henry Nicolas Delorme
Michel Henry Nicolas Delorme Mécanique du point Cours + Exos Michel Henry Maître de conférences à l IUFM des Pays de Loire (Le Mans) Agrégé de physique Nicolas Delorme Maître de conférences à l université
Chap 8 - TEMPS & RELATIVITE RESTREINTE
Chap 8 - TEMPS & RELATIVITE RESTREINTE Exercice 0 page 9 On considère deux évènements E et E Référentiel propre, R : la Terre. Dans ce référentiel, les deux évènements ont lieu au même endroit. La durée
S2I 1. quartz circuit de commande. Figure 1. Engrenage
TSI 4 heures Calculatrices autorisées 214 S2I 1 L essor de l électronique nomade s accomagne d un besoin accru de sources d énergies miniaturisées. Les contraintes imosées à ces objets nomades sont multiles
Système formé de deux points
MPSI - 2005/2006 - Mécanique II - Système formé de deux points matériels page /5 Système formé de deux points matériels Table des matières Éléments cinétiques. Éléments cinétiques dans R.......................2
Des familles de deux enfants
Des familles de deux enfants Claudine Schwartz, IREM de Grenoble Professeur, Université Joseh Fourier Les questions et sont osées dans le dernier numéro de «Pour la Science» (n 336, octobre 2005, article
L information sera transmise selon des signaux de nature et de fréquences différentes (sons, ultrasons, électromagnétiques, électriques).
CHAINE DE TRANSMISSION Nous avons une information que nous voulons transmettre (signal, images, sons ). Nous avons besoin d une chaîne de transmission comosée de trois éléments rinciaux : 1. L émetteur
Planche n o 22. Fonctions de plusieurs variables. Corrigé
Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette
Commande Prédictive Non Linéaire à un pas de la Machine Asynchrone (1) Université de Djelfa (2)
37 Commande Pédictive Non Linéaie à un a de la achine Aynchone Khana Bdiina () Hilal Naimi () et Ramdhan Hae () () Univeité de Delfa () King Saoud univeity Aabia Saudi [email protected] Réumé Cet aticle
POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Audioprothésiste / stage i-prépa intensif -
POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Section Audioprothésiste / stage i-prépa intensif - 70 Chapitre 8 : Champ de gravitation - Satellites I. Loi de gravitation universelle : (
GESTION DES RELATIONS HUMAINES ET COMPÉTENCES
GESTION DES RELATIONS HUMAINES ET COMPÉTENCES DEMANDE D INFORMATION Vous souhaitez ecevoi de l infomation elative aux solutions de la thématique Gestion des elations humaines et des compétences? Photocopiez
Guide 2005 GESTION. des solutions partenaires logiciels. IBM Software. commerciale (CRM) comptable et financière logistique marketing de la qualité
IBM Softwae Guide 2005 des solutions patenaies logiciels GESTION commeciale (CRM) comptable et financièe logistique maketing de la qualité des elations humaines et compétences documentaie (GED) des appels,
PROBLÈMES DE RELATIVITÉ RESTREINTE (L2-L3) Christian Carimalo
PROBLÈMES DE RELATIVITÉ RESTREINTE (L2-L3) Christian Carimalo I - La transformation de Lorentz Dans tout ce qui suit, R(O, x, y, z, t) et R (O, x, y, z, t ) sont deux référentiels galiléens dont les axes
Chapitre 1.5a Le champ électrique généré par plusieurs particules
hapte.5a Le chap électque généé pa pluseus patcules Le chap électque généé pa pluseus chages fxes Le odule de chap électque d une chage ponctuelle est adal, popotonnel à la chage électque et neseent popotonnel
Quantité de mouvement et moment cinétique
6 Quantité de mouvement et moment cinétique v7 p = mv L = r p 1 Impulsion et quantité de mouvement Une force F agit sur un corps de masse m, pendant un temps Δt. La vitesse du corps varie de Δv = v f -
DEMANDE D OUVERTURE D UN COMPTE EPARGNE REMUNERE (Réservé aux particuliers) Exemplaire Client (à conserver)
GE Money Bank DEMANDE D OUVERTURE D UN COMPTE EPARGNE REMUNERE (Résevé aux paticulies) Exemplaie Client (à conseve) Vote Conseille Cachet du Conseille Le (date de l offe) O l'offe. N de poposition : N
CONDUCTEURS EN EQUILIBRE ELECTROSTATIQUE
Chapit II CONDUCTEURS EN EQUILIRE ELECTROSTTIQUE En élcticité, un conductu st un miliu matéil dans lqul ctains chags élctiqus, dits «chags libs», sont suscptibls d s déplac sous l action d un champ élctiqu.
Guide de l acheteur de logiciel de Paie
Note pespicacité Pivilégie les essouces humaines Guide de l acheteu de logiciel de Paie Table des matièes Intoduction Tendances écentes de Paie L automation de Paie avec libe-sevice pou employés Analyse
tudes & documents ÉCONOMIE ET ÉVALUATION L assurance habitation dans les départements d Outre Mer n 24 Juin 2010
COMMISSARIAT GÉNÉRAL AU DÉVELOPPEMENT DURABLE n 24 Juin 2010 É tudes & documents L assuance habitation dans les dépatements d Oute Me RISQUES ÉCONOMIE ET ÉVALUATION Sevice de l économie, de l évaluation
Interaction milieux dilués rayonnement Travaux dirigés n 2. Résonance magnétique : approche classique
PGA & SDUEE Année 008 09 Interaction milieux dilués rayonnement Travaux dirigés n. Résonance magnétique : approche classique Première interprétation classique d une expérience de résonance magnétique On
10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)
0 leçon 2 Leçon n 2 : Contact entre deu solides Frottement de glissement Eemples (PC ou er CU) Introduction Contact entre deu solides Liaisons de contact 2 Contact ponctuel 2 Frottement de glissement 2
Roulements à rotule sur deux rangées de rouleaux en deux parties
Roulements à otule su deux angées de ouleaux en deux paties Réduction des coûts gâce au changement apide du oulement difficilement accessible Contenu Changement apide du oulement 2 Réduction des coûts
OM 1 Outils mathématiques : fonction de plusieurs variables
Outils mathématiques : fonction de plusieurs variables PCSI 2013 2014 Certaines partie de ce chapitre ne seront utiles qu à partir de l année prochaine, mais une grande partie nous servira dès cette année.
NOMBRES COMPLEXES. Exercice 1 :
Exercice 1 : NOMBRES COMPLEXES On donne θ 0 un réel tel que : cos(θ 0 ) 5 et sin(θ 0 ) 1 5. Calculer le module et l'argument de chacun des nombres complexes suivants (en fonction de θ 0 ) : a i( )( )(1
Premier principe de la thermodynamique - conservation de l énergie
Chapitre 5 Premier principe de la thermodynamique - conservation de l énergie 5.1 Bilan d énergie 5.1.1 Énergie totale d un système fermé L énergie totale E T d un système thermodynamique fermé de masse
Moments partiels crédibilistes et application à l évaluation de la performance de fonds spéculatifs
Moments patiels cédibilistes et application à l évaluation de la pefomance de fonds spéculatifs Alfed MBAIRADJIM M. 1 & Jules SADEFO K. 2 & Michel TERRAZA 3 1 LAMETA- Univesité Montpellie 1 et moussa [email protected]
Angles orientés et fonctions circulaires ( En première S )
Angles orientés et fonctions circulaires ( En première S ) Dernière mise à jour : Jeudi 01 Septembre 010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 006-007) Lycée Stendhal, Grenoble
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.
Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I
- Cours de mécanique - STATIQUE
- Cous de mécanque - STTIQUE SOMMIRE. GENERLITES 5.. RPPELS DE NOTIONS DE PHYSIQUE...5.. REPERE, CONVENTIONS...6... REPÈRE DE L STTIQUE 6.3. SOLIDE RÉEL...7.4. SOLIDE DÉORMLE SELON UNE LOI CONNUE : (HYPOTHÈSE
Comparaison de fonctions Développements limités. Chapitre 10
PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?
Amélioration des performances des aérogénérateurs
N d ode : Séie : الجمهورية الجزاي رية الديمقراطية الشعبية REPUBIQUE AGERIENNE DEMOCRATIQUE ET POPUAIRE MINISTERE DE ENSEIGNEMENT SUPERIEUR ET DE A RECHERCHE SCIENTIFIQUE UNIERSITE CONSTANTINE I Faculté
COLLECTION SAWD. Cours de Physique seconde S. Wahab DIOP. M. Serigne Abdou Wahab Diop http://physiquechimie.sharepoint.com Lycée Seydina Limamoulaye
Cours de Physique seconde S Wahab DIOP 00 COLLECTION SAWD M. Serigne Abdou Wahab Diop http://physiquechimie.sharepoint.com Lycée Seydina Limamoulaye Cours de Physique seconde S Table des matières Généralités
Economie du satellite: Conception de Satellite, Fabrication de Satellite, Lancement, Assurance, Performance en orbite, Stations de surveillance
Cours jour 2 Economie du satellite: Conception de Satellite, Fabrication de Satellite, Lancement, Assurance, Performance en orbite, Stations de surveillance Acquisition de satellite, Bail, Joint-Ventures,
C est un mouvement plan dont la trajectoire est un cercle ou une portion de cercle. Le module du vecteur position OM est constant et il est égal au
1 2 C est un mouvement plan dont la trajectoire est un cercle ou une portion de cercle. Le module du vecteur position est constant et il est égal au rayon du cercle. = 3 A- ouvement circulaire non uniforme
Flux Réseau et Sécurité
Flux Réseau et Sécuité v1.01 Yann BERTHIER Spécialiste Sécuité Systèmes et Réseaux [email protected] Nicolas FISCHBACH Senio Manage, Netwok Engineeing Secuity, COLT Telecom [email protected] - http://www.secuite.og/nico/
D'CLICS CONSO. ayez les bons réflexes! Logement, téléphonie, mobilité, budget : soyez acteur de votre consommation! www.crij.org.
n 26 2013/2014 Jounal du Cente Régional d Infomation Jeunesse Midi-Pyénées D'CLICS CONSO ayez les bons éflexes! d o s s i e Logement, téléphonie, mobilité, budget : soyez acteu de vote consommation! www.cij.og
DiaDent Group International
www.diagun.co.k DiaDent Goup Intenational Dispositif de compactage sans fil à chaleu intégée Copyight 2010 DiaDent Goup Intenational www.diadent.com Dispositif de compactage sans fil à chaleu intégée w
NFE107 Urbanisation et architecture des systèmes d information. Juin 2009. «La virtualisation» CNAM Lille. Auditeur BAULE.L 1
Juin 2009 NFE107 Urbanisation et architecture des systèmes d information CNAM Lille «La virtualisation» Auditeur BAULE.L 1 Plan INTRODUCTION I. PRINCIPES DE LA VIRTUALISATION II. DIFFÉRENTES TECHNIQUES
Utilisation des intégrales premières en mécanique. Exemples et applications.
Sébastien Bourdreux Agrégation de Physique Université Blaise Pascal - Clermont-Ferrand Utilisation des intégrales premières en mécanique. Exemples et applications. septembre 2003 Correcteur : Pascal DELLOUVE
TD 9 Problème à deux corps
PH1ME2-C Université Paris 7 - Denis Diderot 2012-2013 TD 9 Problème à deux corps 1. Systèmes de deux particules : centre de masse et particule relative. Application à l étude des étoiles doubles Une étoile
CONCOURS COMMUN 2010 PHYSIQUE
CONCOUS COMMUN SUJET A DES ÉCOLES DES MINES D ALBI, ALÈS, DOUAI, NANTES Épreuve de Physique-Chimie (toutes filières) Corrigé Barème total points : Physique points - Chimie 68 points PHYSIQUE Partie A :
c. Calcul pour une évolution d une proportion entre deux années non consécutives
Calcul des itervalles de cofiace our les EPCV 996-004 - Cas d u ourcetage ou d ue évolutio e oit das la oulatio totale des méages - Cas d u ourcetage ou d ue évolutio das ue sous oulatio das les méages
METEOROLOGIE CAEA 1990
METEOROLOGIE CAEA 1990 1) Les météorologistes mesurent et prévoient le vent en attitude à des niveaux exprimés en pressions atmosphériques. Entre le niveau de la mer et 6000 m d'altitude, quels sont les
TP : Outils de simulation. March 13, 2015
TP : Outils de simulation March 13, 2015 Chater 1 Initialisation Scilab Calculatrice matricielle Exercice 1. Système Unix Créer sous Unix un réertoire de travail outil_simulation dans votre home réertoire.
Etoiles doubles (et autres systèmes de deux points matériels)
Projet de Physique P6-3 STPI/P6-3/009 35 Etoiles doubles (et autres systèmes de deux points matériels) Etudiants : Eve ARQUIN Anastacia BILICI Mylène CHAMPAIN Arnaud DELANDE Zineb LAMRANI Coralie PONSINET
Mémoire de DEA. Modélisation opérationnelle des domaines de référence
Mémoie e DEA Ecole octoale IAEM Loaine / DEA Infomatique e Loaine Univesité Heni Poincaé, Nancy 1 LORIA Moélisation opéationnelle es omaines e éféence soutenu le Mai 22 juin 2004 pa Alexane Denis membes
Univ. Béjaia, Faculté de la Technologie, Département d électronique
Univ. Béjaia, Faculté de la Technologie, Dépatement d électonique L INTELLIGENCE ARTIFICIELLE APPLIQUEE AUX TELECOMMUNICATIONS Thème : Intelligence économique et télécommunication Poposé pa : D A/. KHIREDDINE
I - Quelques propriétés des étoiles à neutrons
Formation Interuniversitaire de Physique Option de L3 Ecole Normale Supérieure de Paris Astrophysique Patrick Hennebelle François Levrier Sixième TD 14 avril 2015 Les étoiles dont la masse initiale est
MAISON DE L ARSLA 75 AVENUE DE LA REPUBLIQUE 75011 PARIS 28/03/2014
MAISON DE L ARSLA 75 AVENUE DE LA REPUBLIQUE 7511 PARIS 28/3/214 D BUDGET PREVISIONNEL 214 Le budget pévisionnel 214, d un ontant de 1 8 en dépenses et en ecettes, epend, hos éléents exceptionnels, les
LES COLLISIONS FRONTALES ENTRE VÉHICULES
LES COLLISIONS FRONTALES ENTRE VÉHICULES Quel est le rôle de la masse dans un choc frontal entre deux véhicules? Quel est le rôle de la vitesse? Quelle est la force délivrée par chacun des deux véhicules?
THÈSE. présentée pour obtenir le titre de. DOCTEUR de L ÉCOLE NATIONALE SUPÉRIEURE D ARTS ET MÉTIERS. Spécialité: Génie Electrique.
N d ode: 005-7 ECOLE DOCTORALE 43 Ecole Nationale Supéieue d At et Métie Cente de Lille THÈSE péentée pou obteni le tite de DOCTEUR de L ÉCOLE NATIONALE SUPÉRIEURE D ARTS ET MÉTIERS Spécialité: Génie Electique
