où «p» représente le nombre de paramètres estimés de la loi de distribution testée sous H 0.
|
|
|
- Jean-Sébastien Perras
- il y a 10 ans
- Total affichages :
Transcription
1 7- Tests d austement, d indépendance et de coélation - Chapite 7 : Tests d austements, d indépendance et de coélation 7. Test d austement du Khi-deux Test d austement de Kolmogoov-Sminov Test de Kolmogoov-Sminov pou deux populations Test d indépendance ente deux vaiables (test du Khi-deux) Test su le coefficient de coélation simple ente deux vaiables quantitatives suivant une distibution binomale Test su le coefficient de coélation de ang (Speaman) ente deux vaiables quantitatives...5 Souvent, nous chechons à auste une distibution à nos données. Une fois la distibution connue, il est possible de calcule toute pobabilité d intéêt. 7. Test d austement du Khi-deux Soit H : La population suit la distibution «x» H : la population ne suit pas la distibution «x» L idée est de découpe le domaine de la distibution en intevalles. Dans chaque intevalle, on calcule à pati de la loi spécifiée sous H la féquence théoique attendue. On compte ensuite combien d obsevations l on etouve dans chaque intevalle. Il suffit alos de compae les féquences obsevées aux féquences théoiques. Supposons que l on divise la distibution en «k» intevalles. Soit un intevalle «i» donné. La féquence théoique attendue pou l intevalle «i» est E i =np i. La statistique = k ( Oi Ei ) Q χ k p i= Ei où «p» epésente le nombe de paamètes estimés de la loi de distibution testée sous H. Note : On ecommande généalement de choisi les intevalles de sote que 5 i. E i Note : Pou un même eu de données, il est couant que plusieus distibutions ne puissent ête eetées pa ce test. Exemple : On a 5 données dont la épatition est la suivante : Intevalle [,,5[ [,5,[ [,,5[ [,5,[ [,,5[ [,5 3,[ [3,, [ Nombe obsevé Les moyenne et écat-type de l échantillon sont : x =,68 et s=,59 Les féquences théoiques pou une loi nomale de moyenne,68 et de vaiance,59 sont : Intevalle < [,,5[ [,5,[ [,,5[ [,5,[ [,,5[ [,5 3,[ [3, [ Nombe théoique (E i ), 5,5,94 6,3,38 3,38,559,5
2 7- Tests d austement, d indépendance et de coélation - On egoupe les classes pou avoi E i >5 Intevalle -,,5[ [,5,[ [,,5[ [,5 Nombe théoique (E i ) 6,45,94 6,3 4,37 Nombe obsevé (O i ) On calcule : Q= 3,75 à compae à une χ. Au niveau α =5%, on lit χ 3, 84. On eette H : la 4,. 5 = distibution suit une loi nomale. (Incidemment, les données de cet exemple ont été généées suivant une loi lognomale de paamètes logaithmiques (,,5)). 7. Test d austement de Kolmogoov-Sminov L idée du test est de compae la fonction de distibution expéimentale à la fonction de épatition théoique. On mesue la difféence maximale ente ces deux fonctions (en valeu absolue). La fonction de épatition expéimentale s obtient facilement en classant les valeus pa ode coissant, x, x < x x,...x n, puis en notant : Fe ( x) = i / n xi x < xi+. x xn On calcule la difféence maximale pa : D = max F ( x) F ( x), le maximum se touvant nécessaiement à un des x i dû à la fome en max ( ) t e escalie de la fonction F e (x). F t (x) est la distibution théoique de la distibution entièement spécifiée sous H. Les valeus citiques de D max ont été tabulées pa dives auteus. n α =. α =.5 α = n>4./ n.36/ n.63/ n Le test K-S pemet de teste n impote quelle distibution. Il est nomalement plus puissant que le test du Khi-deux (i.e. il pemet de eete plus facilement H ) et il a l avantage de ne pas equéi de sépae abitaiement le domaine en intevalles. Note : Losque les paamètes spécifiant la distibution sont estimés des mêmes données que celles utilisées dans le test, il s ensuit un austement aux données que les valeus citiques devaient efléte (ces valeus citiques devaient ête evues à la baisse). Des tables «évisées» existent Lindgen, 96. Statistical Theoy. MacMillan, New Yok
3 7- Tests d austement, d indépendance et de coélation - 3 pou cetaines distibutions paticulièes. Dans la patique, losque «n» est gand, on peut utilise la table pécédente comme test (tès) appoximatif (i.e. si on eette H on auait eeté aussi avec la bonne valeu citique; si on ne eette pas H on ne peut pas conclue). Exemple : Mêmes données que pécédemment : x= On obtient : D max =.657 Nomale(.7,.59 ) Expéimentale Ici n=5, de la table on tie D table =,36/5.5 =,9. D max <D table ici, on aive à la conclusion contaie à celle obtenue avec le test Khi-deux, i.e. on ne peut pas eete l hypothèse que la distibution soit nomale. Pa conte, Si l on fait le test apès coection pou l estimation des paamètes de la loi nomale, on eette H. 7.. Test de Kolmogoov-Sminov pou deux populations Si l on a deux échantillons difféents et que l on veut teste si les deux échantillons peuvent poveni de la même population, on peut utilise le test K-S avec les mêmes valeus citiques que pécédemment. Il suffit de constuie les deux fonctions de distibution expéimentales, de calcule l écat maximal ente les deux distibutions (nécessaiement à une des valeus obsevées) et de compae l écat à la valeu citique nn coespondante avec cette fois n =. n + n Si l on adapte les valeus citiques pou teni compte que les paamètes de la loi nomale ont été estimés, on devait utilise la valeu L table =,886/5,5 =,5. Dans ce cas, on eetteait H. La modification à la statistique calculée dans le cas spécifique de la loi nomale a été obtenue pa Lilliefos pa simulation.
4 7- Tests d austement, d indépendance et de coélation Test d indépendance ente deux vaiables (test du Khi-deux) Un tableau de contingence est un tableau coisant les valeus de deux vaiables (qualitatives ou quantitatives, discètes ou continues. L on note la féquence d obsevation des difféentes valeus des deux vaiables. Pou une vaiable continue, celle-ci est découpée en intevalles. Il s agit en quelque sote de la généalisation à deux vaiables du concept d histogamme. Exemple : Vaiable Valeu (ou intevalle) Vaiable Valeu (ou intevalle) Valeu (ou intevalle) 3 Valeu (ou intevalle) n n n 3 n. Valeu (ou intevalle) n n n 3 n. n. n. n.3 n.. Sous hypothèse d indépendance, la distibution conointe est simplement le poduit des distibutions ni. n. maginales, i.e. f i = f i f. Si l on estime f i pa n i /n.. et f i pa n i. /n, on devait donc avoi ni. n.. L idée est de calcule l écat ente les deux temes, le n i obsevé (noté O i ) et le n i pédit ou théoique (noté E i ), si cet écat devient top impotant, on deva eete l hypothèse que les vaiables sont indépendantes. On calcule : c ( ) c ni ni. n. / n.. ( Oi Ei ) Q = = n n / n E i= = i.... i= = La statistique Q est distibuée appoximativement suivant une nombe de valeus ou intevalles des deux vaiables. χ i ( )( c ) où et «c» désignent le Note : Comme pou le test d austement, il faut que la féquence théoique E i 5 i, pou que le test soit valide. Exemple : Une flotte d autobus est équipée de 4 types de pneus (A, B, C,D). On mesue le kilométage pacouu avant usue du pneu. On constuit 3 classes de kilométage (en millies) <, [,3], >3. On a obtenu les ésultats suivants : Obsevé A B C D Total < [,3] > Total 8 Les deux vaiables sont-elles indépendantes? On calcule le tableau des féquences théoiques : Théoique A B C D Total < [,3] 448 > Total 8
5 7- Tests d austement, d indépendance et de coélation - 5 et Q=(6-4) /4+(3-4) /4+...+(69-64) /64+(47-64) /64=,8. On compae à une χ = χ, 59. Q>,59, donc on eette l hypothèse que le kilométage ( 4 )(3 ),.5 6,.5 = obtenu soit indépendant de la maque de pneus. 7.4 Test su le coefficient de coélation simple ente deux vaiables quantitatives suivant une distibution binomale Soit l hypothèse H : ρ =. Sous cette hypothèse, on a : ( n ) ~ F, n De façon équivalente, on a aussi : n ~ t n Cette denièe statistique pemettant un test unilatéal ou bilatéal. Le test découle diectement. Note : Si H est plutôt du type ρ = ρ alos il faut ecoui à un aute test. On utilise alos le fait que : + / ln + ρ N / ln ρ, pou constuie le test. n 3 Exemple : Dix échantillons de sols ont été pélevés pou lesquels on a mesué la poosité (n) et la conductivité hydaulique (K) en laboatoie. On a obtenu une coélation de,6 ente log(k) et n. Cette coélation est-elle significative au niveau α =, 5? Ici, on pouvait pévoi que la coélation seait positive, il semble donc plus indiqué d effectue un test n,6 8 unilatéal. on calcule = =,. Comme t 8,.5 =,86, on eette H, i.e. la coélation,6 obsevée est significative. 7.5 Test su le coefficient de coélation de ang (Speaman) ente deux vaiables quantitatives Le coefficient de coélation de ang n est ien d aute que le coefficient de coélation usuel calculé su les angs plutôt que les données butes. L avantage est que ce coefficient n exige pas une elation linéaie ente les deux vaiables (il faut néanmoins que les deux vaiables soient eliées de façon monotone). Les tests pécédents s appliquent à ce coefficient pou founi un test appoximatif. Les cas d égalité sont taités de difféentes façons dans la littéatue, une de celles-ci consistant à octoye le ang moyen aux valeus égales.
FINANCE Mathématiques Financières
INSTITUT D ETUDES POLITIQUES 4ème Année, Economie et Entepises 2005/2006 C.M. : M. Godlewski Intéêts Simples Définitions et concepts FINANCE Mathématiques Financièes L intéêt est la émunéation d un pêt.
CIRCULAIRE N 02/04. Elle précise les méthodes de valorisation des titres de capital et des titres de créances contenus dans les actifs de l OPCVM.
Rabat, le 02 juillet 2004 CIRCULIRE N 02/04 RELTIVE UX CONDITIONS D ÉVLUTION DES VLEURS PPORTÉES À UN ORGNISME DE PLCEMENT COLLECTIF EN VLEURS MOBILIÈRES OU DÉTENUES PR LUI La pésente ciculaie vient en
Moments partiels crédibilistes et application à l évaluation de la performance de fonds spéculatifs
Moments patiels cédibilistes et application à l évaluation de la pefomance de fonds spéculatifs Alfed MBAIRADJIM M. 1 & Jules SADEFO K. 2 & Michel TERRAZA 3 1 LAMETA- Univesité Montpellie 1 et moussa [email protected]
TRAVAUX DIRIGÉS DE M 6
D M 6 Coection PCSI 1 013 014 RVUX DIRIGÉS DE M 6 Execice 1 : Pemie vol habité (pa un homme) Le 1 avil 1961, le commandant soviétique Y Gagaine fut le pemie cosmonaute, le vaisseau spatial satellisé était
Informations Techniques A7 A141. Roulements à Billes à Gorge Profonde. Roulements à Billes à Contact Oblique. Roulements à Billes Auto-Aligneurs
ROULEMENTS Pages Infomations Techniques A7 A141 Infos Tech. Roulements à Billes à Goge Pofonde B4 B45 Roulements à Billes à Contact Oblique Roulements à Billes Auto-Aligneus Roulements à Rouleaux Cylindiques
tudes & documents ÉCONOMIE ET ÉVALUATION L assurance habitation dans les départements d Outre Mer n 24 Juin 2010
COMMISSARIAT GÉNÉRAL AU DÉVELOPPEMENT DURABLE n 24 Juin 2010 É tudes & documents L assuance habitation dans les dépatements d Oute Me RISQUES ÉCONOMIE ET ÉVALUATION Sevice de l économie, de l évaluation
Créer un observatoire de la concurrence. Créer un observatoire de la concurrence. Démarche. ntérêt. C aractéristiques.
Cée un obsevatoie de la concuence poblématique I Quelle est l'étendue d'un maché? Quelle pat du maché, une entepise peut-elle espée pende? Quels sont les atouts des entepises pésentes su le maché? ntéêt
Serveur vidéo IP. caméras analogiques PC serveur. PC Client 1. Serveur de stockage ( optionnel )
Sony RealShot Manage V3 Info Poduit Mas 2005 RealShot Manage V3.0 Logiciel de gestion des caméas IP MJPEG, MPEG-4, Audio, il sait tout enegiste! Une nouvelle vesion du logiciel RealShot Manage de Sony
Mécanique du point : forces Newtoniennes (PCSI)
écanique du oint : foces Newtoniennes (PCSI Question de cous On admet que, losqu'il est soumis à une foce Newtonienne F K u, la tajectoie d'un cos est lane et décite a mc K +e cosθ où C θ est une constante
Validation CFD axisymétrique de modèle zonal des écoulements gazeux de chambre de combustion de moteur Diesel
CONSERVATOIRE NATIONAL DES ARTS ET METIERS Cente d enseignement de Genoble Mémoie Mécanique des stuctues et des systèmes Validation CFD axisymétique de modèle zonal des écoulements gazeux de Auditeu: Jean-Michel
A la mémoire de ma grande mère A mes parents A Mon épouse A Mes tantes et sœurs A Mes beaux parents A Toute ma famille A Mes amis A Rihab, Lina et
Remeciements e tavail a été effectué au sein du laboatoie optoélectonique et composants de l univesité Fehat Abbas (Sétif, Algéie) en collaboation avec le goupe MALTA consolido du Dépatement du Physique
11.5 Le moment de force τ (tau) : Production d une accélération angulaire
11.5 Le moment de foce τ (tau) : Poduction d une accéléation angulaie La tige suivante est soumise à deux foces égales et en sens contaie: elle est en équilibe N La tige suivante est soumise à deux foces
Quelques éléments d écologie utiles au forestier
BTSA Gestion Foestièe Module D41 V.1.1. Avil 1997 Quelques éléments d écologie utiles au foestie Paysage vosgien : un exemple d écocomplexe divesifié. Sylvain Gaudin CFPPA/CFAA de Châteaufaine E 10 ue
M F. F O Unité: [m. N] La norme du moment de force peut se calculer en introduit le bras de levier d
Chapite 2: But: connaîte les lois auxquelles doit obéi un cops solide en équilibe. Ceci pemet de décie la station debout ainsi que les conditions nécessaies pou teni une tasse dans la main, souleve une
Évaluation de l'incertitude de mesure par une méthode statistique ("méthode de type A") Voir cours d'instrumentation
G. Pinson - Physique ppliquée Mesues - 16 / 1 16 - Instuments de mesues Eeu et incetitude su la mesue d'une gandeu Ce qui suit découle des pesciptions du IPM (ueau Intenational des Poids et Mesues, Fance),
PHYSIQUE DES SEMI-CONDUCTEURS
Dépatement Mico-électonique et télécommunications Pemièe année 004/005 PHYSIQUE DES SEMI-CONDUCTEURS Rouge Violet Infa-Rouge Visible Ulta-Violet Cd x Hg 1-x Te InSb Ge Si GaAs CdSe AlAs CdS GaP SiC GaN
Chapitre 6: Moment cinétique
Chapite 6: oment cinétique Intoduction http://www.youtube.com/watch?v=vefd0bltgya consevation du moment cinétique 1 - angula momentum consevation 1 - Collège éici_(360p).mp4 http://www.youtube.com/watch?v=w6qaxdppjae
CHAPITRE VI : Le potentiel électrique
CHPITRE VI : Le potentiel électiue VI. 1 u chapite III, nous avons vu ue losu'une foce est consevative, il est possible de lui associe une énegie potentielle ui conduit à une loi de consevation de l'énegie.
CONSTANTES DIELECTRIQUES
9 E7 CONTANTE DIELECTRIQUE I. INTRODUCTION Dans cette expéience, nous étuieons es conensateus et nous éiveons les popiétés e iélectiques tels que l'ai et le plexiglas. II. THEORIE A) Conensateus et iélectiques
Guide de l acheteur de logiciel de Paie
Note pespicacité Pivilégie les essouces humaines Guide de l acheteu de logiciel de Paie Table des matièes Intoduction Tendances écentes de Paie L automation de Paie avec libe-sevice pou employés Analyse
Roulements à billes et à rouleaux
Fo New Technology Netwok R copoation Roulements à billes et à ouleaux CAT. NO. 222-VIII/F Manuel technique A- Roulements à billes à goges pofondes B- Roulements miniatues B- 1 Roulements à billes à contact
SOMMAIRE. ATRACOM-Centrafrique Manuel de Procédures Administratives Financiers et Comptables
ATRACOM-Centafique Manuel de Pocédues Administatives Financies et Comptables G MODULE G GESTION DE LA TRESORERIE SOMMAIRE G MODULE G GESTION DE LA TRESORERIE... 1 G.1 COMPOSANTES DE LA TRESORERIE... 2
Roulements à rotule sur deux rangées de rouleaux en deux parties
Roulements à otule su deux angées de ouleaux en deux paties Réduction des coûts gâce au changement apide du oulement difficilement accessible Contenu Changement apide du oulement 2 Réduction des coûts
Mémoire de DEA. Modélisation opérationnelle des domaines de référence
Mémoie e DEA Ecole octoale IAEM Loaine / DEA Infomatique e Loaine Univesité Heni Poincaé, Nancy 1 LORIA Moélisation opéationnelle es omaines e éféence soutenu le Mai 22 juin 2004 pa Alexane Denis membes
Po ur d o nne r un é lan à vo tre re traite
Po u d o nne un é lan à vo te e taite ez a p é P aite t e e vot joud'hui dès au E N EN T TR RE E N NOOUUSS,, CC EESSTT FFAA CC I I LL EE DD EE SS EE O M M PP RR EE NN DDRRE E CC O Toutes les gaanties de
( Mecanique des fluides )
INSTITUT NTION GRONOMIUE ERTEMENT U GENIE RUR SECTION YRUIUE GRICOE YRUIUE GENERE ( Mecanique des fluides ) TRONC COMMUN ème NNEE atie : Statique des Fluides ( ydostatique ) atie : ynamique des Fluides
Permis de feu. Travail par point chaud. r Soudage r Brasage. r Découpage r Tronçonnage. r Meulage r Autres. r Poste à souder r Tronçonneuse
Pemis de feu Tavail pa point chaud Patage vote engagement Ce document doit ête établi avant tout tavail pa point chaud (soudage, découpage, meulage, ) afin de péveni les isques d incendie et d explosion
DiaDent Group International
www.diagun.co.k DiaDent Goup Intenational Dispositif de compactage sans fil à chaleu intégée Copyight 2010 DiaDent Goup Intenational www.diadent.com Dispositif de compactage sans fil à chaleu intégée w
Considérations sur les contraintes liées à la gestion des données thermodynamiques en vue de la création de la base de données THERMODDEM
Cnsidéatins su les cntaintes liées à la gestin des dnnées themdynamiques en vue de la céatin de la base de dnnées THERMODDEM Rappt final BRGM/RP-55118- FR Décembe 2006 Gnsidéatins su les cntaintes liées
DEUXIEME ANNEE TRONC COMMUN TECHNOLOGIE TRAVAUX DIRIGES DE PHYSIQUE VIBRATIONS ONDES
UNIVERSITE DES SCIENCES ET DE A TECHNOOGIE HOUARI BOUMEDIENNE INSTITUT DE PHYSIQUE DEPARTEMENT DES ENSEIGNEMENTS DE PHYSIQUE DE BASE DEUXIEME ANNEE TRONC COMMUN TECHNOOGIE TRAVAUX DIRIGES DE PHYSIQUE VIBRATIONS
DEMANDE D OUVERTURE D UN COMPTE EPARGNE REMUNERE (Réservé aux particuliers) Exemplaire Client (à conserver)
GE Money Bank DEMANDE D OUVERTURE D UN COMPTE EPARGNE REMUNERE (Résevé aux paticulies) Exemplaie Client (à conseve) Vote Conseille Cachet du Conseille Le (date de l offe) O l'offe. N de poposition : N
CLOUD CX263 MÉLANGEUR
COUD CX6 MÉANGEU Clealy bette soun ZONE ZONE MUSIC SOUCE MUSIC SOUCE MUSIC SOUCE MUSIC EVE MUSIC EVE MUSIC EVE MIC EVE MIC EVE MIC EVE MIC EVE MIC EVE MIC EVE 6 6 6 5 5 5 MICOPHONE CX6 4 4 4 F HF F HF
Rencontrez votre filleul... au Bangladesh
Rencontez vote filleul... au Bangladesh Vote guide de visite Afin d oganise au mieux vote visite et de péveni l équipe locale ainsi que vote filleul de vote aivée, Contactez-nous 2 mois avant il est impotant
Mouvement d'une particule chargée dans un champ magnétique indépendant du temps
Moueent d'une patiule hagée dans un hap agnétique indépendant du teps iblio: Pee elat Gaing Magnétise Into expéientale: Dispositif: On obsee une déiation du faseau d'életons losqu'il aie ae une itesse
RAISONNER L INVESTIGATION EN RHUMATOLOGIE
NOVEMBRE L objectif de ce document est de guide le médecin omnipaticien dans le choix des modalités de laboatoie et d imageie pou l investigation d une condition humatologique. En effet, les analyses de
LE LOGEMENT AU NUNAVIK
SOCIÉTÉ D HABITATION DU QUÉBEC LE LOGEMENT AU NUNAVIK DOCUMENT D INFORMATION WWW.HABITATION.GOUV.QC.CA Coodination du contenu et édaction Diection des affaies integouvenementales et autochtones Coodination
SYSTÈME D ALARME ET PRODUITS TRANSMETTEURS
SYSTÈME D ALARME ET PRODUITS TRANSMETTEURS NOTICE D UTILISATION Vous venez d acquéi un système de sécuité DAITEM adapté à vos besoins de potection et nous vous en emecions. Quelques pécautions L'installation
Les pertes de charge dans les installations. Le dimensionnement des mitigeurs. octobre 2005
octobe 005 REUE PÉRIODIQUE D INFORMATIONS TECHNIQUES ET INDUSTRIELLES DES THERMICIENS Les petes de chage dans les installations Le dimensionnement des mitigeus octobe 005 Sommaie Le petes de chage dans
Les déterminants de la diffusion d Internet en Afrique
Les déteminants de la diffusion d Intenet en Afique pa Benad Conte Maîte de Conféences, Cente d économie du développement Univesité Montesquieu-Bodeaux IV - Fance 6µWYQµ Les pogès apides des technologies
THÈSE. présentée pour obtenir le titre de. DOCTEUR de L ÉCOLE NATIONALE SUPÉRIEURE D ARTS ET MÉTIERS. Spécialité: Génie Electrique.
N d ode: 005-7 ECOLE DOCTORALE 43 Ecole Nationale Supéieue d At et Métie Cente de Lille THÈSE péentée pou obteni le tite de DOCTEUR de L ÉCOLE NATIONALE SUPÉRIEURE D ARTS ET MÉTIERS Spécialité: Génie Electique
Magister en : Electrotechnique
انج س ت انجضائش ت انذ مشاط ت انشعب ت République Algéienne Démocatique et Populaie صاسة انتعه ى انعان انبحث انعه Minitèe de l Eneignement Supéieu et de la Recheche Scientifique Univeité Mohamed Khide Bika
MODE D EMPLOI ENFANT MINEUR MONFINANCIER LIBERTE VIE
MODE D EMPLOI ENFANT MINEUR MONFINANCIER LIBERTE VIE Pou établi vote contat MonFinancie Libeté Vie pou un enfant mineu, nous vous emecions de bien vouloi éuni les éléments suivants : Le bulletin de sousciption
CIGI 2011 Job shop sous contraintes de disponibilité des ressources : modèle mathématique et heuristiques
CIGI 2011 Job shop sous cotaites de dispoibilité des essouces : modèle mathématique et heuistiques SADIA AZEM 1, RIAD AGGOUNE 2, STÉPHANE DAUZERE-PERES 1 1 Dépatemet Scieces de la Fabicatio et Logistique,
RESOLUTION PAR LA METHODE DE NORTON, MILLMAN ET KENNELY
LO 4 : SOLUTO P L MTHO OTO, MLLM T KLY SOLUTO P L MTHO OTO, MLLM T KLY MTHO OTO. toductio Le théoème de oto va ous pemette de éduie u cicuit complexe e gééateu de couat éel. e gééateu possède ue souce
Amélioration des performances des aérogénérateurs
N d ode : Séie : الجمهورية الجزاي رية الديمقراطية الشعبية REPUBIQUE AGERIENNE DEMOCRATIQUE ET POPUAIRE MINISTERE DE ENSEIGNEMENT SUPERIEUR ET DE A RECHERCHE SCIENTIFIQUE UNIERSITE CONSTANTINE I Faculté
GESTION DES RELATIONS HUMAINES ET COMPÉTENCES
GESTION DES RELATIONS HUMAINES ET COMPÉTENCES DEMANDE D INFORMATION Vous souhaitez ecevoi de l infomation elative aux solutions de la thématique Gestion des elations humaines et des compétences? Photocopiez
Chapitre 1.5a Le champ électrique généré par plusieurs particules
hapte.5a Le chap électque généé pa pluseus patcules Le chap électque généé pa pluseus chages fxes Le odule de chap électque d une chage ponctuelle est adal, popotonnel à la chage électque et neseent popotonnel
D'CLICS CONSO. ayez les bons réflexes! Logement, téléphonie, mobilité, budget : soyez acteur de votre consommation! www.crij.org.
n 26 2013/2014 Jounal du Cente Régional d Infomation Jeunesse Midi-Pyénées D'CLICS CONSO ayez les bons éflexes! d o s s i e Logement, téléphonie, mobilité, budget : soyez acteu de vote consommation! www.cij.og
GESTION DE LA SAUVEGARDE DES DONNÉES (SÉCURITÉ ET STOCKAGE)
GESTION DE LA SAUVEGARDE DES DONNÉES (SÉCURITÉ ET STOCKAGE) SAUVEGARDE DES DONNÉES DEMANDE D INFORMATION Vous souhaitez ecevoi de l infomation elative aux solutions de la thématique Gestion de la sauvegade
Cours de. Point et système de points matériels
Abdellah BENYOUSSEF Amal BERRADA Pofesseus à la Faculté des Scences Unvesté Mohammed V Rabat Cous de Pont et système de ponts matéels A L USAGE DES ETUDIANTS DU 1 ER CYCLE UNIVERSITAIRE FACULTES DES SCIENCES,
ANNALES SCIENTIFIQUES DE L É.N.S.
ANNALES SCIENTIFIQUES DE L É.N.S. HERVÉ ACQUET Su un ésultat de Waldspuge Annales scientifiques de l É.N.S. 4 e séie, tome 19, n o 2 (1986), p. 185-229.
4. Un regard différent sur les circonstances Ph 1.12-14
Un egad difféent su les ciconstances Philippiens 1.12-14 4. Un egad difféent su les ciconstances Ph 1.12-14 Intoduction N 1 Il y a quelques semaines, j ai eçu ce couie dans ma boîte aux lettes électonique.
( Codes : voir verso du feuillet 3 ) SPECIMEN
Aide demandeu d emploi Pojet pesonnalisé d accès à l emploi Pesciption de Pô emploi RFPE AREF CRP - CTP ou d un patenaie de Pô emploi Pécisez : N d AIS Concene de naissance Pénom Né(e) Inscit(e) depuis
Flux Réseau et Sécurité
Flux Réseau et Sécuité v1.01 Yann BERTHIER Spécialiste Sécuité Systèmes et Réseaux [email protected] Nicolas FISCHBACH Senio Manage, Netwok Engineeing Secuity, COLT Telecom [email protected] - http://www.secuite.og/nico/
UNIVERSITE JOSEPH FOURIER GRENOBLE I THESE. présentée par. Ioana - Cristina MOLDOVAN. pour obtenir le grade de DOCTEUR. Spécialité : Physique
UIVERSITE JOSEPH FOURIER GREOBLE I THESE pésenée pa Ioana - Cisina MOLDOVA pou obeni le gade de DOCTEUR Spécialié : Physique Eude phooméique de l aome de sodium applicaion aux éoiles lases LGS e PLGS Souenance
2. De la Grâce à l action de Grâces Ph 1.3-7
De la Gâce à l action de Gâces Philippiens 1.3-7 2. De la Gâce à l action de Gâces Ph 1.3-7 Intoduction Cette semaine, j ai eu l occasion de emecie Dieu pou avoi pu appécie sa gâce en action. En fait,
Guide 2005 GESTION. des solutions partenaires logiciels. IBM Software. commerciale (CRM) comptable et financière logistique marketing de la qualité
IBM Softwae Guide 2005 des solutions patenaies logiciels GESTION commeciale (CRM) comptable et financièe logistique maketing de la qualité des elations humaines et compétences documentaie (GED) des appels,
Préface. Le programme d électricité du S2 se compose de deux grandes parties :
Péface. Ce cus d électicité a été édigé à l intentin des étudiants qui pépaent, dans le cade de la éfme L.M.D 1, une licence dans les dmaines des Sciences de la Matièe et des Sciences et Technlgies. Il
Univ. Béjaia, Faculté de la Technologie, Département d électronique
Univ. Béjaia, Faculté de la Technologie, Dépatement d électonique L INTELLIGENCE ARTIFICIELLE APPLIQUEE AUX TELECOMMUNICATIONS Thème : Intelligence économique et télécommunication Poposé pa : D A/. KHIREDDINE
Equations aux dérivées partielles
Chapite 3 Equations aux déivées patiees 3.1 Qu est-ce qu une EDP? Soit u = u(x, y,... une fonction de pusieus vaiabes indépendantes en nombe fini. Une EDP pou a fonction u est une eation qui ie : es vaiabes
Séminaire TEST. 1 Présentation du sujet. October 18th, 2013
Séminaire ES Andrés SÁNCHEZ PÉREZ October 8th, 03 Présentation du sujet Le problème de régression non-paramétrique se pose de la façon suivante : Supposons que l on dispose de n couples indépendantes de
CONDUCTEURS EN EQUILIBRE ELECTROSTATIQUE
Chapit II CONDUCTEURS EN EQUILIRE ELECTROSTTIQUE En élcticité, un conductu st un miliu matéil dans lqul ctains chags élctiqus, dits «chags libs», sont suscptibls d s déplac sous l action d un champ élctiqu.
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours
Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****
MANUEL SUR LE CHIFFREMENT DES MESSAGES CLIMAT ET CLIMAT TEMP
ORGANISAION MÉÉOROLOGIQUE MONDIALE RAPPOR ECHNIQUE DE LA VEILLE MÉÉOROLOGIQUE MONDIALE MANUEL SUR LE CHIFFREMEN DES MESSAGES CLIMA E CLIMA EMP (2004) OMM/D N 1188 Ogaisatio météoologique moiale NOE Les
PRIME D UNE OPTION D ACHAT OU DE VENTE
Université Paris VII - Agrégation de Mathématiques François Delarue) PRIME D UNE OPTION D ACHAT OU DE VENTE Ce texte vise à modéliser de façon simple l évolution d un actif financier à risque, et à introduire,
IFRS 10 États financiers consolidés
IFRS 10 États financiers consolidés PLAN DE LA PRÉSENTATION Aperçu Application Dispositions transitoires Prochaines étapes Ressources PRÉSENTATEURS Alex Fisher, CPA, CA Directeur de projets, Orientation
Physique quantique. Dans l UF Physique Quantique et Statistique. 3ème année IMACS. Pierre Renucci (cours) Thierry Amand (TDs)
Physque quantque Dans l UF Physque Quantque et Statstque ème année IMACS Pee enucc cous They Aman TDs Objectfs UF Nanophysque I : De l Optque onulatoe à la Photonque et aux Nanotechnologes La physque quantque
PITTSBURGH CORNING EUROPE N.V. / S.A. Lasne Business Park, Chaussée de Louvain, 431 D E S C R I P T I O N FOAMGLAS T4/T4 WDS S3 F 40 (**)-50-60
UBAt 04/1626 Valale du 12.07.2004 au 11.07.2009 http://www.uat.e Union elge pou l Agément tehnique dans la onstution Sevie Puli Fédéal (SPF) Eonomie, Classes moyennes, PME et Enegie, Sevie Agément et Spéifiations
Comparaison de fonctions Développements limités. Chapitre 10
PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?
Première promotion de l école de police de Repentigny Six cadets-policiers ont officiellem ent été assermentés
& y LA/ i V j / " v u V 2 w ; L V
Moments des variables aléatoires réelles
Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................
Compte rendu des TP matlab
Compte rendu des TP matlab Krell Stella, Minjeaud Sebastian 18 décembre 006 1 TP1, Discrétisation de problèmes elliptiques linéaires 1d Soient > 0, a R, b 0, c, d R et f C([0, 1], R). On cerce à approcer
Correction de l examen de la première session
de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi
UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux.
UEO11 COURS/TD 1 Contenu du semestre Cours et TDs sont intégrés L objectif de ce cours équivalent a 6h de cours, 10h de TD et 8h de TP est le suivant : - initiation à l algorithmique - notions de bases
Leçon 01 Exercices d'entraînement
Leçon 01 Exercices d'entraînement Exercice 1 Etudier la convergence des suites ci-dessous définies par leur terme général: 1)u n = 2n3-5n + 1 n 2 + 3 2)u n = 2n2-7n - 5 -n 5-1 4)u n = lnn2 n+1 5)u n =
choisir H 1 quand H 0 est vraie - fausse alarme
étection et Estimation GEL-64943 Hiver 5 Tests Neyman-Pearson Règles de Bayes: coûts connus min π R ( ) + ( π ) R ( ) { } Règles Minimax: coûts connus min max R ( ), R ( ) Règles Neyman Pearson: coûts
CLINICAL RESEARCH GRANTS FOR CLINICAL RESEARCH (PRINCIPAL INVESTIGATOR) PHRC, STIC 2007-2011 (INVESTIGATEUR PRINCIPAL)
CLINICAL RESEARCH GRANTS FOR CLINICAL RESEARCH (PRINCIPAL INVESTIGATOR) PHRC, STIC 2007-2011 (INVESTIGATEUR PRINCIPAL) Tite Année IP Nom (Sce/Eq) DACAR (étude pilote de la dialyse pa simple passage d albumine
Chapitre 2 Le problème de l unicité des solutions
Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)
LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples.
LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples. Pré-requis : Probabilités : définition, calculs et probabilités conditionnelles ; Notion de variables aléatoires, et propriétés associées : espérance,
couleurs... Laquenexy de nouvelles l unique Jardin des Premières Nations réalisé en dehors de l Amérique du Nord.
catalogue 20 11 www.domaine-de-couson.f Les jounées des plantes DOMAINE DE COURSON 91680 Couson-Monteloup (Essonne) Tél. 01 64 58 90 12 Gold Veitch Memoial Medal 1992 de nouvelles couleus... l unique Jadin
Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes
IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de
Probabilités sur un univers fini
[http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un
Exercices - Polynômes : corrigé. Opérations sur les polynômes
Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)
CARACTERISTIQUES DES SECTIONS PLANES
CRCTERITIQUE DE ECTION PLNE OENT TTIQUE D UNE ECTION PLNE oient une aie pane et une doite Le moment statiue de a section pa appot à m est défini pa intégae : m ( ) ( ) δ d (doénavant, on note e moment
Chapitre 3. Les distributions à deux variables
Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles
15/02/2009. Le calcul des intérêts. Le calcul des intérêts. Le calcul des intérêts Les intérêts simples. Le calcul des intérêts Les intérêts simples
Le taux d intérêt Comparer ce qui est comparable 2 Chapitre 1 La valeur du temps Aide-mémoire - 2009 1 Deux sommes de même montant ne sont équivalentes que si elles sont considérées à une même date. Un
Structures algébriques
Structures algébriques 1. Lois de composition s Soit E un ensemble. Une loi de composition interne sur E est une application de E E dans E. Soient E et F deux ensembles. Une loi de composition externe
CCP PSI - 2010 Mathématiques 1 : un corrigé
CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P
Statistiques Descriptives à une dimension
I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des
Ministère de L Enseignement Supérieur et de la Recherche Scientifique. Université des Sciences et de la Technologie Houari Boumediene
Ministèe de L Enseignement Supéieu et de la Recheche Scientifique Univesité des Sciences et de la Technologie Houai Boumediene Laboatoie de Recheche Opéationnelle, Combinatoie, Infomatique Théoique et
Corrélation entre deux classements. ρ Le coefficient de rang de Spearman
Corrélation entre deux classements Cas: échelle ordinale On peut utilisé le Rhô ρ Le coefficient de rang de Spearman Cours réalisé par Benjamin Putois Novembre 2008 [email protected] Indice statistique
Probabilités sur un univers fini
[http://mp.cpgedupuydelome.fr] édité le 10 août 2015 Enoncés 1 Proailités sur un univers fini Evènements et langage ensemliste A quelle condition sur (a,, c, d) ]0, 1[ 4 existe-t-il une proailité P sur
T de Student Khi-deux Corrélation
Les tests d inférence statistiques permettent d estimer le risque d inférer un résultat d un échantillon à une population et de décider si on «prend le risque» (si 0.05 ou 5 %) Une différence de moyennes
Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles
Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA
LOGICIELS DE PRÉVISIONS
Pour vos appels d offre Mars 2014 LGICIELS DE PRÉVISINS 4 e ÉDITIN SAS INSTITUTE SAS Forecast Server SupplyChainMagazine.fr 19, rue Saint-Georges - 94700 Maisons-Alfort 1. NM de l'éditeur SAS Institute
VI. Tests non paramétriques sur un échantillon
VI. Tests non paramétriques sur un échantillon Le modèle n est pas un modèle paramétrique «TESTS du CHI-DEUX» : VI.1. Test d ajustement à une loi donnée VI.. Test d indépendance de deux facteurs 96 Différentes
Biostatistiques Biologie- Vétérinaire FUNDP Eric Depiereux, Benoît DeHertogh, Grégoire Vincke
www.fundp.ac.be/biostats Module 140 140 ANOVA A UN CRITERE DE CLASSIFICATION FIXE...2 140.1 UTILITE...2 140.2 COMPARAISON DE VARIANCES...2 140.2.1 Calcul de la variance...2 140.2.2 Distributions de référence...3
Capes 2002 - Première épreuve
Cette correction a été rédigée par Frédéric Bayart. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésitez pas à écrire à : [email protected] Mots-clés : équation fonctionnelle, série
Baccalauréat ES Pondichéry 7 avril 2014 Corrigé
Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient
