LA PROGRAMMATION LOGIQUE PAR CONTRAINTES MOTIVATIONS
|
|
|
- Émilien Gaumond
- il y a 10 ans
- Total affichages :
Transcription
1 LA PROGRAMMATION LOGIQUE PAR CONTRAINTES MOTIVATIONS De la PL vers la PLC 1) Introduction de la PLC : motivations, exemples 2) Principes de la programmation par contraintes (définition, résolution) 3) La programmation logique avec contraintes (méta-interprète et machine abstraites) 4) Limites
2 LIMITES DE LA PROGRAMMATION EN LOGIQUE?- 1 + X = 3 FAIL Deux solutions en Prolog : Utilisation des axiomes de Peano plus(0,y,y). plus(s(x),y,s(z)) :- plus(x,y,z). et?- 1 + X = 3 devient?- plus(s(0),y,s(s(s(0)))). >Y = s(s(0)) Retardement de l'évaluation plus(x,y,z) :- freeze(x,freeze(y,z is X+Y)), freeze(y,freeze(z,x is Z-Y)), freeze(x,freeze(x,y is X-Z)).?- sort(x1,x2,x3) :- X1 X2, X2 X3,... Ne permet pas de définir une relation d'ordre sur des variables?- sort(x1,x2,x3). FAIL 2
3 APPROCHE DE LA PROGRAMMATION PAR CONTRAINTES N-REINES COMMENT ANTICIPER LES IMPASSES? SEND + MORE = MONEY + S M E O N R D E = M O N E Y COMMENT TROUVER L INFORMATION PERTINENTE KNIGHT TOUR (CHEMIN HAMILTONIEN): COMMENT TOUVER LES BONNES HEURISTIQUES? 3
4 PRINCIPES DE LA PROGRAMMATION AVEC CONTRAINTES Contrainte Une contrainte est une relation logique (une propriété qui doit être vérifiée) entre différentes inconnues. Elle restreint les valeurs que peuvent prendre simultanément les variables. Exemple : "x + 3*y = 12" restreint les valeurs que l'on peut affecter simultanément aux variables x et y. Les inconnues, appelées variables, prennent leurs valeurs dans un ensemble donné, appelé domaine. Une contrainte est relationnelle, déclarative et peut être définie en extension ou en intension : Énumération des tuples de valeurs de la relation : "(x=0 et y=1) ou (x=0 et y=2) ou (x=1 et y=2)" Définition des propriétés mathématiques connues: "x < y" ou encore "A et B => non(c)" Types de contraintes : Les contraintes numériques, entières ou réelles (linéaires ou non linéaires) Les contraintes ensemblistes, contraintes booléennes, univers de Herbrandt 4
5 PRINCIPES DE LA PROGRAMMATION AVEC CONTRAINTES (suite) Définition d'un CSP Un CSP (Problème de Satisfaction de Contraintes) est un triplet (X,D,C) tel que : X = { X1, X2,..., Xn} est l'ensemble des variables (les inconnues) du problème ; D : fonction qui associe à chaque variable Xi son domaine D(Xi), l'ensemble des valeurs que peut prendre Xi C = {C1, C2,..., Ck} est l'ensemble des contraintes. Exemple: X = {a,b,c,d} D(a) = D(b) = D(c) = D(d) = {0,1} C = { a b, c d, a+c < b } Solution d'un CSP : affectation des variables, de telle sorte que toutes les contraintes soient satisfaites Notion de CSP sur-contraint ou sous-contraint Un CSP qui n'a pas de solution est sur-contraint max-csp (préférences entre les contraintes) Un CSP qui admet beaucoup de solutions différentes est sous-contraint 5
6 PRINCIPES DE LA PROGRAMMATION AVEC CONTRAINTES (suite) Modélisation sous la forme d'un CSP identifier l'ensemble des variables X (les inconnues du problème) et leurs domaines identifier les contraintes C entre les variables. On ne se soucie pas de savoir comment résoudre le problème : on cherche simplement à le spécifier formellement 6
7 PRINCIPES DE LA PROGRAMMATION AVEC CONTRAINTES (suite) Les inconnues : les positions des reines sur l'échiquier En numérotant les lignes et les colonnes de l'échiquier : Exemple : modélisation des n-reines > association à chaque reine i de deux variables Li et Ci correspondant respectivement à la ligne et la colonne sur laquelle placer la reine.. ou une variable Xi par colonne dont la valeur sera la position de la reine (numéro de ligne ) 7
8 PRINCIPES DE LA PROGRAMMATION AVEC CONTRAINTES (suite) Exemple : modélisation des n-reines (suite) Les contraintes : les reines doivent être sur des lignes différentes : {Xi Xj pour i dans {1,2,3,4} les reines doivent être sur des colonnes différentes : aucune contrainte avec la deuxième modélisation! les reines doivent être sur des diagonales différentes : {Xi Xj +/- (i-j) pour i,j dans {1,2,3,4} et i j 8
9 TECHNIQUES DE RESOLUTION POUR LA PROGRAMMATION AVEC CONTRAINTES L'algorithme "génère et teste" prolog! Principe : énumérer toutes les affectations totales possibles jusqu'à en trouver une qui satisfasse toutes les contraintes L'algorithme "simple retour-arrière" : backtrack chronologique Principe : pour améliorer l'algorithme "génère et teste" on va tester au fur et à mesure de la construction de l'affectation partielle sa consistance : dès lors qu'une affectation partielle est inconsistante, on "backtrack" jusqu'à la plus récente instanciation partielle consistante que l'on peut étendre en affectant une autre valeur à la dernière variable affectée Filtrage par consistance locale et utilisation d heuristiques Principes : Élimination a priori des valeurs qui ne peuvent être dans aucune solution (travail local à chaque contrainte) Choix des variables et valeurs (lors de l énumération) qui devraient permettre de découvrir rapidement les impasses 9
10 Backtracking vs Generate & Test : exemple Contraintes: X = Y, X 6= Z, Y > Z Domaines : D X = D y = D z = {1, 2}, Generate & Test: Backtracking: X Y Z Test X Y Z Test fail fail fail 2 fail fail 2 fail fail 2 1 fail fail 2 1 succes fail fail succes 10
11 Filtrage par consistance d arc : exemple Contraintes : x1 < x2, x5 + 3 = x2, x3 > x1, x4 > x2 + 3 Domaines : Dx1 = {2, 6}, Dx2 = {3, 4, 8}, Dx3 = {1, 9}, Dx4 = {6, 7, 8}, Dx5 = {1, 5} 11
12 LA PROGRAMMATION LOGIQUE PAR CONTRAINTES : DEFINITION THEORIE DU PREMIER ORDRE qui préserve les PROPRIETES DE CALCUL associées aux clauses de Horn Classes de LP langages dont les variables peuvent prendre des valeurs sur des DOMAINES variés EXEMPLE : PROLOG fib(0,1). fib(1,1). fib(n,r):- N 2, N1 is N-1, fib(n1,r1), N2 is N-2, fib(n2,r2), R is R1+R2.?-fib(10,X) 89?-fib(X,89) ERREUR CLP fib(0,1). fib(1,1). fib(n,r1+r2):- N 2, fib(n-1,r1), fib(n-2,r2).?-fib(10,x) 89?-fib(X,89) X=10 12
13 LA PROGRAMMATION LOGIQUE PAR CONTRAINTES : META-INTERPRETE solve([]). solve([goal RestGoal]):- solve(goal), solve(restgoal). solve(goal):- clause(goal,body), solve(body). PROLOG 13
14 LA PROGRAMMATION LOGIQUE PAR CONTRAINTES : META-INTERPRETE (suite) CLP (Noyau) solve([],c,c). solve([goal Rest_Goal],Previous_C,New_C):- solve(goal,previous_c,temp_c), solve(rest_goal,temp_c,new_c). solve(goal,previous_c,new_c):- clause(goal,body,current_c), merge_c(previous_c,current_c,temp_c), solve(body,temp_c,new_c). merge_c(previous_c,current_c,temp_c) : Si Previous_C & Current_C n'a pas de solution Fail Sinon simplification de Temp_C instanciation des variables suffisamment contraintes 14
15 LA PROGRAMMATION LOGIQUE PAR CONTRAINTES : MACHINE ABSTRAITE (1) = (W,t0t1...tn,S) (2)s0 s1...sm, R (m 0) (3) ' = (W,s1...smt1...tn,S R (s0 = t0)) (1) Représente l'état de la machine à un instant donné W : liste des variables de la question initiale, t0t1...tn : liste de termes (buts) à effacer, S : liste des contraintes courantes (contraintes satisfiables) (2) Représente la règle d'inférence (i.e. règle du programme utilisée pour changer d'état) s1...sm : une suite de termes R : les contraintes de la règle (3) Représente le nouvel état ' de la machine après application de la règle (2) si S R (s0 = t0)est satisfiable Solution du système : f = (W,,Contraintes_Finales) 15
16 LA PROGRAMMATION LOGIQUE PAR CONTRAINTES : LIMITES Exemple : ChatsOiseaux? NOMBRE D'OISEAUX ET DE CHATS QUI TOTALISENT 12 TETES ET 34 PATTES ChatsOiseaux(C,O,P,T) :- P #=4C+2O, T#=C+O. > ChatsOiseaux(C,O,14,5). {C = 2, O =3} > ChatsOiseaux(1,O,P,5). {O = 4, P =12} > ChatsOiseaux(1,1,2,4). fail > ChatsOiseaux(C,O,6,4). {C = -1, O =5} ChatsOiseaux(C,O,P,T) :- P #=4C+2O, T#=C+O, C#>=0,O#>=0,P#>=0,T#>=0. > ChatsOiseaux(C,O,6,4). fail > ChatsOiseaux(C,O,7,3). {C = 1/2, O =5/2} Ajouter enum(c), enum(o) 16
17 LA PROGRAMMATION LOGIQUE PAR CONTRAINTES : LIMITES (suite) Solution de : an +bn =cn avec a,b,c et n : entiers... et n > 2 17
Programmation par contraintes. Laurent Beaudou
Programmation par contraintes Laurent Beaudou On se trouve où? Un problème, une solution : la solution est-elle une solution du problème? simulation, vérification 2 On se trouve où? Un problème, une solution
Cours de Master Recherche
Cours de Master Recherche Spécialité CODE : Résolution de problèmes combinatoires Christine Solnon LIRIS, UMR 5205 CNRS / Université Lyon 1 2007 Rappel du plan du cours 16 heures de cours 1 - Introduction
Programmation Par Contraintes
Programmation Par Contraintes Cours 2 - Arc-Consistance et autres amusettes David Savourey CNRS, École Polytechnique Séance 2 inspiré des cours de Philippe Baptiste, Ruslan Sadykov et de la thèse d Hadrien
Pourquoi l apprentissage?
Pourquoi l apprentissage? Les SE sont basés sur la possibilité d extraire la connaissance d un expert sous forme de règles. Dépend fortement de la capacité à extraire et formaliser ces connaissances. Apprentissage
Algorithmes de recherche
Algorithmes de recherche 1 Résolution de problèmes par recherche On représente un problème par un espace d'états (arbre/graphe). Chaque état est une conguration possible du problème. Résoudre le problème
L apprentissage automatique
L apprentissage automatique L apprentissage automatique L'apprentissage automatique fait référence au développement, à l analyse et à l implémentation de méthodes qui permettent à une machine d évoluer
Cours 02 : Problème général de la programmation linéaire
Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =
Stratégie de recherche adaptative en programmation par contrainte
Université Paul Sabatier École Nationale de l Aviation Civile Master 2 Recherche Informatique et Télécommunication parcours Intelligence Artificielle Simon Marchal Stratégie de recherche adaptative en
Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1
Exemples de problèmes et d applications INF6953 Exemples de problèmes Sommaire Quelques domaines d application Quelques problèmes réels Allocation de fréquences dans les réseaux radio-mobiles Affectation
Introduction à la Programmation par Contraintes (PPC) Ruslan Sadykov LIX, École Polytechnique
Introduction à la Programmation par Contraintes (PPC) Ruslan Sadykov LIX, École Polytechnique Contenu Introduction Modélisation Problèmes de satisfaction des contraintes Exemples des modèles PPC simples
Amphi 3: Espaces complets - Applications linéaires continues
Amphi 3: Espaces complets - Applications linéaires continues Département de Mathématiques École polytechnique Remise en forme mathématique 2013 Suite de Cauchy Soit (X, d) un espace métrique. Une suite
INF 232: Langages et Automates. Travaux Dirigés. Université Joseph Fourier, Université Grenoble 1 Licence Sciences et Technologies
INF 232: Langages et Automates Travaux Dirigés Université Joseph Fourier, Université Grenoble 1 Licence Sciences et Technologies Année Académique 2013-2014 Année Académique 2013-2014 UNIVERSITÉ JOSEPH
LE PROBLEME DU PLUS COURT CHEMIN
LE PROBLEME DU PLUS COURT CHEMIN Dans cette leçon nous définissons le modèle de plus court chemin, présentons des exemples d'application et proposons un algorithme de résolution dans le cas où les longueurs
Bases de Données. Plan
Université Mohammed V- Agdal Ecole Mohammadia d'ingénieurs Rabat Bases de Données Mr N.EL FADDOULI 2014-2015 Plan Généralités: Définition de Bases de Données Le modèle relationnel Algèbre relationnelle
Intelligence Artificielle Planification
Intelligence Artificielle Planification Bruno Bouzy http://web.mi.parisdescartes.fr/~bouzy [email protected] Licence 3 Informatique UFR Mathématiques et Informatique Université Paris Descartes
Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.
1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le
Annexe 6. Notions d ordonnancement.
Annexe 6. Notions d ordonnancement. APP3 Optimisation Combinatoire: problèmes sur-contraints et ordonnancement. Mines-Nantes, option GIPAD, 2011-2012. [email protected] Résumé Ce document
Cours Optimisation Partie Optimisation Combinatoire. Année scolaire 2008-2009. Gérard Verfaillie ONERA/DCSD/CD, Toulouse Gerard.Verfaillie@onera.
Cours Optimisation Partie Optimisation Combinatoire 3ième année ISAE Année scolaire 2008-2009 Gérard Verfaillie ONERA/DCSD/CD, Toulouse [email protected] Septembre 2008 Résumé Ce document couvre
DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.
A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur
Série TD 3. Exercice 4.1. Exercice 4.2 Cet algorithme est destiné à prédire l'avenir, et il doit être infaillible! Exercice 4.3. Exercice 4.
Série TD 3 Exercice 4.1 Formulez un algorithme équivalent à l algorithme suivant : Si Tutu > Toto + 4 OU Tata = OK Alors Tutu Tutu + 1 Tutu Tutu 1 ; Exercice 4.2 Cet algorithme est destiné à prédire l'avenir,
Cours d Analyse. Fonctions de plusieurs variables
Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........
Créer le schéma relationnel d une base de données ACCESS
Utilisation du SGBD ACCESS Polycopié réalisé par Chihab Hanachi et Jean-Marc Thévenin Créer le schéma relationnel d une base de données ACCESS GENERALITES SUR ACCESS... 1 A PROPOS DE L UTILISATION D ACCESS...
Grandes lignes ASTRÉE. Logiciels critiques. Outils de certification classiques. Inspection manuelle. Definition. Test
Grandes lignes Analyseur Statique de logiciels Temps RÉel Embarqués École Polytechnique École Normale Supérieure Mercredi 18 juillet 2005 1 Présentation d 2 Cadre théorique de l interprétation abstraite
Chapitre 2. Matrices
Département de mathématiques et informatique L1S1, module A ou B Chapitre 2 Matrices Emmanuel Royer emmanuelroyer@mathuniv-bpclermontfr Ce texte mis gratuitement à votre disposition a été rédigé grâce
Processus d Informatisation
Processus d Informatisation Cheminement de la naissance d un projet jusqu à son terme, deux grandes étapes : Recherche ou étude de faisabilité (en amont) L utilisateur a une idée (plus ou moins) floue
Rapport d'analyse des besoins
Projet ANR 2011 - BR4CP (Business Recommendation for Configurable products) Rapport d'analyse des besoins Janvier 2013 Rapport IRIT/RR--2013-17 FR Redacteur : 0. Lhomme Introduction...4 La configuration
aux différences est appelé équation aux différences d ordre n en forme normale.
MODÉLISATION ET SIMULATION EQUATIONS AUX DIFFÉRENCES (I/II) 1. Rappels théoriques : résolution d équations aux différences 1.1. Équations aux différences. Définition. Soit x k = x(k) X l état scalaire
Logique binaire. Aujourd'hui, l'algèbre de Boole trouve de nombreuses applications en informatique et dans la conception des circuits électroniques.
Logique binaire I. L'algèbre de Boole L'algèbre de Boole est la partie des mathématiques, de la logique et de l'électronique qui s'intéresse aux opérations et aux fonctions sur les variables logiques.
Rappel. Analyse de Données Structurées - Cours 12. Un langage avec des déclaration locales. Exemple d'un programme
Rappel Ralf Treinen Université Paris Diderot UFR Informatique Laboratoire Preuves, Programmes et Systèmes [email protected] 6 mai 2015 Jusqu'à maintenant : un petit langage de programmation
RÉSOLUTION DE SYSTÈMES À DEUX INCONNUES
RÉSOLUTION DE SYSTÈMES À DEUX INCONNUES Sommaire 1 Méthodes de résolution... 3 1.1. Méthode de Substitution... 3 1.2. Méthode des combinaisons linéaires... 6 La rubrique d'aide qui suit s'attardera aux
Les diagrammes de modélisation
L approche Orientée Objet et UML 1 Plan du cours Introduction au Génie Logiciel L approche Orientée Objet et Notation UML Les diagrammes de modélisation Relations entre les différents diagrammes De l analyse
Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34
Capacité d un canal Second Théorème de Shannon Théorie de l information 1/34 Plan du cours 1. Canaux discrets sans mémoire, exemples ; 2. Capacité ; 3. Canaux symétriques ; 4. Codage de canal ; 5. Second
Chapitre 3 LE MODELE RELATIONNEL ET SQL (DDL)
Chapitre 3 LE MODELE RELATIONNEL ET SQL (DDL) Un modèle de données définit un mode de représentation de l information selon trois composantes : 1. Des structures de données. 2. Des contraintes qui permettent
Cours Base de données relationnelles. M. Boughanem, IUP STRI
Cours Base de données relationnelles 1 Plan 1. Notions de base 2. Modèle relationnel 3. SQL 2 Notions de base (1) Définition intuitive : une base de données est un ensemble d informations, (fichiers),
La (les) mesure(s) GPS
La (les) mesure(s) GPS I. Le principe de la mesure II. Equation de mesure GPS III. Combinaisons de mesures (ionosphère, horloges) IV. Doubles différences et corrélation des mesures V. Doubles différences
La NP-complétude. Johanne Cohen. PRISM/CNRS, Versailles, France.
La NP-complétude Johanne Cohen PRISM/CNRS, Versailles, France. Références 1. Algorithm Design, Jon Kleinberg, Eva Tardos, Addison-Wesley, 2006. 2. Computers and Intractability : A Guide to the Theory of
Info0804. Cours 6. Optimisation combinatoire : Applications et compléments
Recherche Opérationnelle Optimisation combinatoire : Applications et compléments Pierre Delisle Université de Reims Champagne-Ardenne Département de Mathématiques et Informatique 17 février 2014 Plan de
Système binaire. Algèbre booléenne
Algèbre booléenne Système binaire Système digital qui emploie des signaux à deux valeurs uniques En général, les digits employés sont 0 et 1, qu'on appelle bits (binary digits) Avantages: on peut utiliser
Correction TD algorithmique
Affectation Correction TD algorithmique Exercice 1 algo affect1b b 5 a b+1 b 2 Il vaut faire passer la notion de variable et la notion de stockage mémoire. Une variable n a donc pas d historique et à un
Les bases de données Page 1 / 8
Les bases de données Page 1 / 8 Sommaire 1 Définitions... 1 2 Historique... 2 2.1 L'organisation en fichier... 2 2.2 L'apparition des SGBD... 2 2.3 Les SGBD relationnels... 3 2.4 Les bases de données objet...
Chapitre 1 : Introduction aux bases de données
Chapitre 1 : Introduction aux bases de données Les Bases de Données occupent aujourd'hui une place de plus en plus importante dans les systèmes informatiques. Les Systèmes de Gestion de Bases de Données
Structures algébriques
Structures algébriques 1. Lois de composition s Soit E un ensemble. Une loi de composition interne sur E est une application de E E dans E. Soient E et F deux ensembles. Une loi de composition externe
Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites
I Droites perpendiculaires Lorsque deux droites se coupent, on dit qu elles sont sécantes Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites Lorsque deux
Propagation sur réseau statique et dynamique
Université de la Méditerranée UFR Sciences de Luminy Rapport de stage informatique pour le Master 2 de Physique, Parcours Physique Théorique et Mathématique, Physique des Particules et Astroparticules.
Atelier Transversal AT11. Activité «Fourmis» Pierre Chauvet. [email protected]
Atelier Transversal AT11 Activité «Fourmis» Pierre Chauvet [email protected] Ant : un algorithme inspiré de l éthologie L éthologie Etude scientifique des comportements animaux, avec une perspective
Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA
75. Un plombier connaît la disposition de trois tuyaux sous des dalles ( voir figure ci dessous ) et il lui suffit de découvrir une partie de chacun d eux pour pouvoir y poser les robinets. Il cherche
Introduction. I Étude rapide du réseau - Apprentissage. II Application à la reconnaissance des notes.
Introduction L'objectif de mon TIPE est la reconnaissance de sons ou de notes de musique à l'aide d'un réseau de neurones. Ce réseau doit être capable d'apprendre à distinguer les exemples présentés puis
Francis BISSON (06 794 819) Kenny CÔTÉ (06 836 427) Pierre-Luc ROGER (06 801 883) IFT702 Planification en intelligence artificielle
Francis BISSON (06 794 819) Kenny CÔTÉ (06 836 427) Pierre-Luc ROGER (06 801 883) PLANIFICATION DE TÂCHES DANS MS PROJECT IFT702 Planification en intelligence artificielle Présenté à M. Froduald KABANZA
La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique
La programmation linéaire : une introduction Qu est-ce qu un programme linéaire? Qu est-ce qu un programme linéaire? Exemples : allocation de ressources problème de recouvrement Hypothèses de la programmation
(51) Int Cl.: H04L 29/06 (2006.01) G06F 21/55 (2013.01)
(19) TEPZZ 8 8 4_A_T (11) EP 2 838 241 A1 (12) DEMANDE DE BREVET EUROPEEN (43) Date de publication: 18.02.1 Bulletin 1/08 (1) Int Cl.: H04L 29/06 (06.01) G06F 21/ (13.01) (21) Numéro de dépôt: 141781.4
Systèmes décisionnels et programmation avancée
Systèmes décisionnels et programmation avancée M1 SIR Philippe Muller et Mustapha Mojahid, Matthieu Serrurier, Marie-Christine Scheix 2014-2015 Introduction structure du cours intervenants introduction
Axiomatique de N, construction de Z
Axiomatique de N, construction de Z Table des matières 1 Axiomatique de N 2 1.1 Axiomatique ordinale.................................. 2 1.2 Propriété fondamentale : Le principe de récurrence.................
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un
L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories :
La vision nous permet de percevoir et d interpreter le monde qui nous entoure. La vision artificielle a pour but de reproduire certaines fonctionnalités de la vision humaine au travers de l analyse d images.
Premiers pas avec Mathematica
Premiers pas avec Mathematica LP206 : Mathématiques pour physiciens I Année 2010/2011 1 Introduction Mathematica est un logiciel de calcul formel qui permet de manipuler des expressions mathématiques symboliques.
Programmation linéaire
1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit
Initiation à la Programmation en Logique avec SISCtus Prolog
Initiation à la Programmation en Logique avec SISCtus Prolog Identificateurs Ils sont représentés par une suite de caractères alphanumériques commençant par une lettre minuscule (les lettres accentuées
Chapitre 5 : Flot maximal dans un graphe
Graphes et RO TELECOM Nancy A Chapitre 5 : Flot maximal dans un graphe J.-F. Scheid 1 Plan du chapitre I. Définitions 1 Graphe Graphe valué 3 Représentation d un graphe (matrice d incidence, matrice d
PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES
Leçon 11 PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES Dans cette leçon, nous retrouvons le problème d ordonnancement déjà vu mais en ajoutant la prise en compte de contraintes portant sur les ressources.
Utilisation du backtrack intelligent dans un branch-and-bound Application au problème d Open-Shop
Utilisation du backtrack intelligent dans un branch-and-bound Application au problème d Open-Shop Narendra Jussien et Christelle Guéret École des Mines de Nantes 4 rue Alfred Kastler BP 20722 F-44300 Nantes
Notice Générale - MODULE CLIENTS. I. Description générale du module. II. La liste des clients a. Accès
- MODULE CLIENTS L affichage peut être différent suivant votre paramétrage mais le principe reste le même. I. Description générale du module Le module clients permet: de constituer un annuaire des clients
IFT1215 Introduction aux systèmes informatiques
Introduction aux circuits logiques de base IFT25 Architecture en couches Niveau 5 Niveau 4 Niveau 3 Niveau 2 Niveau Niveau Couche des langages d application Traduction (compilateur) Couche du langage d
Coefficients binomiaux
Probabilités L2 Exercices Chapitre 2 Coefficients binomiaux 1 ( ) On appelle chemin une suite de segments de longueur 1, dirigés soit vers le haut, soit vers la droite 1 Dénombrer tous les chemins allant
CHAPITRE 5. Stratégies Mixtes
CHAPITRE 5 Stratégies Mixtes Un des problèmes inhérents au concept d équilibre de Nash en stratégies pures est que pour certains jeux, de tels équilibres n existent pas. P.ex.le jeu de Pierre, Papier,
3L8PW = EP - 308A 6L24P = EP -624A
NOTICE TECHNIQUE CENTRAL TELEPHONIQUE ANALOGIQUE 3 LIGNES 8 POSTES Autocommutateur téléphone PABX CENTRAL 2L8P = EP 208A =TC - 208A. 3L12PN = EP 312A = TC312A = TC308A 3L8PW = EP - 308A 6L24P = EP -624A
Mathématiques appliquées à l'économie et à la Gestion
Mathématiques appliquées à l'économie et à la Gestion Mr Makrem Ben Jeddou Mme Hababou Hella Université Virtuelle de Tunis 2008 Continuité et dérivation1 1- La continuité Théorème : On considère un intervalle
Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre
IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables
Programmation d'agents intelligents Vers une refonte des fils de raisonnement. Stage de fin d'études Master IAD 2006
vendredi 8 septembre 2006 Programmation d'agents intelligents Vers une refonte des fils de raisonnement Stage de fin d'études Master IAD 2006 Benjamin DEVEZE Responsable : M. Patrick TAILLIBERT Plan Plan
ALGORITHMIQUE ET PROGRAMMATION En C
Objectifs ALGORITHMIQUE ET PROGRAMMATION Une façon de raisonner Automatiser la résolution de problèmes Maîtriser les concepts de l algorithmique Pas faire des spécialistes d un langage Pierre TELLIER 2
3. SPÉCIFICATIONS DU LOGICIEL. de l'expression des besoins à la conception. Spécifications fonctionnelles Analyse fonctionnelle et méthodes
PLAN CYCLE DE VIE D'UN LOGICIEL EXPRESSION DES BESOINS SPÉCIFICATIONS DU LOGICIEL CONCEPTION DU LOGICIEL LA PROGRAMMATION TESTS ET MISE AU POINT DOCUMENTATION CONCLUSION C.Crochepeyre Génie Logiciel Diapason
Modèle conceptuel : diagramme entité-association
Modèle conceptuel : diagramme entité-association Raison d'être de ce cours «La conception et l'utilisation de bases de données relationnelles sur micro-ordinateurs n'est pas un domaine réservé aux informaticiens.»
Logique. Plan du chapitre
Logique Ce chapitre est assez abstrait en première lecture, mais est (avec le chapitre suivant «Ensembles») probablement le plus important de l année car il est à la base de tous les raisonnements usuels
Gestion de projets. avec. Microsoft Office PROJECT 2003
Gestion de projets avec Microsoft Office PROJECT 2003 Décembre 2006 1 Sommaire 1. Présentation de MS Office Project 2003 2. Aperçu général de l interface 3. Elaboration d un plan de projet 4. Gestion des
Economie de l incertain et de l information Partie 1 : Décision en incertain probabilisé Chapitre 1 : Introduction à l incertitude et théorie de
Economie de l incertain et de l information Partie 1 : Décision en incertain probabilisé Chapitre 1 : Introduction à l incertitude et théorie de l espérance d utilité Olivier Bos [email protected]
Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques
Université de Provence Topologie 2 Cours3. Applications continues et homéomorphismes 1 Rappel sur les images réciproques Soit une application f d un ensemble X vers un ensemble Y et soit une partie P de
Information utiles. [email protected]. webpage : Google+ : http://www.ibisc.univ-evry.fr/ digiusto/
Systèmes de gestion de bases de données Introduction Université d Evry Val d Essonne, IBISC utiles email : [email protected] webpage : http://www.ibisc.univ-evry.fr/ digiusto/ Google+ : https://plus.google.com/u/0/b/103572780965897723237/
Le Langage SQL version Oracle
Université de Manouba École Supérieure d Économie Numérique Département des Technologies des Systèmes d Information Le Langage SQL version Oracle Document version 1.1 Mohamed Anis BACH TOBJI [email protected]
Backtracking asynchrone agile pour les problèmes de satisfaction de contraintes distribués
Actes JFPC 2011 Backtracking asynchrone agile pour les problèmes de satisfaction de contraintes distribués Christian Bessiere 1 El Houssine Bouyakhf 2 Younes Mechqrane 2 Mohamed Wahbi 1,2 1 LIRMM/CNRS,
Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/
Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation
QUESTION 1 {2 points}
ELE4301 Systèmes logiques II Page 1 de 8 QUESTION 1 {2 points} En se servant de paramètres électriques donnés dans le Tableau 1 ci-dessous, on désire déterminer la fréquence d opération du compteur présenté
Corps des nombres complexes, J Paul Tsasa
Corps des nombres complexes, J Paul Tsasa One Pager Février 2013 Vol. 5 Num. 011 Copyright Laréq 2013 http://www.lareq.com Corps des Nombres Complexes Définitions, Règles de Calcul et Théorèmes «Les idiots
De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que
Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer
FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)
FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité
Le module Supply Chain pour un fonctionnement en réseau
Prélude 7 ERP Le module Supply Chain pour un fonctionnement en réseau Gérard Baglin Septembre 2008 Sommaire Chapitre 1 Le mode de fonctionnement en réseau de Prélude 7... 1 Le principe des jeux en temps
IFT2255 : Génie logiciel
IFT2255 : Génie logiciel Chapitre 6 - Analyse orientée objets Section 1. Introduction à UML Julie Vachon et Houari Sahraoui 6.1. Introduction à UML 1. Vers une approche orientée objet 2. Introduction ti
Le langage SQL Rappels
Le langage SQL Rappels Description du thème : Présentation des principales notions nécessaires pour réaliser des requêtes SQL Mots-clés : Niveau : Bases de données relationnelles, Open Office, champs,
1ère partie Nadine Cullot. Bases de données déductives. Bases de données déductives Introduction et Motivation
Master STIC «Image Informatique et Ingénierie» Module Informatique Modèles de représentation - 10h CM Nadine Cullot Kokou Yétongnon [email protected] [email protected] 1ère partie
Correction de l examen de la première session
de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi
Plan. Exemple: Application bancaire. Introduction. OCL Object Constraint Language Le langage de contraintes d'uml
OCL Object Constraint Language Le langage de contraintes d'uml Plan 1. Introduction 2. Les principaux concepts d'ocl Object Constraint Language 1 Object Constraint Language 2 Exemple: une application bancaire
Résolution de systèmes linéaires par des méthodes directes
Résolution de systèmes linéaires par des méthodes directes J. Erhel Janvier 2014 1 Inverse d une matrice carrée et systèmes linéaires Ce paragraphe a pour objet les matrices carrées et les systèmes linéaires.
M é ca n ism e Pr o lo g. Ex e m p le
M é ca n ism e Pr o lo g Principe général : 5. on élimine L du but (le but est géré comme une pile de clauses) 1. on prend dans le but (clause ne contenant que des littéraux négatifs) le premier littéral
LES DÉTERMINANTS DE MATRICES
LES DÉTERMINANTS DE MATRICES Sommaire Utilité... 1 1 Rappel Définition et composantes d'une matrice... 1 2 Le déterminant d'une matrice... 2 3 Calcul du déterminant pour une matrice... 2 4 Exercice...
Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions
Formes quadratiques Imen BHOURI 1 Ce cours s adresse aux étudiants de niveau deuxième année de Licence et à ceux qui préparent le capes. Il combine d une façon indissociable l étude des concepts bilinéaires
MPI Activité.10 : Logique binaire Portes logiques
MPI Activité.10 : Logique binaire Portes logiques I. Introduction De nombreux domaines font appel aux circuits logiques de commutation : non seulement l'informatique, mais aussi les technologies de l'asservissement
UNIVERSITE PARIS VII - DENIS DIDEROT U.F.R. D'INFORMATIQUE THESE
UNIVERSITE PARIS VII - DENIS DIDEROT U.F.R. D'INFORMATIQUE Année 1998 N attribué par la bibliothèque _ THESE pour obtenir le grade de DOCTEUR DE L'UNIVERSITE PARIS VII Discipline : Informatique présentée
P r ob lé m a t iq u e d e la g é n é r icit é. Pr in cip e d e la g é n é r icit é e n Ja v a ( 1 /3 )
P r ob lé m a t iq u e d e la g é n é r icit é les versions de Java antérieures à 1.5 permettaient de créer des classes de structures contenant n'importe quels types d'objet : les collections (classes
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante
TP n 2 Concepts de la programmation Objets Master 1 mention IL, semestre 2 Le type Abstrait Pile
TP n 2 Concepts de la programmation Objets Master 1 mention IL, semestre 2 Le type Abstrait Pile Dans ce TP, vous apprendrez à définir le type abstrait Pile, à le programmer en Java à l aide d une interface
Introduction aux Bases de Données Relationnelles Conclusion - 1
Pratique d un : MySQL Objectifs des bases de données Où en sommes nous? Finalement, qu est-ce qu un? Modèle relationnel Algèbre relationnelle Conclusion SQL Conception et rétro-conception Protection de
