Représentation des nombres en langage informatique et conséquences

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Représentation des nombres en langage informatique et conséquences"

Transcription

1 CHAPITRE Représentation des nombres en langage informatique et conséquences La création de la numération est un des faits les plus marquants de l histoire de l humanité. Si la plupart des civilisations ont adopté le système décimal, c est qu il a toujours été naturel de compter sur ses doigts. Les chinois, quant à eux, comptaient jusqu à sur une main et dix milliards sur les deux mains. Les Mayas, Aztèques, Celtes et Basques, sans doute plus sportifs, utilisaient eux les orteils, donc la base 0. Les Sumériens ont bizarrement utilisé la base 60, et les Romains la base Les ordinateurs et les programmes mémorisent, transmettent et transforment des données aussi variées que des grandeurs numériques (nombres, textes, code postal, entier relatif, pixels, images...) mais aussi des grandeurs analogiques (son, vitesse de rotation ). Pourtant, quand on les observe à plus petite échelle, les ordinateurs ne manipulent que des objets beaucoup plus simples : des 0 et des. Dans ce chapitre, nous verrons comment cette suite de 0 et de suffit à représenter la plupart des nombres (des entiers naturels aux nombres à virgule).. Représentation des nombres en langage informatique.. Les différentes bases de représentation possibles Les différentes bases de représentation Depuis le Moyen- Âge, on écrit les nombres en représentation décimale ou en base dix. Ainsi, pour écrire un entier naturel 𝑁 quelconque, on écrit, de droite à gauche, le nombre de paquets de un, le nombre de paquets de dix, le nombre de paquets de cent, le nombre de paquets de mille... Chacun de ces nombres étant compris entre zéro et neuf, seuls dix chiffres sont nécessaires : 0,,, 3, 4, 5, 6, 7, 8 et 9 Le choix de faire des paquets de dix est conventionnel : on aurait tout aussi bien pu décider de faire des paquets de deux, de huit, de douze, de vingt... Ainsi, lorsqu on décide de faire des paquets de deux, on écrit les nombres en base deux, ou représentation binaire, n utilisant que deux chiffres : 0 et Tous les nombres sont formés à partir de ces seuls deux chiffres et se prononcent chiffre par chiffre (par exemple, le nombre qui se représente par 4 en base dix se représente par 00 en base deux et se prononce un- zéro- zéro). Voici la liste des douze premiers nombres en représentation décimale et en représentation binaire : Base dix Base deux

2 Chapitre : Représentation des nombres Remarque : quand une suite de chiffres exprime un nombre dans une base différente de la base décimale, on indique la base en indice. Pour la base, on peut également souligner le résultat. Passage de la représentation décimale à la représentation binaire Pour passer de la base de représentation décimale à la base de représentation binaire, on effectue des divisions successives par du nombre en base dix, jusqu à obtenir 0 en quotient. On lit alors les restes successifs de droite à gauche et de bas en haut. Exemple : expression en base deux du nombre représenté par 3 en base dix Ainsi le chiffre qui s écrit 3 en représentation décimale s écrit 0 ou 0 en représentation binaire (à prononcer un- un- zéro- un). Passage de la représentation binaire à la représentation décimale Pour passer de la base de représentation binaire à la base de représentation décimale, on lit les bits de droite à gauche et on leur associe la puissance de correspondant à leur rang dans le nombre en base deux : Position du bit Puissance de correspondante! =! =! = 4! = 8! = 6! = 3! = 64! = 8! = 56 Exemple : expression en base dix du nombre représenté par 000 en base deux Représentation, binaire,,, 0", 0" 0", Position,du,bit, 6" 5" 4" 3" " " 0" Puissance,de, deux, correspondante, Représentation, décimale,! " = 64"! " = 3"! " = 6"! " = 8"! " = 4"! " = "!! +!! + 0! +!! + 0! + 0! +!! " = " = 05"! " = " " Ainsi le chiffre qui s écrit 000 ou 000 en représentation binaire s écrit 05 en représentation décimale.

3 Chapitre : Représentation des nombres 3.. La représentation binaire : source du langage informatique La mémoire des ordinateurs est constituée d une multitude de circuits électroniques qui ne peuvent être que dans deux états : sous tension ou hors tension. On appelle ces états 0 et. Une telle valeur (0 ou ) est dite booléenne. On l appelle booléen ou bit (pour binary digit en anglais) et un circuit à deux états s appelle un circuit mémoire un bit. L état dans lequel se trouve un circuit mémoire un bit est représenté par le symbole 0 ou par le symbole. L état d un circuit composé de plusieurs de ces circuits est représenté par une suite finie de 0 et de. Par exemple, 00 (prononcer un- zéro- zéro) décrit l état d un circuit composé de trois circuits mémoire un bit, respectivement dans l état, 0 et 0. Les ordinateurs comptent donc naturellement en base deux et chaque circuit de l ordinateur représente un des deux chiffres de cette base : 0 ou. Dans la mémoire d un ordinateur, tous les chiffres sont donc écrits en représentation binaire. Les circuits mémoire un bit sont groupés par huit, définissant ce qu on appelle un octet. L ordinateur représente alors les nombres en notation binaire sur un, deux, quatre ou huit octets, soit 8, 6, 3 ou 64 bits. Nombre d octets utilisés 4 8 Nombre de bits correspondant Représentation binaire des entiers naturels Nous venons de voir qu en langage informatique, les nombres sont représentés en base deux, en utilisant 8, 6, 3 ou 64 bits. Cela permet de représenter les nombres : - de 0 à :! = 56 nombres sur un octet donc 8 bits - de 0 à :!" = nombres sur deux octets donc 6 bits - de 0 à =!" = nombres sur quatre octets donc 3 bits - de 0 à =!" = nombres sur huit octets donc 64 bits. Ainsi : Nombre d octets utilisés Nombre de bits correspondant Intervalle de nombres représentés en base = 8 8 = = = 64 0 à 55 0 à à à Représentation binaire des entiers relatifs Voyons maintenant comment étendre aux entiers relatifs la représentation binaire des entiers naturels que nous venons de voir. Une solution pourrait consister à réserver un bit pour le signe de l entier et à utiliser les autres pour représenter sa valeur absolue : on coderait alors la valeur absolue sur 7, 5, 3 ou 63 bits. Cependant, cette méthode a plusieurs inconvénients (notamment l existence de deux zéros, l un positif et l autre négatif).

4 4 Chapitre : Représentation des nombres On préfère donc utiliser la notation en complément à deux. Dans cette représentation, et en prenant comme exemple un codage binaire sur octets donc 6 bits (comprenant donc les entiers naturels entre 0 et 65535), on représente les entiers relatifs compris entre et Si l entier relatif 𝑥 que l on cherche à représenter est positif ou nul, on utilise simplement sa représentation binaire d entier naturel. Par contre, si cet entier relatif 𝑥 est négatif, on le représente par l entier naturel 𝑥 +!" = 𝑥 , qui est compris entre et Remarquons qu il est facile de déterminer le signe d un entier représenté sous cette forme : un entier relatif positif ou nul est représenté par un entier naturel dont le premier bit vaut 0 alors qu un entier relatif strictement négatif est représenté par un entier naturel dont le premier bit vaut..5. Représentation binaire des nombres à virgule Représentation des nombres à virgule flottante La notation binaire permet aussi de représenter des nombres à virgule. En notation décimale, les chiffres à gauche de la virgule représentent des unités, des dizaines, des centaines... et ceux à droite de la virgule, des dixièmes, des centièmes, des millièmes... De même, en binaire, les chiffres à droite de la virgule représentent des demis, des quarts, des huitièmes... Toutefois, cette manière de faire ne permet pas de représenter des nombres très grands ou très petits (comme le nombre d Avogadro ou la constante de Planck). On utilise plutôt une représentation (similaire à la notation scientifique mais en base deux plutôt qu en base dix) dans laquelle un nombre 𝑥 s écrit : 𝑥 =! 𝑚! 𝑠 est le signe du nombre : le signe + est représenté par 𝑠 = 0 et le signe par 𝑠 =. l exposant 𝑛 est un entier relatif compris entre 04 et 03 (en codage double précision sur 8 bits), représenté en notation en complément à deux (donc compris entre et 048). la mantisse 𝑚 est un nombre binaire à virgule compris entre inclus et exclu, comprenant 5 chiffres après la virgule. Comme cette mantisse est comprise entre et, elle a toujours le seul chiffre avant la virgule ; il est donc inutile de le représenter et on utilise les 5 bits pour représenter les 5 chiffres après la virgule, ce qui donne une précision réelle de 53 bits. Exemple : Trouvons en base dix l équivalent du nombre à virgule 𝑁 représenté en notation binaire par : Le premier chiffre de ce nombre correspond au signe : 𝑠 = 𝑁 < 0 L exposant est ensuite codé sur les bits suivants : 𝑛 = ! 𝑛 = 094 en notation en complément à deux 𝑛 = = 7 La mantisse correspondant enfin aux 5 derniers bits (en tenant compte du implicite) : 𝑚 =, ! 𝑚 = +! +! +! +! +! +!" +!" +!" +!" 0677 𝑚= 307 Le nombre 𝑁 se représente donc en base dix par : 0677!" 𝑁= = 3,74 0!" 307

5 Chapitre : Représentation des nombres 5 Les nombres représentés sous cette forme sont appelés nombres à virgule flottante, puisque la virgule de la mantisse peut être déplacée par le biais de l exposant. Le codage d un nombre à virgule nécessite donc : Le cas particulier du zéro Signe s Exposant n Mantisse m Nombre de bits utilisés 5 Dans la représentation précédente, puisque la mantisse est censée toujours commencer par un implicite, il n est en principe pas possible de représenter le zéro. Par convention, on décide qu un nombre vaut zéro si et seulement si tous les bits de son exposant et de sa mantisse valent 0. Il reste un choix pour le bit de signe, il y a donc un zéro positif et un zéro négatif dans les nombres à virgule flottante. Codage du zéro positif : Signe Exposant Mantisse Codage du zéro négatif : Signe Exposant Mantisse Représentation des nombres à virgule.. Dépassement de capacité Dans le codage informatique, les nombres représentés sont limités par le nombre de bits utilisés. Pour la représentation des entiers naturels ou relatifs, si on dépasse la capacité de codage, le bit le plus à gauche est perdu : on appelle ce phénomène dépassement arithmétique (ou overflow en anglais). Il faut alors changer de représentation pour éviter de perdre la valeur du résultat. En Python, ce changement de représentation est automatique et la seule limite pour la représentation des entiers, qu ils soient naturels ou relatifs, est la mémoire disponible sur la machine. Remarque : cette propriété est loin d être le cas dans tous les langages de programmation. La plupart du temps, si le résultat d un calcul dépasse les limites de la représentation des entiers, les bits surnuméraires sont purement et simplement perdus. De même que les entiers, les nombres à virgule flottante possèdent certaines limites inévitables. En effet, les nombres à virgule flottante étant représentés sur un nombre donné de bits, il existe forcément un nombre maximal représentable dans ce format. Plus précisément, 64 bits ne suffisent plus si la représentation du nombre demande : un exposant supérieur à 03, qui est le plus grand représentable sur bits. un exposant égal à 03 et une mantisse supérieure à la plus grande mantisse représentable sur 5 bits, c est- à- dire (implicite) suivi de 5 fois le chiffre après la virgule. Tout calcul dont le résultat dépasse cette limite produit une situation qui est également appelée dépassement arithmétique, produisant les nombres spéciaux + et, selon le signe du résultat du calcul.

6 6 Chapitre : Représentation des nombres Un autre dépassement de capacité, qui n existe pas pour les entiers, se produit lorsque l on veut représenter un nombre trop proche de 0, c est- à- dire représenter un nombre dont : l exposant est inférieur à 0, le plus petit exposant représentable sur bits le nombre est inférieur en valeur absolue au plus petit nombre dénormalisé. On parle alors de dépassement par valeurs inférieures ou de soupassement arithmétique (en anglais underflow). Selon les cas, le résultat d un calcul qui tombe dans cette plage de valeurs peut soit être arrondi à zéro (le signe du résultat est cependant conservé), soit produire une erreur... Problème de précision et arrondis Il est rare que le résultat d un calcul faisant intervenir deux nombres à virgule flottante donne un résultat représentable exactement sur 64 bits. Exemple : le nombre qui se représente par 0,4 en base dix admet pour développement en base deux, le développement périodique infini suivant : 0! + 0! +! +! + 0! + 0! +! +! + 0! + 0! + +!"!! = 0, Si l on essaye de construire une représentation sur 64 bits, on obtient : Signe Exposant Mantisse Bits non représentés La représentation en virgule flottante sera donc forcément une valeur approchée de ce nombre. Par défaut, les nombres à virgule sont arrondis à la valeur de mantisse la plus proche. La valeur approchée choisie pour la représentation binaire de 0,4 est donc la suivante : 0, = , On retiendra qu il n est pas possible de savoir de façon certaine si le résultat d un calcul est égal à sa valeur théorique. La principale conséquence en est qu un test du type a = b n a en général pas de sens si a et b sont deux nombres à virgule flottante, puisque ceux- ci ont pu subir des erreurs d arrondis. On remplacera donc un tel test par une condition de la forme abs(a-b) < epsilon où epsilon est une valeur proche de zéro, choisie en fonction du problème à traiter et de l ordre de grandeur des erreurs auxquelles on peut s attendre (ou qu on peut tolérer) sur a et b..3. Exemples concrets sur les erreurs d arrondis Voici quelques exemples concrets de cas où les erreurs d'arrondi ont conduit à des catastrophes : Missile Patriot En février 99, pendant la Guerre du Golfe, une batterie américaine de missiles Patriot, à Dharan (Arabie Saoudite), a échoué dans l interception d un missile Scud irakien. Le Scud a frappé un baraquement de l armée américaine et a tué 8 soldats. La commission d enquête a conclu à un calcul incorrect du temps de parcours, dû à un problème d arrondi. Les nombres étaient représentés en virgule fixe sur 4 bits, donc 4 chiffres binaires. Le temps était compté par l horloge interne du système en /0 de seconde. Malheureusement, /0 n a pas d écriture finie dans le système binaire : /0 = 0, (dans le système décimal) = 0, (dans le système binaire). L ordinateur de bord arrondissait /0 à 4 chiffres, d où une petite erreur dans le décompte du

7 Chapitre : Représentation des nombres 7 temps pour chaque /0 de seconde. Au moment de l attaque, la batterie de missile Patriot était allumée depuis environ 00 heures, ce qui avait entraîné une accumulation des erreurs d arrondi de 0,34 s. Pendant ce temps, un missile Scud parcourt environ 500 m, ce qui explique que le Patriot soit passé à côté de sa cible. Ce qu il aurait fallu faire c était redémarrer régulièrement le système de guidage du missile. Explosion d Ariane 5 Le 4 juin 996, une fusée Ariane 5 a explosé 40 secondes après l allumage. La fusée et son chargement avaient coûté 500 millions de dollars. La commission d enquête a rendu son rapport au bout de deux semaines. Il s agissait d une erreur de programmation dans le système inertiel de référence. À un moment donné, un nombre codé en virgule flottante sur 64 bits (qui représentait la vitesse horizontale de la fusée par rapport à la plate- forme de tir) était converti en un entier sur 6 bits. Malheureusement, le nombre en question était plus grand que 3768 (overflow), le plus grand entier que l on peut coder sur 6 bits, et la conversion a été incorrecte : les systèmes de sécurité, détectant une erreur, ont fait exploser la fusée! Bourse de Vancouver Un autre exemple où les erreurs de calcul on conduit à une erreur notable est le cas de l indice de la Bourse de Vancouver. En 98, elle a crée un nouvel indice avec une valeur nominale de 000. Après chaque transaction boursière, cet indice était recalculé et tronqué après le troisième chiffre décimal et, au bout de mois, la valeur obtenue était 54,88, alors que la valeur correcte était 098,8. Cette différence s explique par le fait que toutes les erreurs d arrondi étaient dans le même sens : l opération de troncature diminuait à chaque fois la valeur de l indice

8 8 Chapitre : Représentation des nombres 3. Pour s entraîner 3.. Nombre d états possible pour la mémoire d un ordinateur ) On imagine un ordinateur dont la mémoire est constituée de quatre circuits mémoire un bit. Quel est le nombre d états possibles de la mémoire de cet ordinateur? ) Même question pour un ordinateur dont la mémoire est constituée de dix circuits mémoire un bit. Et pour un ordinateur dont la mémoire est constituée de 3 milliards de tels circuits? 3.. Passage d une base de représentation à l autre ) Trouver la représentation en base huit du nombre par 87 en base dix. ) Trouver la représentation en base dix du nombre ) Trouver la représentation en base deux du nombre représenté par 4 en base dix. 5) Trouver la représentation en base dix du nombre Notation en complément à deux ) Trouver les représentations binaires sur huit bits des entiers relatifs 0, 7 et - 7. ) Trouver les représentations décimales des entiers relatifs dont les représentations binaires sur huit bits sont 0000 et ) Calculer la représentation sur huit bits de l entier relatif, puis celle de son opposé Représentation des nombres à virgule Trouver le nombre à virgule flottante représenté par le mot :

Chapitre 2 : Représentation des nombres en machine

Chapitre 2 : Représentation des nombres en machine Chapitre 2 : Représentation des nombres en machine Introduction La mémoire des ordinateurs est constituée d une multitude de petits circuits électroniques qui ne peuvent être que dans deux états : sous

Plus en détail

CODAGE D UN NOMBRE SYSTEME DE NUMERATION

CODAGE D UN NOMBRE SYSTEME DE NUMERATION 1. Base d un système de numération 1.1 Système décimal. C est le système de base 10 que nous utilisons tous les jours. Il comprend dix symboles différents :... Exemple du nombre 2356 de ce système : nous

Plus en détail

Logiciel de Base. I. Représentation des nombres

Logiciel de Base. I. Représentation des nombres Logiciel de Base (A1-06/07) Léon Mugwaneza ESIL/Dépt. Informatique (bureau A118) mugwaneza@univmed.fr I. Représentation des nombres Codage et représentation de l'information Information externe formats

Plus en détail

Cours Info - 12. Représentation des nombres en machine. D.Malka MPSI 2014-2015. D.Malka Cours Info - 12 MPSI 2014-2015 1 / 45

Cours Info - 12. Représentation des nombres en machine. D.Malka MPSI 2014-2015. D.Malka Cours Info - 12 MPSI 2014-2015 1 / 45 Cours Info - 12 Représentation des nombres en machine D.Malka MPSI 2014-2015 D.Malka Cours Info - 12 MPSI 2014-2015 1 / 45 Sommaire Sommaire 1 Bases de numération par position 2 Représentation des entiers

Plus en détail

Conversion d un entier. Méthode par soustraction

Conversion d un entier. Méthode par soustraction Conversion entre bases Pour passer d un nombre en base b à un nombre en base 10, on utilise l écriture polynomiale décrite précédemment. Pour passer d un nombre en base 10 à un nombre en base b, on peut

Plus en détail

Représentation des Nombres

Représentation des Nombres Chapitre 5 Représentation des Nombres 5. Representation des entiers 5.. Principe des représentations en base b Base L entier écrit 344 correspond a 3 mille + 4 cent + dix + 4. Plus généralement a n a n...

Plus en détail

IPT : Cours 2. La représentation informatique des nombres

IPT : Cours 2. La représentation informatique des nombres IPT : Cours 2 La représentation informatique des nombres (3 ou 4 heures) MPSI-Schwarz : Prytanée National Militaire Pascal Delahaye 28 septembre 2015 1 Codage en base 2 Définition 1 : Tout nombre décimal

Plus en détail

Mathématiques pour. l informatique

Mathématiques pour. l informatique Xavier Chanet Patrick Vert Mathématiques pour l informatique Pour le BTS SIO Toutes les marques citées dans cet ouvrage sont des marques déposées par leurs propriétaires respectifs. Illustration de couverture

Plus en détail

Fondements de l informatique

Fondements de l informatique Arnaud Labourel Courriel : arnaud.labourel@lif.univ-mrs.fr Université de Provence Présentation du cours Définition de l informatique Quelques annonces Pas de cours la semaine prochaine Les TD et les TP

Plus en détail

Informatique? Numérique? L informatique est la science du traitement de l information.

Informatique? Numérique? L informatique est la science du traitement de l information. Informatique? Numérique? L informatique est la science du traitement de l information. L information est traitée par un ordinateur sous forme numérique : ce sont des valeurs discrètes. Cela signifie que,

Plus en détail

Représentation des nombres entiers et réels. en binaire en mémoire

Représentation des nombres entiers et réels. en binaire en mémoire L3 Mag1 Phys. fond., cours C 15-16 Rep. des nbs. en binaire 25-09-05 23 :06 :02 page 1 1 Nombres entiers 1.1 Représentation binaire Représentation des nombres entiers et réels Tout entier positif n peut

Plus en détail

Architecture des ordinateurs : Codage binaire et hexadécimal Arithmétique des processeurs (J1IN4001)

Architecture des ordinateurs : Codage binaire et hexadécimal Arithmétique des processeurs (J1IN4001) Architecture des ordinateurs : Codage binaire et hexadécimal Arithmétique des processeurs (J1IN4001) F. Pellegrini Université Bordeaux 1 Ce document est copiable et distribuable librement et gratuitement

Plus en détail

Ordinateur, programme et langage

Ordinateur, programme et langage 1 Ordinateur, programme et langage Ce chapitre expose tout d abord les notions de programme et de traitement de l information. Nous examinerons ensuite le rôle de l ordinateur et ses différents constituants.

Plus en détail

Puissances de 10 Exercices corrigés

Puissances de 10 Exercices corrigés Puissances de 10 Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : produit de deux puissances de : Exercice 2 : inverse d une puissance de : et Exercice 3 : quotient de deux puissances de

Plus en détail

Machines de Turing. Chapitre 14 14.1. DÉFINITION ET FONCTIONNEMENT

Machines de Turing. Chapitre 14 14.1. DÉFINITION ET FONCTIONNEMENT Chapitre 4 Machines de Turing Dans ce chapitre on présente un modèle de calcul introduit dans les années 3 par Turing, les machines de Turing. Ces machines formalisent la notion de calculabilité. La thèse

Plus en détail

Chapitre 1: Représentation des Nombres

Chapitre 1: Représentation des Nombres Chapitre 1: Représentation des Nombres 1 Représentation des entiers naturels 11 Écriture dans une base Rappels sur la base 10 Considérons un nombre entier strictement positif, par exemple N = 432 Alors,

Plus en détail

Expressions, types et variables en Python

Expressions, types et variables en Python Expressions, types et variables en Python 2015-08-26 1 Expressions Les valeurs désignent les données manipulées par un algorithme ou une fonction. Une valeur peut ainsi être : un nombre, un caractère,

Plus en détail

Codage d information. Codage d information : -Définition-

Codage d information. Codage d information : -Définition- Introduction Plan Systèmes de numération et Représentation des nombres Systèmes de numération Système de numération décimale Représentation dans une base b Représentation binaire, Octale et Hexadécimale

Plus en détail

Programmation en Langage C (CP2, ENSA Oujda)

Programmation en Langage C (CP2, ENSA Oujda) Programmation en Langage C (CP2, ENSA Oujda) El Mostafa DAOUDI Département de Mathématiques et d Informatique, Faculté des Sciences Université Mohammed Premier Oujda m.daoudi@fso.ump.ma Septembre 2011

Plus en détail

Maîtriser le binaire et les conversions réciproques binaire-décimal.

Maîtriser le binaire et les conversions réciproques binaire-décimal. Support Réseau des Accès Utilisateurs SI 2 BTS Services Informatiques aux Organisations 1 ère année Support Réseau des Accès Utilisateurs Objectifs : Chapitre 1 : Codage de l'information Le système binaire

Plus en détail

Problèmes à propos des nombres entiers naturels

Problèmes à propos des nombres entiers naturels Problèmes à propos des nombres entiers naturels 1. On dispose d une grande feuille de papier, on la découpe en 4 morceaux, puis on déchire certains morceaux (au choix) en 4 et ainsi de suite. Peut-on obtenir

Plus en détail

Représentation de l information en binaire

Représentation de l information en binaire Représentation de l information en binaire Les ordinateurs sont capables d effectuer de nombreuses opérations sur de nombreux types de contenus (images, vidéos, textes, sons,...). Cependant, quel que soit

Plus en détail

Problème : débordement de la représentation ou dépassement

Problème : débordement de la représentation ou dépassement Arithmétique entière des ordinateurs (représentation) Écriture décimale : écriture positionnelle. Ex : 128 = 1 10 2 + 2 10 1 + 8 10 0 Circuit en logique binaire Écriture binaire (base 2) Ex : (101) 2 =

Plus en détail

Faculté des Sciences de Tétouan TD 1 SMI-3 2012 2013. Codage des informations & Arithmétique des ordinateurs Corrigé

Faculté des Sciences de Tétouan TD 1 SMI-3 2012 2013. Codage des informations & Arithmétique des ordinateurs Corrigé Faculté des Sciences de Tétouan TD 1 SMI-3 2012 2013 Codage des informations & Arithmétique des ordinateurs Corrigé * Remarque 1 Merci de me signaler toute erreur de calcul par mail au hibaoui.ens@gmail.com.

Plus en détail

Module 1 - Arithmétique Chapitre 1 - Numération

Module 1 - Arithmétique Chapitre 1 - Numération Lycée Maximilien Sorre Année 2015-2016 BTS SIO 1 Module 1 - Arithmétique Chapitre 1 - Numération 1 Introduction : que signifie 2014? Dans de nombreuses situations, il est nécessaire de pouvoir exprimer

Plus en détail

Procédure. Exemple OPÉRATIONS DANS UN SYSTÈME POSITIONNEL

Procédure. Exemple OPÉRATIONS DANS UN SYSTÈME POSITIONNEL Opérations dans un système positionnel OPÉRATIONS DANS UN SYSTÈME POSITIONNEL INTRODUCTION Dans tout système de numération positionnel, les symboles sont utilisés de façon cyclique et la longueur du correspond

Plus en détail

Arithmétique binaire. (Université Bordeaux 1) Architecture de l Ordinateur 2007-2008 1 / 10

Arithmétique binaire. (Université Bordeaux 1) Architecture de l Ordinateur 2007-2008 1 / 10 Entiers naturels Arithmétique binaire Représentation en base 10: 2034 = 2 10 3 + 0 10 2 + 3 10 1 + 4 10 0 Représentation en base 2: 11010 = 1 2 4 + 1 2 3 + 0 2 2 + 1 2 1 + 0 2 0 (Université Bordeaux 1)

Plus en détail

Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3

Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3 8 Systèmes de numération INTRODUCTION SYSTÈMES DE NUMÉRATION POSITIONNELS Dans un système positionnel, le nombre de symboles est fixe On représente par un symbole chaque chiffre inférieur à la base, incluant

Plus en détail

IFT2880 Organisation des ordinateurs et systèmes

IFT2880 Organisation des ordinateurs et systèmes Représentation des nombres flottants Notation exponentielle Représentations équivalentes dans la base 10 de 1,234 1 2 3, 4 0 0. 0 x 1 0-2 1 2, 3 4 0. 0 x 1 0-1 1, 2 3 4. 0 x 1 0 1 2 3. 4 x 1 0 1 2. 3 4

Plus en détail

Information Calcul Communication. Chapitre 4 - Représentation de l information. V12-2 avril 2015

Information Calcul Communication. Chapitre 4 - Représentation de l information. V12-2 avril 2015 Information Calcul Communication Syllabus de cours Chapitre 4 - Représentation de l information V12-2 avril 2015 Avec solution minimale des exercices pour une section dédiée en fin de livre R. Boulic 1

Plus en détail

Représentation d un entier en base b

Représentation d un entier en base b Représentation d un entier en base b 13 octobre 2012 1 Prérequis Les bases de la programmation en langage sont supposées avoir été travaillées L écriture en base b d un entier est ainsi défini à partir

Plus en détail

Agrégation externe de mathématiques, texte d exercice diffusé en 2012 Épreuve de modélisation, option informatique

Agrégation externe de mathématiques, texte d exercice diffusé en 2012 Épreuve de modélisation, option informatique Agrégation externe de mathématiques, texte d exercice diffusé en 2012 Épreuve de modélisation, option informatique Résumé : A partir du problème de la représentation des droites sur un écran d ordinateur,

Plus en détail

RAPPELS ET COMPLÉMENTS CALCULATOIRES

RAPPELS ET COMPLÉMENTS CALCULATOIRES RAPPELS ET COMPLÉMENTS CALCULATOIRES ENSEMBLES DE NOMBRES ENSEMBLES,,,ET: On rappelle que : désigne l ensembleprivé de 0 idem pour, et, + désigne l ensemble des réels positifs ou nuls et l ensemble des

Plus en détail

Représentation des nombres réels

Représentation des nombres réels Représentation des nombres réels Représentation des nombres réels Un nombre réel est représenté en décimal sous la forme: d m d m-1 d 1 d 0.d -1 d -2 d -n où la valeur du nombre est: m d = 10 i= n d Par

Plus en détail

Le codage des informations TP n 5

Le codage des informations TP n 5 But du TP :- Comprendre le principe de codage des informations. - Savoir passer d un système de numérotation à un autre. - Construire un tableau de conversion avec Excel. Lire le cours suivant puis compléter

Plus en détail

Présentation du binaire

Présentation du binaire Présentation du binaire Vers la fin des années 30, Claude Shannon démontra qu'à l'aide de "contacteurs" (interrupteurs) fermés pour "vrai" et ouverts pour "faux" on pouvait effectuer des opérations logiques

Plus en détail

Plan. Codage d information d Codage de l informationl. Les informations traitées par les ordinateurs sont de différentes natures :

Plan. Codage d information d Codage de l informationl. Les informations traitées par les ordinateurs sont de différentes natures : Plan Introduction Systèmes de numération et représentation des nombres Systèmes de numération Système de numération décimaled Représentation dans une base b Représentation binaire, Octale et Hexadécimale

Plus en détail

Introduction à l informatique, à Python, et représentation des nombres en machine

Introduction à l informatique, à Python, et représentation des nombres en machine Introduction à l informatique, à Python, et représentation des nombres en machine Table des matières Qu est-ce-que l informatique? Qu est-ce-qu un ordinateur? 2 Principaux composants...............................................

Plus en détail

Chapitre 6 : Estimation d erreurs numériques

Chapitre 6 : Estimation d erreurs numériques Chapitre 6 : Estimation d erreurs numériques Puisque les réels ne sont représentés en machine que sous la forme de flottants, ils ne sont connus que de manière approchée. De plus, la somme ou le produit

Plus en détail

Construction d un site WEB

Construction d un site WEB Construction d un site WEB 1 Logique binaire 1: Les systèmes de numération Un ordinateur est un appareil électronique. Deux tensions sont majoritairement présentes dans ses circuits électroniques : 0V

Plus en détail

Codage des nombres. Eric Cariou. Université de Pau et des Pays de l'adour Département Informatique. Eric.Cariou@univ-pau.fr

Codage des nombres. Eric Cariou. Université de Pau et des Pays de l'adour Département Informatique. Eric.Cariou@univ-pau.fr Codage des nombres Eric Cariou Université de Pau et des Pays de l'adour Département Informatique Eric.Cariou@univ-pau.fr 1 Représentation de l'information Un ordinateur manipule des données Besoin de coder

Plus en détail

Remarques sur le premier contrôle de TD :

Remarques sur le premier contrôle de TD : Remarques sur le premier contrôle de TD : Démêlons les confusions en tous genres... Licence 1 MASS semestre 2, 2006/2007 La première remarque est qu il faut apprendre le cours, faire les exercices et poser

Plus en détail

CONVERSION DE DONNEES

CONVERSION DE DONNEES CONVERSION DE DONNEES Baccalauréat Sciences de l'ingénieur A1 : Analyser le besoin A2 : Composants réalisant les fonctions de la chaîne d information B1 : Identifier la nature de l'information et la nature

Plus en détail

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Arts & Métiers Filière PSI

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Arts & Métiers Filière PSI Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Arts & Métiers Filière PSI Ces exercices portent sur les items 2, 3 et 5 du programme d informatique des classes

Plus en détail

Introduction au codage de l information:

Introduction au codage de l information: Introduction au codage de l information: Quelques éléments d architecture de l ordinateur Comparaison de la carte perforée au DVD Pourquoi est-il nécessaire de coder l information? Numérisation Formats

Plus en détail

I) Deux propriétés importantes Propriété 1 Si A est multiple de B et B est un multiple de n, alors A est un multiple de n.

I) Deux propriétés importantes Propriété 1 Si A est multiple de B et B est un multiple de n, alors A est un multiple de n. Extrait de cours de maths de 5e Chapitre 1 : Arithmétique Définition 1. Multiples et diviseurs Si, dans une division de D par d, le reste est nul, alors on dit que D est un multiple de d, que d est un

Plus en détail

CODAGE DES NOMBRES. I-Codage des entiers naturels. I) Codage des entiers naturels

CODAGE DES NOMBRES. I-Codage des entiers naturels. I) Codage des entiers naturels I) Codage des entiers naturels I) Codage des entiers naturels Ouvrir la calculatrice Windows dans le menu Programmes/accessoires/ Ouvrir la calculatrice Windows dans le menu Programmes/accessoires/ cliquer

Plus en détail

La machine à diviser de Monsieur Pascal

La machine à diviser de Monsieur Pascal prologue La machine à diviser de Monsieur Pascal Àdiviser? vous dites-vous, ne s agit-il pas plutôt de la «Pascaline», la machine à additionner que le jeune Blaise construisit pour soulager son père dans

Plus en détail

Chapitre 1 I:\ Soyez courageux!

Chapitre 1 I:\ Soyez courageux! Chapitre 1 I:\ Soyez courageux! Pour ne rien vous cacher, le langage d'assembleur (souvent désigné sous le terme "Assembleur", bien que ce soit un abus de langage, puisque "Assembleur" désigne le logiciel

Plus en détail

Numération II. Laval. January 24, 2013. Bellepierre

Numération II. Laval. January 24, 2013. Bellepierre Bellepierre January 24, 2013 Opération en base 4 Les nombres sont tous écrit en base 4... La table d addition + 1 2 3 1 2 3 10 2 3 10 11 3 10 11 12 Exemple 1 1 1 1 2 3 + 2 2 2 1 0 1 1 Opération en base

Plus en détail

Au menu. Cours 7: Classes Probabilistes. Application : Calcul de la médiane. Sous menu. Retours sur quelques algorithmes.

Au menu. Cours 7: Classes Probabilistes. Application : Calcul de la médiane. Sous menu. Retours sur quelques algorithmes. Au menu Cours 7: Classes Probabilistes Olivier Bournez bournez@lix.polytechnique.fr LIX, Ecole Polytechnique Retours sur quelques algorithmes Quelques résultats INF561 Algorithmes et Complexité 1 2 Sous

Plus en détail

Systèmes de Numération & Codage

Systèmes de Numération & Codage Systèmes de Numération & Codage Objectif : L électronicien est amené à manipuler des valeurs exprimées dans différentes bases (notamment avec les systèmes informatiques). Il est essentiel de posséder quelques

Plus en détail

VII- Enumérations dans l ordre alphabétique

VII- Enumérations dans l ordre alphabétique VII- Enumérations dans l ordre alphabétique Prenons un dictionnaire. Comment savoir si un mot se trouve avant ou après un autre? On commence par comparer la première lettre de ces deux mots. Si elles sont

Plus en détail

SYSTEMES DE NUMERATION

SYSTEMES DE NUMERATION FICHE DU MODULE 1 SYSTEMES DE NUMERATION OBJECTIF GENERAL: La compétence visée par ce module est d amener l apprenant à se familiariser avec les systèmes de numération et les codes utilisés par les appareils

Plus en détail

VII- Circuits combinatoires élémentaires

VII- Circuits combinatoires élémentaires 1 VII- Circuits combinatoires élémentaires Par circuit combinatoire, on entend que ses sorties sont des fonctions de ses entrées. Cela par opposition aux circuits séquentiels, que nous verrons plus loin,

Plus en détail

Deuxième épreuve d admission. Exemples de sujets

Deuxième épreuve d admission. Exemples de sujets Deuxième épreuve d admission. Exemples de sujets Thème : probabilités 1) On lance deux dés équilibrés à 6 faces et on note la somme des deux faces obtenues. 1.a) Donner un univers associé cette expérience.

Plus en détail

CH.2 CODES CORRECTEURS

CH.2 CODES CORRECTEURS CH.2 CODES CORRECTEURS 2.1 Le canal bruité 2.2 La distance de Hamming 2.3 Les codes linéaires 2.4 Les codes de Reed-Muller 2.5 Les codes circulaires 2.6 Le câblage des codes circulaires 2.7 Les performances

Plus en détail

TOPOLOGIE DE LA DROITE REELLE

TOPOLOGIE DE LA DROITE REELLE TOPOLOGIE DE LA DROITE REELLE P. Pansu 16 mai 2005 1 Qu est-ce que la topologie? C est l étude des propriétés des objets qui sont conservées par déformation continue. Belle phrase, mais qui nécessite d

Plus en détail

Exemple. Il ne faudra pas confondre (101) 2 et (101) 10 Si a 0,a 1, a 2,, a n sont n+1 chiffres de 0 à 1, le

Exemple. Il ne faudra pas confondre (101) 2 et (101) 10 Si a 0,a 1, a 2,, a n sont n+1 chiffres de 0 à 1, le Chapitre I - arithmé La base décimale Quand on représente un nombre entier, positif, on utilise généralement la base 10. Cela signifie que, de la droite vers la gauche, chaque nombre indiqué compte 10

Plus en détail

Numération. On sait que dans 342 381, le chiffre 4 ne vaut pas 4 mais 40 000... Ainsi :

Numération. On sait que dans 342 381, le chiffre 4 ne vaut pas 4 mais 40 000... Ainsi : Numération Numération. 1 Les systèmes de numération 1.1 Le système décimal. 1.1.1 Les chiffres. Le système décimal est le système d écriture des nombres que nous utilisons habituellement dans la vie courante.

Plus en détail

2 bits... 2^2 = 4 combinaisons 8 bits... 2^8 = 256 combinaisons

2 bits... 2^2 = 4 combinaisons 8 bits... 2^8 = 256 combinaisons Chapitre II DÉFINITION DES SYSTÈMES LOGIQUES 2.1 LES NOMBRES DANS LES SYSTÈMES LOGIQUES Les humains comptent en DÉCIMAL 2.1.1 DÉCIMAL: o Base 10 o 10 chiffres: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 o M C D U o

Plus en détail

Préparation aux épreuves écrites du CAPES Conseils de rédaction

Préparation aux épreuves écrites du CAPES Conseils de rédaction Préparation aux épreuves écrites du CAPES Conseils de rédaction Claire Debord Le texte qui suit est une libre compilation de plusieurs textes sur le même thème, notamment ceux de Christophe Champetier

Plus en détail

Circuits séquentiels. Chapitre 6. 6.1 Circuits séquentiels

Circuits séquentiels. Chapitre 6. 6.1 Circuits séquentiels Chapitre 6 Circuits séquentiels Plusieurs circuits utilisés dans la vie courante ont besoin de mémoire. Ce chapitre présente les méthodes de base de stockage d information. Les circuits combinatoires présentés

Plus en détail

Codage des données en machine.

Codage des données en machine. Codage des données en machine. 1 Entiers naturels Changements de base Codage en machine 2 Entiers relatifs : codage en complément à 2 Dénition Addition et calcul de l'opposé en complément à 2 3 Représentation

Plus en détail

Chapitre 10 Arithmétique réelle

Chapitre 10 Arithmétique réelle Chapitre 10 Arithmétique réelle Jean Privat Université du Québec à Montréal INF2170 Organisation des ordinateurs et assembleur Automne 2013 Jean Privat (UQAM) 10 Arithmétique réelle INF2170 Automne 2013

Plus en détail

Connaissances et capacités attendues en mathématiques à la fin du CM2 et à la fin de la classe de 6 ème (*) 1.1. Proportionnalité.

Connaissances et capacités attendues en mathématiques à la fin du CM2 et à la fin de la classe de 6 ème (*) 1.1. Proportionnalité. Cycle 3 de l'école primaire Connaissances et capacités attendues en mathématiques à la fin du CM2 et à la fin de la classe de 6 ème (*) Classe de 6ème du collège Le texte en caractère droit indique des

Plus en détail

Projet Prép. Préguidance Cours du professeur G. De Meur 2005. Système de numération : les principes de groupement et de position

Projet Prép. Préguidance Cours du professeur G. De Meur 2005. Système de numération : les principes de groupement et de position Ecriture formelle Système de numération : les principes de groupement et de position Ce qu est un système de numération Sur le plan de la REPRESENTATION des nombres, on s est vite rendu compte de la difficulté

Plus en détail

VOLUME 3 ROBERT ET MICHEL LYONS. ( Octobre 2001 )

VOLUME 3 ROBERT ET MICHEL LYONS. ( Octobre 2001 ) VOLUME 3 ROBERT ET MICHEL LYONS ( Octobre 2001 ) Introduction Si votre enfant a réussi les activités des deux volumes précédents, vous serez peut-être surpris, mais le plus difficile est fait. Son succès

Plus en détail

M2 Informatique/Réseaux Université Pierre et Marie Curie UE APMM

M2 Informatique/Réseaux Université Pierre et Marie Curie UE APMM TD TECHNIQUES DE CODAGE ET DE COMPRESSION. LANGAGE / CODAGE / VALENCE.. Rappels Toute fraction intelligible d un message est constituée de symboles. Le langage est l ensemble de ces symboles. Un codage

Plus en détail

Initiation aux probabilités.

Initiation aux probabilités. Initiation aux probabilités. On place dans une boite trois boules identiques à l exception de leur couleur : une boule est noire, une est blanche, la troisième est grise. On tire une des boules sans regarder,

Plus en détail

CHAPITRE 3 : Types de base, Opérateurs et Expressions

CHAPITRE 3 : Types de base, Opérateurs et Expressions CHAPITRE 3 : Types de base, Opérateurs et Expressions 1. Types simples Un type définit l'ensemble des valeurs que peut prendre une variable, le nombre d'octets à réserver en mémoire et les opérateurs que

Plus en détail

Fiche de révisions - Algorithmique

Fiche de révisions - Algorithmique Fiche de révisions - Algorithmique Rédigé par : Jimmy Paquereau 1. Généralités Algorithme : un algorithme est la description d une procédure à suivre afin de résoudre un problème donné. Il n est pas nécessairement

Plus en détail

Tableaux et manipulation d images «bitmap»

Tableaux et manipulation d images «bitmap» T.P. numéro VII Tableaux et manipulation d images «bitmap» Ce T.P. va faire intervenir les notions suivantes : lecture/écriture de fichiers binaires ; images bitmap ; tableaux de données. 1 Fichiers binaires

Plus en détail

Numérisation de l information

Numérisation de l information Numérisation de l Une est un élément de connaissance codé à l aide de règles communes à un ensemble d utilisateurs. Le langage, l écriture sont des exemples de ces règles. 1 Comment les s sont-elles transmises?

Plus en détail

INTRODUCTION A L ETUDE DES VARIABLES QUALITATIVES

INTRODUCTION A L ETUDE DES VARIABLES QUALITATIVES INTRODUCTION A L ETUDE DES VARIABLES QUALITATIVES Plan Introduction Définition Catégories de variables qualitatives Modèles pour Données avec Troncature Les Modèles pour Données Censurées Définition de

Plus en détail

Prendre un bon départ

Prendre un bon départ Chapitre A Prendre un bon départ 1 - Avant-propos Un ordinateur sait très bien faire deux choses : Calculer, d oùle nomcomputer en anglais que l on pourrait traduire par calculateur. Placer des données

Plus en détail

Représentation d un nombre en machine, erreurs d arrondis

Représentation d un nombre en machine, erreurs d arrondis Chapitre Représentation d un nombre en machine, erreurs d arrondis Ce chapitre est une introduction à la représentation des nombres en machine et aux erreurs d arrondis, basé sur [], [].. Un exemple :

Plus en détail

Informatique 2014-2015 MP/MP*/PC/PC*/PSI* DS1 Samedi 22 novembre. Exercice N 1 A la découverte de la notation polonaise inversée

Informatique 2014-2015 MP/MP*/PC/PC*/PSI* DS1 Samedi 22 novembre. Exercice N 1 A la découverte de la notation polonaise inversée Le sujet comporte un total de 3 exercices indépendants qui peuvent être traités dans l ordre de votre choix. Exercice N 1 A la découverte de la notation polonaise inversée Introduction La notation polonaise

Plus en détail

Bases informatiques. Binaire, octale et hexadécimale. TCH010-Informatique

Bases informatiques. Binaire, octale et hexadécimale. TCH010-Informatique Enseignants Coordonateur: David Marche david.marche@etsmtl.ca Chargé de cours: Lévis Thériault levis.theriault@etsmtl.ca Site internet Plan de cours Rappel numérotation en base 10 Bases informatiques i

Plus en détail

a)54 895 b) 21 542 c)103 984 d) 65 214 CM2

a)54 895 b) 21 542 c)103 984 d) 65 214 CM2 DISTINGUER CHIFFRE ET NOMBRES Num 1 Dans notre système de numération, il y a 10 chiffres : 0, 1, 2, 3, 4, 5, 6, 7, 8 et 9 Un nombre s écrit avec un ou plusieurs chiffres, qui ont chacun une valeur différente

Plus en détail

Examen Programmation ENSAE première année 2008 (rattrapage) Examen écrit (1 heure) Tous documents autorisés.

Examen Programmation ENSAE première année 2008 (rattrapage) Examen écrit (1 heure) Tous documents autorisés. Examen Programmation ENSAE première année 2008 (rattrapage) Examen écrit (1 heure) Tous documents autorisés. 1 0.0.1 Suite récurrente (Fibonacci) * Réécrire la fonction u de façon à ce qu elle ne soit

Plus en détail

Chapitre 1 GRAPHIQUES

Chapitre 1 GRAPHIQUES Statistique appliquée à la gestion et au marketing http://foucart.thierry.free.fr/statpc Chapitre 1 GRAPHIQUES On entend souvent qu un schéma vaut mieux qu un long discours. Effectivement, lorsque l on

Plus en détail

Parties Problématique Questionnaire Compétences Capacités Connaissances Documents T1 T2 T3 T4 T5 Partie n 0 (lecture du sujet : 30 min)

Parties Problématique Questionnaire Compétences Capacités Connaissances Documents T1 T2 T3 T4 T5 Partie n 0 (lecture du sujet : 30 min) Baccalauréat S profil SI épreuve de sciences de l ingénieur Sujet BEZOUT -Track T1 analyser un technique et vérifier ses performances attendues ; T2 proposer et valider des modèles ; T3 analyser des résultats

Plus en détail

FILIÈRE MP - OPTION SCIENCES INDUSTRIELLES

FILIÈRE MP - OPTION SCIENCES INDUSTRIELLES ÉCOLE POLYTECHNIQUE ÉCOLE SUPÉRIEURE DE PHYSIQUE ETCHIMIEINDUSTRIELLES CONCOURS 2002 FILIÈRE MP - OPTION SCIENCES INDUSTRIELLES FILIÈRE PC ÉPREUVE FACULTATIVE D INFORMATIQUE (Durée : 2 heures) L utilisation

Plus en détail

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Dénombrement et probabilités Version du juillet 05 Enoncés Exercice - YouTube Sur YouTube, les vidéos sont identifiées à l aide d une chaîne

Plus en détail

Cours/TD n 3 : les boucles

Cours/TD n 3 : les boucles Cours/TD n 3 : les boucles Où on se rendra compte qu il est normal de rien comprendre Pour l instant, on a vu beaucoup de choses. Les variables, les Si Alors Sinon, les tests avec les ET, les OU et les

Plus en détail

2012/2013 Le codage en informatique

2012/2013 Le codage en informatique 2012/2013 Le codage en informatique Stéphane Fossé/ Marc Gyr Lycée Felix Faure Beauvais 2012/2013 INTRODUCTION Les appareils numériques que nous utilisons tous les jours ont tous un point commun : 2 chiffres

Plus en détail

Vous revisiterez tous les nombres rencontrés au collège, en commençant par les nombres entiers pour finir par les nombres réels.

Vous revisiterez tous les nombres rencontrés au collège, en commençant par les nombres entiers pour finir par les nombres réels. Cette partie est consacrée aux nombres. Vous revisiterez tous les nombres rencontrés au collège, en commençant par les nombres entiers pour finir par les nombres réels. L aperçu historique vous permettra

Plus en détail

3.2 Constituants d un système. Capteur à ultrasons Capteur de présence

3.2 Constituants d un système. Capteur à ultrasons Capteur de présence - Société & développement durable - Technologie - Communication 3.2.3 Acquisition et codage de l information 1 Introduction Anémomètre Capteur solaire Capteur à ultrasons Capteur de présence Capteur de

Plus en détail

RESOLUTION D UNE INEQUATION. Les symboles utilisés ( symbole d inégalité ) : Appellation 1 Appellation 2 Appellation 3 Vocabulaire à utiliser

RESOLUTION D UNE INEQUATION. Les symboles utilisés ( symbole d inégalité ) : Appellation 1 Appellation 2 Appellation 3 Vocabulaire à utiliser THEME : Les symboles utilisés ( symbole d inégalité ) : Appellation 1 Appellation Appellation Vocabulaire à utiliser < plus petit inférieur strictement inférieur strictement inférieur plus petit ou égal

Plus en détail

La numération. Le décimal, le binaire, l'hexadécimal Conversions entre bases Les codages binaire réfléchi, décimal codé binaire et ASCII

La numération. Le décimal, le binaire, l'hexadécimal Conversions entre bases Les codages binaire réfléchi, décimal codé binaire et ASCII Cours sur la numération La numération Le décimal, le binaire, l'hexadécimal Conversions entre bases Les codages binaire réfléchi, décimal codé binaire et ASCII Le système décimal Les nombres que nous utilisons

Plus en détail

Baccalauréat ES/L Métropole 21 juin 2013 (sujet dévoilé)

Baccalauréat ES/L Métropole 21 juin 2013 (sujet dévoilé) Baccalauréat ES/L Métropole 21 juin 2013 (sujet dévoilé) EXERCICE 1 4 points Cet exercice est un questionnaire à choix multiples (QCM). Pour chacune des questions posées, une seule des quatre réponses

Plus en détail

Commission Réseau Sémantique Universel Étude de cas n 1 : routage postal

Commission Réseau Sémantique Universel Étude de cas n 1 : routage postal Commission Réseau Sémantique Universel Étude de cas n 1 : routage postal La meilleure méthode pour mettre au point une méthode étant de la tester sur le plus grand nombre possible de cas concrets, voici

Plus en détail

Arithmétique Algorithmique. http://www.math.univ-lyon1.fr/~roblot/ens.html

Arithmétique Algorithmique. http://www.math.univ-lyon1.fr/~roblot/ens.html Arithmétique Algorithmique http://www.math.univ-lyon1.fr/~roblot/ens.html Partie III Algorithmes classiques 1 Coût de la multiplication et de la division 2 Exponentiation rapide 3 Algorithme d Euclide

Plus en détail

ELEC2753 Electrotechnique examen du 11/06/2012

ELEC2753 Electrotechnique examen du 11/06/2012 ELEC2753 Electrotechnique examen du 11/06/2012 Pour faciliter la correction et la surveillance, merci de répondre aux 3 questions sur des feuilles différentes et d'écrire immédiatement votre nom sur toutes

Plus en détail

Exos corrigés darithmétique...classe : TS-Spé. Prof. MOWGLI Ahmed. Année scolaire 2015-2016

Exos corrigés darithmétique...classe : TS-Spé. Prof. MOWGLI Ahmed. Année scolaire 2015-2016 Exos corrigés darithmétique...classe : TS-Spé Prof. MOWGLI Ahmed Année scolaire 2015-2016 1 Pour des cours particuliers par petits groupes de 3 ou 4 élèves en maths et/ou physique-chimie, veuillez me contacter.

Plus en détail

Ce document a été fabriqué par PDFmail (Copyright RTE Multimedia) http://www.pdfmail.com

Ce document a été fabriqué par PDFmail (Copyright RTE Multimedia) http://www.pdfmail.com I- LE COURNT ÉLECTRIQUE : 1) Nature du courant : Le courant électrique est un déplacement de charges électriques dans la matière. Dans les métaux, les porteurs de charges sont les ÉLECTRONS. Circulation

Plus en détail

Cours/TD n 3bis : les boucles

Cours/TD n 3bis : les boucles Cours/TD n 3bis : les boucles Découpons le problème Nous avons plusieurs utilisations des boucles C est précisément ce qui rend difficile leur création. Vu la difficulté, nous allons séparer les différentes

Plus en détail

Accélération des opérateurs

Accélération des opérateurs Accélération des opérateurs Principe Tous les algorithmes que nous implémenterons en TP sur carte sont basés sur 4 opérations de base : Addition/Soustraction Multiplication Division MAC Accélérer l opérateur

Plus en détail

Exo7. Développements limités. 1 Calculs. 2 Applications. Corrections d Arnaud Bodin.

Exo7. Développements limités. 1 Calculs. 2 Applications. Corrections d Arnaud Bodin. Exo7 Développements ités Corrections d Arnaud Bodin. Calculs Exercice Donner le développement ité en 0 des fonctions :. cosx expx à l ordre 2. ln + x)) 2 à l ordre 4 shx x. x à l ordre 6 4. exp sinx) )

Plus en détail